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Chapter 1

Introduction

This thesis is concerned with models consisting of a linear superposition of
nonlinear functions with random effects made up of additive Gaussian white
noise. Such models are very useful for modeling a wide range of physical systems,
as will be explored herein. The inverse problem associated with estimating the
most likely values for the parameters is an instance of separable nonlinear least
squares, which is possible to address with the variable projection algorithm due
to Golub and Pereyra (1973). This algorithm is described in detail in Chapter
2, along with several extensions.

Many varieties of measured data arising in physics and chemistry experi-
ments represents a linear superposition of a number of components. Such mea-
surements are often resolved with respect to multiple independent variables,
such as time, wavelength, mass-to-charge ratio or location. In a selection of the
independent variables, the behavior of each component may be possible to de-
scribe in terms of a nonlinear function, the form of which is suggested by physical
first principles. However, in other independent variables a parsimonious nonlin-
ear function to describe the component may not be feasible to construct. For
example, measurements that arise in the time-resolved microscopy experiments
described further in Chapters 2 and 6 represent the fluorescence decay of sev-
eral components of a fluorescent protein after an initial laser excitation. These
measurements are resolved with respect to both time and location. Each com-
ponent is known to decay exponentially in time, and the measurement at each
location is possible to describe well as a sum of exponential decays. However,
the amplitude of each component at each location depends on unpredictable
biological and experimental conditions that are difficult to represent in terms of
a simple nonlinear function. In using a separable nonlinear model to describe
such measurements, the amplitude of each component at each location may be
treated as conditionally linear on estimates for the parameters associated with
the nonlinear functions that describe the data in the time domain. This allows
the data with respect to both time and location to be described in terms of a
unified model having two types of parameters: intrinsically nonlinear parame-
ters associated with the functions in the time domain, and conditionally linear
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8 CHAPTER 1. INTRODUCTION

parameters associated with the amplitude of each component per-location.
The models considered here will share the feature that the parameters are

possible to naturally separate into two groups, with estimates for the parameters
in one group being easy to solve for giving fixed values of parameters in the
other group. This feature is what defines a separable nonlinear model. Several
advantages are to be had in using an algorithm for model fitting under least
squares criteria that takes advantage of this special structure, as opposed to
using a general nonlinear regression strategy to estimate all parameters directly.
The parameter estimation task is rendered better-conditioned, meaning that it is
easier to solve precisely using a digital computer. The problem is also rendered
faster to solve, in that fewer iterations are typically required to converge on
parameter values that represent a local solution.

Taking full advantage of the separable structure of nonlinear parameter
estimation problems is increasingly important in the physical sciences, where
improvements in instrumentation are making it possible to collect ever-larger
datasets resolved with respect to many independent variables. The description
of all measurements of interest in all independent variables in terms of a unified
separable nonlinear model is a powerful means of extracting physically relevant
information regarding a complex system of interest, as the applications studied
here will attest.

1.1 Theory

Given a separable nonlinear model, what algorithms are available to estimate
the parameters under least squares criteria? How precise will these parameter
estimates be? Chapters 2 and 3 consider these questions. Much of the presen-
tation centers on the variable projection algorithm, which has a long history of
successful application to separable nonlinear least squares problems. Chapter
2 reviews variable projection with emphasis on modifications to fit multiway
datasets in the absence of large memory resources.

The parameter precision associated with two different variants of variable
projection is compared using the Fisher Information Matrix (FIM) of the pa-
rameters in Chapter 3. The FIM is again used in Chapter 4 to study the
parameter precision for the case that non-negativity constraints on the linear
parameters of a separable nonlinear model are active.

Sum of exponential fitting problems are important in applications, as Istra-
tov and Vyvenko (1999) review. This is due to the fact that many physical
phenomena are described by first-order differential equations, the solution of
which is a sum of exponential decays. Linear approximation standard error es-
timates are compared to likelihood-based standard error estimates for a sum of
exponentials fitting problem typical of those that arise in time-resolved spec-
troscopy applications in Chapter 3.

A variant of variable projection is developed in Chapter 4 that allows the
application of constraints to the linear parameters in separable nonlinear mod-
els fit with least squares criteria. Constraining the linear parameters associated
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with a separable nonlinear model is useful, for instance, if certain parameter val-
ues are not possible to physically interpret. For instance, the linear parameters
associated with models for time-resolved fluorescence spectroscopy and mass
spectrometry data often represent spectra resolved with respect to wavelength
or mass to charge ratio, negative values of which have no physical interpretation.

1.2 Implementation

In order to fit separable nonlinear models under least squares criteria to experi-
mental data, a problem-solving environment has been designed and implemented
in the form of the package TIMP for the R language and environment for sta-
tistical computing (R Development Core Team, 2008). Implementation in R has
several advantages. It is available under the terms of the GNU General Public
License in source code form, and compiles and runs on all major operating sys-
tems. This means that R (and TIMP) need not be treated as a black box: if
necessary, researchers can examine or modify the implementation at a very low
level. The package system of R means that TIMP can be easily distributed, fa-
cilitating collaboration and the reproduction of research results. Furthermore,
R’s current position as the lingua franca of statistical computing means that
TIMP can be easily integrated with a wide range of other packages.

TIMP was designed with extension to new types of data in mind. As Chapter
5 explains, the object-oriented structure allows much of the core functionality of
the package to be re-used when writing extensions to handle new types of data
and models.

The goal of the implementation is to support the process of separable nonlin-
ear model specification, optimization under least squares criteria and validation.
Several case studies in Chapter 5 illustrate the use of TIMP for these purposes.

1.3 Applications

Applications in multiway spectroscopy, time-resolved microscopy and time-resolved
mass spectrometry have motivated much of the work described herein. Of these
applications, those in multiway spectroscopy are the most well-established. In
time-resolved spectroscopy in particular, separable nonlinear models have long
been used to help gain an understanding of the dynamics of complex systems.
Chapter 2 outlines some of the history of the use of separable nonlinear models
for time-resolved spectroscopy data, and introduces the compartmental models
that are often utilized in this application area by way of a case study on time-
resolved fluorescence spectroscopy data. Further case studies in fitting multiway
spectroscopy data are described in Chapter 5 and involve time-resolved differ-
ence absorption spectra, time-resolved fluorescence spectra and temperature-
resolved absorption spectra.

Time-resolved microscopy applications are becoming increasingly important
as the technique of Fluorescence Lifetime Imaging Microscopy (FLIM) matures.
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FLIM measurements are useful for the study of cells and other biological systems
in vivo and in situ, as introduced further in Chapter 2. The utility of the
variable projection algorithm for fitting separable nonlinear models to FLIM
data is explored in detail in Chapter 6 by way of simulation studies and a
control experiment.

The first applications of separable nonlinear models to time-resolved spec-
trometry data are now being developed. Chapter 7 demonstrates the solution
of component resolution problems in gas chromatography mass spectrometry
(GC/MS) data via fitting a separable nonlinear model under least squares cri-
teria. The approach is compared to a non-parametric algorithm for compo-
nent resolution in Chapter 8 by way of simulation studies inspired by measured
GC/MS data.

1.4 Structure and notation

Chapters 2-8 have been published or are submitted for publication as journal
articles in slightly modified form. This leads to some repetition in the presenta-
tion. Each chapter may be read independently of the others, and the notation is
not entirely uniform between chapters, (Chapter 8, for instance, uses notation
that is common in the chemometrics literature). In some cases, when describing
the estimate for a parameter θ, the notation θ̂ is not used.

Chapter 9 consists of a summary of the monograph in English and in Dutch,
and some discussion of future work.

1.5 Synopsis

This thesis considers separable nonlinear models with random effects comprised
of additive Gaussian white noise and applications thereof in physics and chem-
istry. Particular attention is devoted to the use of the variable projection al-
gorithm to fit such models under least squares criteria to multiway data. Ex-
tensions of variable projection to constrain the conditionally linear parameters
are developed, along with methodology to estimate the precision of parameter
estimates. Software to fit separable nonlinear models under least squares cri-
teria to data arising in physics and chemistry is implemented as the package
TIMP for the R language and environment for statistical computing. Applica-
tions of separable nonlinear models to data arising in multi-way spectroscopy,
time-resolved microscopy and time-resolved mass spectrometry experiments are
investigated in-depth.



Chapter 2

The variable projection
algorithm in time-resolved
spectroscopy, microscopy
and mass spectrometry
applications1

2.1 Introduction

An unconstrained nonlinear optimization problem

min
x∈Rn

γ(x) (2.1)

is separable if the variables x ∈ Rn can be partitioned into x = (a, z) with
a ∈ Rp, z ∈ Rq, p+ q = n such that the sub-problem

min
a∈Rp

γ(a, z) (2.2)

is easy to solve for fixed z. In other words, separable optimization problems
are those in which it is possible to partition variables x into two sets a and z
such that the variables a can be determined as a function of the variables z,
written a(z), in a way that is not too difficult to compute (in a sense that will
be defined momentarily). A separable optimization problem can be formulated
in the reduced space of z alone, as

min
z∈Rq

γ(a(z), z) (2.3)

1A version of this chapter will appear as Mullen and van Stokkum (2008d) in Numerical
Algorithms.
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12 CHAPTER 2. VARIABLE PROJECTION AND APPLICATIONS

although every evaluation of the objective function requires computation of a(z).
What is meant by easy to solve or not too difficult to compute is simply that
solving the separated Problem 2.3 is in some sense preferable in comparison to
solving the unseparated Problem 2.1, e.g., in terms of execution time, condition-
ing, or ease of use, since starting values for the parameters a are not required.
See, e.g., Ruhe and Wedin (1980); Parks (1985) for further introduction to sep-
arable optimization problems.

A common separable optimization problem is the task of fitting a linear
combination of ncomp nonlinear functions to observations under least squares
criteria, that is,

min
z∈Rq

‖ ψ −
ncomp∑
i=1

ci(z)a[i] ‖2 (2.4)

where ψ is an m−vector of observations, ci is a nonlinear function of z that
outputs an m−vector, a[i] ∈ a for i = 1, 2, . . . , ncomp, and ‖ . ‖ is, as throughout,
the 2-norm. This problem can be written in matrix notation as

min
z∈Rq

‖ ψ − C(z)a ‖2 (2.5)

where column i of C corresponds to ci(z).
Golub and Pereyra (1972, 1973) developed an algorithm for Problem 2.5

termed variable projection, which eliminates the linear parameters a analytically
from the problem, and assumes, as we do throughout, that the objective function
is twice differentiable. Variable projection has been applied to the solution of
instances of Problem 2.5, termed separable nonlinear least squares problems, in
a wide variety of applications, as Golub and Pereyra (2003) review. Lukeman
(1999) traces the history of developments of algorithms for Problem 2.5, and
describes the connection to solving systems of ncomp nonlinear equations written
as C(z)a + ψ = 0. Golub and LeVeque (1979) provide an extension of the
algorithm to problems in which the same nonlinear functions are used to describe
each column of matrix data Ψ but the conditionally linear parameters a vary
per-column, so that the associated optimization problem is

min
z∈Rq

‖ Ψ− C(z)ET ‖2 (2.6)

where Ψ is m × n, with column j storing ψj , and E is n × ncomp, with row
j storing aj = aj [1], aj [2], . . . , aj [ncomp]. Golub and LeVeque (1979) and Gay
and Kaufman (1991) refer to Problem 2.6 as a separable nonlinear least squares
problem with multiple right-hand sides. In the time-resolved spectroscopy and
microscopy literature (e.g., Beechem et al. (1985)), Problem 2.6 is termed the
problem of global analysis, referring to the assumption that the same nonlinear
functions underlie each column of matrix data.

The statistical model associated with Problems 2.5 and 2.6 can be written
(per-column j in the case of Problem 2.6) as

ψj = Cj(z)aj + ε (2.7)
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where each element of the noise vector ε represents an independent and iden-
tically distributed Gaussian random variable with expectation 0 and constant
variance (NID(0, σ2)). When matrix data is considered, the function Cj may
be different for each j. Furthermore, Ψ in Equation 2.6 may be a ragged matrix
(Black, 2004), meaning that the vectors ψi and ψj with i 6= j may represent
a different number of observations, which possibly arise under different experi-
mental conditions. The connection between observations ψj for j = 1, 2, . . . , n
is via the vector of nonlinear parameters z. A given function Cj may depend
on some or all of the parameters in z. In applications it is common that the
observations take the form of vectors ψj1 , ψj2 , . . . , ψjK with j representing an
independent variable (like a wavelength, or a location) measured many times
under different conditions, indexed 1, 2, . . . ,K. An assumption that is often
physically motivated is that the same vector of conditionally linear parame-
ters a underlies ψj1 , ψj2 , . . . , ψjK (as in Equation 2.14). We will discuss these
situations in turn.

A single residual function representing the sum of squared errors that result
from using Equation 2.7 to model a collection of vectors ψj is formed and min-
imized under the variants of variable projection discussed in Section 2.2.1. The
methodology presented there has allowed the extension of variable projection
to d-way datasets, with d > 2, and offers many possibilities for the synthesis of
data arising in different experiments via a unified model having a single vector
z of associated nonlinear parameters.

Here we focus on the use of variable projection for solving instances of Prob-
lems 2.6 and variations thereof. Section 2.2 describes variable projection in some
detail, including implementation strategies, estimation of linear approximation
standard errors, and modifications that allow for the inclusion of constraints
on the linear parameters. Applications in modeling time-resolved spectroscopy
(Section 2.3), microscopy (Section 2.4) and mass spectrometry (Section 2.5)
data are also discussed. Variable projection has been instrumental for model-
based data analysis in these areas. The applications to microscopy and mass
spectrometry data have been newly developed in the years since the review of
Golub and Pereyra (2003).

2.2 Variable projection

Given fixed z and C(z) of full rank, the problem

min
a∈Rp

‖ ψ − C(z)a ‖2 (2.8)

is solved analytically as a = C(z)+ψ, where C(z)+ is the Moore-Penrose pseu-
doinverse C(z)+ = (C(z)TC(z))−1C(z)T . The assumption that C(z) has full
rank is used throughout, though note that Golub and Pereyra (1973) also de-
scribe a variable projection algorithm for the case that the columns of C(z) are
not linearly independent. Using a = C(z)+ψ, the objective function to minimize
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with respect to z for Problem 2.5 is

f(z) =
1
2
‖ ψ − C(z)a ‖2

=
1
2
‖ (I − C(z)C(z)+)ψ ‖2 (2.9)

=
1
2
‖ Q2Q

T
2 ψ ‖2 .

where the QR decomposition of C(z) = QR = [Q1 Q2]R is used for numerical
stability, so that Q1 is m× ncomp, Q2 is m× (m− ncomp), Q is orthogonal, and

R =
[
R11

0

]
, with R11 being ncomp × ncomp and upper triangular (Golub and

van Loan, 1996). f(z) is the variable projection functional, so named because
I − C(z)C(z)+ is the projector on the orthogonal complement of the column
space of C(z). Some computational efficiency may be gained by dropping the

factor Q2, and formulating f(z) as f(z) =
1
2
‖ QT2 ψ ‖2 (Gay and Kaufman,

1991).
Standard algorithms for nonlinear least squares problems, namely Gauss-

Newton and Levenberg-Marquardt, can be used to approach ẑ that minimize

f(z). However, these algorithms require the Jacobian matrix J =
∂r(z)
∂z

of

the residual vector r(z) = Q2Q
T
2 ψ, (or, dropping the Q2 factor, r(z) = QT2 ψ).

Two classes of approaches to obtain J may be distinguished: methods that
use a finite difference approximation, and methods that rely on an analytical
expression. Many widely applied implementations of nonlinear least squares
allow J to be determined by either approach, as in, e.g., the modification of
Levenberg-Marquardt found in MINPACK (Moré, 1978) or the Gauss-Newton
method employed by the R function nls (R Development Core Team, 2008).

If a finite difference approach is used to build up an approximation of J , r(z)
is repeatedly evaluated for different parameter vectors ž obtained by perturbing
z by an amount h. Using a forward difference approximation, the ith parameter
in z is incremented by h, yielding ž, and the ith column of J is determined

as J [, i] =
r(ž)− r(z)

h
, requiring length(z) evaluations of r(ž) to calculate an

update of J . The associated computational expense is often more than offset
by the advantage of not having to derive and compute an analytic expression
for J . For example, in the applications described in Sections 2.3 and 2.4, the
method of determining C(z) is often at least partially numerical, and there is no
closed-form expression available for even C(z). In these applications obtaining

a closed-form expression for the three-dimensional tensor
∂C(z)
∂z

needed for
the determination of J via an analytical expression is difficult at best, and a
finite difference approximation is always used. Minimization of the variable
projection functional f(z) with Levenberg-Marquardt using a finite difference
approximation of J was described by Lawton and Sylvestre (1971).

If an analytical expression for
∂C(z)
∂z

is available, then the method suggested



2.2. VARIABLE PROJECTION 15

by Golub and Pereyra (1973) may be used to determine J per-column i as

J [, i] = −
[(

C(z)C(z)+ ∂C(z)
∂z[i]

C(z)+

)
+
(
C(z)C(z)+ ∂C(z)

∂z[i]
C(z)+

)T]
ψ

(2.10)
where we follow the presentation in Golub and Pereyra (2003). Kaufman (1975)
suggested that this expression for J could be well-approximated by only using
the first term, i.e.,

J [, i] = −
(
C(z)C(z)+ ∂C(z)

∂z[i]
C(z)+

)
ψ, (2.11)

thereby introducing only a negligible loss in accuracy and significant savings in
the number of computations required. The Kaufman approximation is discussed
in detail in Bates and Lindstrom (1986); Gay and Kaufman (1991); Mullen et al.
(2007).

Once J or an approximation of J has been determined, the standard algo-
rithms for nonlinear least squares calculate the gradient 5 of f(ẑ) as

5 f(z) = JT r(z) (2.12)

and also calculate an approximation for the Hessian52f(z). 5f(z) and52f(z)
allow determination of a direction and step size to move the current estimates
ẑ in z-space so that f(ẑ) is reduced. From the new parameter estimates, the
process of determining J and making a new step in z-space is iterated until
stopping criteria are met. The details of the standard algorithms are found in
e.g., Bates and Watts (1988); Seber and Wild (2003).

Several results justify and motivate the minimization of f(z) as opposed
to the unreduced objective function with parameters x = (z, a). Golub and
Pereyra (1973) give a proof that the stationary points of f(z) are the same as
for the unseparated problem when the rank of C(z) is constant over z-space.
Therefore given ẑ that determines either a local or global optimum in f(z),
we determine â = C(ẑ)+ψ, and arrive at estimates x̂ = (â, ẑ) that define a
local or global optimum in the objective function of the unseparated problem.
Asymptotic convergence analysis under the Gauss-Newton algorithm by Ruhe
and Wedin (1980) shows that variable projection has superlinear convergence
whereas methods that alternate between solving the linear and nonlinear prob-
lems separately are only linearly convergent. This is because, as Sjöberg and
Viberg (1997) show, the separated problem is better-conditioned than the un-
separated problem. Obtaining a better-conditioned problem is indeed a primary
motivation for minimizing the variable projection functional as opposed to the
objective function for the unseparated problem. Krogh (1974) provides sim-
ple examples in which optimization of an unseparated nonlinear least squares
problem results in divergence whereas optimization of the separated problem
results in convergence in a small number of iterations. Osborne (2007) points
to the extraordinary effectiveness of variable projection in least squares prob-
lems involving fitting the parameters of a linear combination of real or complex
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exponential functions, which are ubiquitous in applications and notoriously dif-
ficult (Istratov and Vyvenko, 1999). Golub and Pereyra (2003) suggest that
this success is due to the fact that the unseparated exponential fitting prob-
lem becomes increasingly ill-conditioned as (and if) the optimal parameters are
converged upon, whereas the variable projection functional does not suffer from
this problem.

2.2.1 Implementation

Problem 2.6 can be reformulated as an instance of Problem 2.5 by letting
vec(Ψ) = (In⊗C(z))vec(ET ), where ⊗ is used to denote the Kronecker product.
Then variable projection as presented in Section 2.2 can be applied. However,
as Golub and LeVeque (1979) realized, this does not take advantage of the spe-
cial structure of Problem 2.6, and requires storing and operating on the matrix
(In⊗C(z)), which is large for large n. Golub and LeVeque (1979) thus suggested
forming the residual vector associated with Problem 2.6 as

r(z) =


QT2 Ψ[, 1]
QT2 Ψ[, 2]

...
QT2 Ψ[, n]

 (2.13)

from which f(z) and J can be determined without ever storing or operating on
(In ⊗ C(z)).

Chapter 5 expands on the idea of determining r(z) in a partitioned manner
for the description of (ragged) matrix data per-column j using Equation 2.7. In
the applications there, Cj(z) varies per-column j, and the residual vector may
be determined as in Equation 2.13, but QT2 must be calculated for each matrix
Cj(z) in j = 1, 2, . . . , n. It is also noted in Chapter 5 that in practice in the
physical sciences, observations often take the form of vectors ψj1 , ψj2 , . . . , ψjK
with j representing an independent variable (like a wavelength, or a location)
measured many times under different conditions indexed 1, 2, . . . ,K. Then the
assumption that the same vector of conditionally linear parameters a underlies
ψj1 , ψj2 , . . . , ψjK , can be accounted for by letting

ψj =


ψj1
ψj2

...
ψjK

 =


Cj1(z)
Cj2(z)

...
CjK (z)

 aj = Cj(z)aj (2.14)

where the second subscript on ψ and C is the dataset index. The residual vec-
tor associated with using Equation 2.14 to model the columns j = 1, 2, . . . , n of
(ragged) matrix data is also determined as in Equation 2.13 with the modifica-
tion that QT2 is re-calculated for each matrix Cj(z).



2.2. VARIABLE PROJECTION 17

2.2.2 Standard error estimation

The matrix of first derivatives of the model function with respect to both the
nonlinear parameters z and the conditional parameters aj is

Jm =
[

∂Cj(z)aj

∂x

]
=
[

∂Cj(z)
∂z aj Cj(z)

]
(2.15)

Under the assumption that the noise vector ε added to the model ψj = Cj(z)aj
is such that every element εi is NID(0, σ2), the covariance matrix associated
with both z and a is

cov

[
z
aj

]
= σ̂2(JTmJm)−1 (2.16)

where σ̂2 = RSS(x̂)/df , RSS is the residual sum of squares and the degrees
of freedom df = (

∑n
j=1 length(ψj))− length(z)− (

∑n
j=1 length(aj))(Seber and

Wild, 2003).
After writing the residual function as outlined in Section 2.2.1 and using a

standard nonlinear least squares implementation to minimize the sum of squares
of the residual vector with respect to z, cov(ẑ) is often returned along with ẑ,
whereas cov(aj) must be determined. Using

JTmJm =

[
(∂Cj(z)

∂z aj)T
∂Cj(z)
∂z aj (∂Cj(z)

∂z aj)TCj(z)
CTj (z)∂Cj(z)

∂z aj Cj(z)TCj(z)

]
≡
[
A11 A12

A21 A22

]
(2.17)

we have, from the block matrix inversion theorem found in e.g., Seber and Wild
(2003), Appendix A,

(JTmJm)−1 =
[

X−1
11 X−1

11 X12

−X21X
−1
11 A−1

22 +X21X
−1
11 X12

]
(2.18)

where X11 = A11 − A12A
−1
22 A21, X12 = A12A

−1
22 , and X21 = A−1

22 A21. Then
σ2X−1

11 = cov(ẑ) and we are interested in determining the bottom right block.
Since A−1

22 = (Cj(z)TCj(z))−1, we have

X21 = A−1
22 A21 (2.19)

= (Cj(z)TCj(z))−1CTj (z)
∂Cj(z)
∂z

aj (2.20)

= Cj(z)+ ∂Cj(z)
∂z

aj ≡ Gj (2.21)

and X12 = A12A
−1
22 ≡ GTj , where Gj consists of columns C+

j
dCj

dzi
aj , for each

nonlinear parameter zi. Hence it is possible to write

cov(âj) = σ2(C+
j C

+T

j ) +Gjcov(ẑ)GTj . (2.22)

This expression allows determination of cov(âj) for all j = 1, 2, . . . , n with mod-
est memory resources even when n is large.
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2.2.3 Modification for constraints on the conditionally lin-
ear parameters

It may be desirable to impose constraints on the linear parameters a and E in
Problems 2.5 and 2.6, respectively. Consider the case that a is constrained to
non-negative values. Then Problem 2.8 is replaced with the non-negative least
squares (NNLS) problem

min
a∗∈Rp

‖ ψ − C(z)a∗ ‖2

subject to 0 ≤ a∗i for i = 1, 2, . . . , ncomp

(2.23)

Problem 2.23 must be solved in place of a = C+(z)ψ in the expression for f(z),
e.g., with the algorithm by Lawson and Hanson (1974), so that Equation 2.2
becomes

f(z) =
1
2
‖ ψ − C(z)a∗ ‖2 (2.24)

Non-negativity constraints on a arise when ψ represents count data. Then
the noise statistics are often best represented using the Poisson distribution,
but for data comprised of large counts may be well-approximated by additive
NID(0, σ2) noise, so that parameter estimation may proceed by minimization
of f(z). When using a finite difference method to obtain J , a variable projection
algorithm that adds non-negativity constraints to the condititionally linear pa-
rameters a is obtained by using the definition of f(z) given in Equation 2.24 in
place of that given in Equation 2.2, as Mullen and van Stokkum (2008c) discuss.
When using an analytical expression for J , an approximate expression based on
the Jacobian in the absence of constraints may be used, as Sima and Van Huffel
(2007) discuss.

In the case that the constraints applied to a do not ensure non-negativity,
but rather some other property, the NNLS problem used to determine a∗ must
be replaced with the appropriate constrained optimization problem. The only
restriction on the constraints applied is practical; the separated problem with
constraints on a or E should remain easier to solve than the equivalent unsepa-
rated problem. Sima and Van Huffel (2006) have described the imposition of reg-
ularization constraints on a by replacing the least squares problem a = C(z)+ψ
in the variable projection functional with a = (C(z)TC(z) + mλB)−1C(z)Tψ,
where the term mλB is used to impose a certain degree of smoothness on a.

Modification for equality constraints between conditionally linear pa-
rameters

Equality constraints that set aj [g] to zero for component g, or set aj [g] = aj [h]
for components g and h are often incorporated to make the estimation problem
better determined or account for a priori knowledge of the system underlying
the observations. Such constraints are common in time-resolved spectroscopy
applications where aj [g] represents the spectrum of component g at wavelength
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j. In the case of equality constraints that set aj [g] to zero, we remove column
Cj [, g](z) and element aj [g] from the model ψj = Cj(z)aj . This results in a
model with fewer free conditionally linear parameters. We refer to such equality
constraints as zero constraints.

For the case of equality constraints that set aj [g] to be equal to aj [h], possibly
with a linear scaling factor αi, we let column Cj [, h](z) be equal to Cj [, g](z) ∗
αi+Cj [, h](z), and then remove column Cj [, g](z) from the model ψj = Cj(z)aj .
This also results in a better determined model. Note that αi may be optimized
as a nonlinear parameter.

2.3 Spectroscopy applications

Variable projection is often used to fit the free parameters of models for measure-
ments of light, which often consist of a linear superposition of several nonlinear
functions. The algorithm was first used to estimate the parameters of a model
associated with measurements of light by Rust et al. (1976), who parametrize
the decay of the luminosity of supernovae in time.

Measurements of light resolved with respect to wavelength or wavenumber
and one or more independent variables, such as time, are referred to as multi-
way spectroscopy data. Variable projection was first applied to multiway spec-
troscopy data by Golub and LeVeque (1979), who analyze time-resolved spec-
troscopy measurements describing the photocycle of bacteriorhodopsin. Nagle
et al. (1982) also consider data on bacteriorhodopsin, and had a great influ-
ence in spreading the use of variable projection in the biophysics community.
Part of the impact of this work can be explained by the authors’ elaboration
of the use of the nonlinear parameters z to represent a compartmental model
for the kinetics, a theme which is further elaborated in Section 2.3.1. Nagle
(1991b,a); van Stokkum et al. (1993); Nagle et al. (1995) further elaborate on
the utility of variable projection for describing multiway spectroscopy data with
emphasis on compartmental models for kinetics. The utility of compartmental
models for describing time-resolved spectroscopy data representative of complex
systems is stressed by Beechem et al. (1985); Holzwarth (1996). van Stokkum
and Lozier (2002) describe an in-depth case study in using variable projection
to fit a separable nonlinear model for 5-way spectroscopy data (resolved with
respect to wavelength, time, temperature, pH and polarization) representing
the photocycle of bacteriorhodopsin. van Stokkum et al. (2004); van Stokkum
(2005) review separable nonlinear models for the description of time-resolved
spectroscopy data, the free parameters of which are optimized with variable
projection.

Golub and Pereyra (2003) discuss at length the application of variable pro-
jection to optimizing the parameters of models for Nuclear Magnetic Resonance
(NMR) spectroscopy data, which often take the form of a linear superposition
of complex damped exponentials. The algorithm has been important in this ap-
plication domain since the influential work of van der Veen et al. (1988). Note
that while the model describes complex data, the parameter estimation prob-



20 CHAPTER 2. VARIABLE PROJECTION AND APPLICATIONS

lem involves a residual vector and nonlinear parameters in the real domain, as
described in detail in e.g., Sima and Van Huffel (2007). The latter also describe
an extension to variable projection to account for non-negativity constraints on
the linear coefficients, motivated by problems in modeling NMR spectra.

Multi-way spectroscopy data of all varieties can be stored as a ragged matrix
Ψ, where each column represents a value of a spectroscopic property, and each
row represents a value of some other independent variable. To fix ideas, consider
data resolved with respect to time and wavelength, which arises in time-resolved
spectroscopy experiments. The data often represents ncomp components, each
with a distinct time profile C[, j] and spectrum E[, j]. By the matrix analogue
of the Beer-Lambert law for absorption, C[, j] and E[, j] often combine linearly,
giving rise to the equation

Ψ = CET (2.25)

where the m × ncomp matrix C and the n × ncomp matrix E represent the
data in time and wavelength, respectively. It is also often the case that a
parametric description of either C or E, but not both matrices, is available,
so that parameter estimation requires solution of an instance of Problem 2.6 or
generalizations thereof.

2.3.1 Example: Time-resolved fluorescence emission mea-
surements of photosystem I

In order to give an idea of the possibilities that variable projection has opened
up in the domain of modeling time-resolved spectroscopy data, we consider a
case study in brief. Photosystem I (PS-I) is one of two photosystems in oxygenic
photosynthesis, a process by which plants and green algae convert photons into
chemical energy. The PS-I core is a distinct functional unit of PS-I. Gobets et al.
(2001) describe a system consisting of PS-I cores in a buffer excited by a short
laser pulse of femtosecond duration. Measurements of the fluorescence of the
system at many wavelengths and times after excitation are then collected with
a synchroscan streak camera in combination with a spectrograph, a technique
which van Stokkum et al. (2006, 2008b) review. The observations considered
here represent 48 wavelengths equidistant in the interval 626-785 nanometer
(nm), and 914 timepoints in the range 0-200 picosecond (ps) after laser exci-
tation, stored as a 914 × 48 matrix of data Ψ. The goal of data analysis is
to describe the kinetics in terms of a model that parametrizes the formation
and decay of each distinct state of the underlying system, while solving for the
spectra E as linear coefficients.

In some systems, the exciting pulse results in the formation of all possible
states simultaneously, as in the left panel of Figure 2.1. In other systems, a
single state may be formed initially, the decay of which results in the formation
of a second state, and so on, for all possible states of the system, as in the
right panel of Figure 2.1. Alternatively, the states may be related in some
other, arbitrarily complicated, way. Physical-chemical principles and ab-initio
quantum mechanical calculations typically suggest a few models for the way
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the possible states are related and how long they persist, and selection of the
model best supported by the data and the underlying theory requires estimation
of the free parameters of the possible kinetic models, C(z), while the spectra
are treated as the linear coefficients ET in Ψ = C(z)ET . Since a fluorescence
spectrum E[, g] represents a count of the relative number of emission photons
contributed to the data by component g at some set of wavelengths, negative
values of the spectra E are not interpretable, and thus these parameters are
determined using the NNLS method discussed in Section 2.2.3. The reason that
the spectra are not often described in terms of parametric model E(z) is that
their fine structure is difficult to represent via a function with a small number
of free parameters.

Figure 2.1: Two possible compartmental models for a system represented by
three components. In the left model, the initial excitation populates all three
components, which decay in parallel. In the right model, the initial excitation
populates the leftmost compartment, the decay of which populates the middle
compartment, and so on, so that the compartments are said to be arranged
sequentially.

A linear compartmental model (Godfrey, 1983; Seber and Wild, 2003; van
Stokkum et al., 2004) is used to describe the relationship between states like
those shown graphically in Figure 2.1 and 2.2. The behavior of the compart-
mental model is given as a matrix C(z) in which the concentration of a single
compartment in time is represented by a column C[, g], with

C(z) = exp(K(z)t)⊕ j(t) (2.26)

where z are free parameters, K is a transfer matrix that encodes the allowable
transitions between components, and uses microscopic decay rate parameters
k ∈ z and scaling parameters b ∈ z to describe the rate at which a state is
formed and decays, and t is the vector of times that the rows of C(z) represent.
The vector j(t) represents the proportion of the system in each compartment
at the initial time point, multiplied by the instrument response function (IRF)
i(t). The operator ⊕ stands for convolution, and in the case that the IRF
is described as a Gaussian distribution or other simple function, it may be
performed analytically. Here the IRF is described as a Gaussian with a location
parameter that is a function of the wavelength, so that the matrix C(z) must
be determined per-wavelength as described in Section 2.2.1.

The compartmental model shown in Figure 2.2 was tested as a possible
description for the kinetics of time-resolved spectroscopy data representing PS-I
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Figure 2.2: A compartmental model for the kinetics of PS-I core complexes. The
decay rates of the components are parametrized by ki. Where there is more than
one allowable transition out of a compartment, parameters bi are used to scale
the decay rate ki associated with the compartment. Here values of b1, b2, b3, b4
are fixed such that b1 + b2 + b3 + b4 = 1 and such that the spectra estimated
for compartments 2 - 5 have approximately equal area, which is a physically
motivated constraint.

cores by fitting the free parameters of the model with variable projection. Where
there is more than one allowable transition out of a compartment, parameters
bi are used to scale the decay rate ki associated with the compartment. Here
values of b1, b2, b3, b4 are fixed such that b1 + b2 + b3 + b4 = 1 and such that the
spectra estimated for compartments 2 - 5 have approximately equal area, which
is expected from physical first principles. The parameters b5 and b6 describing
the equilibrium between compartments 2 and 3 and compartments 3 and 4 are
only possible to estimate by adding zero constraints (as described in Section
2.2.3) to some of the values in the matrix of spectra E. Here zero constraints
are applied to all wavelengths of the spectrum for compartment 1, so that it is
never emissive, to wavelengths of the spectrum of compartment 2 up to 690 nm,
and to wavelengths of the spectrum of compartment 3 up to 697 nm.

The concentration profiles C(z) and spectra E that result from application
of this model are shown in Figure 2.3. Standard error estimates are shown on
the spectra in Figure 2.3 as vertical bars, and are very small. In order to judge
the quality of the fit, traces such as those in Figure 2.4 can be inspected, and
the singular value decomposition of the residual matrix can be checked for evi-
dence of systematic structure. The fit of the model described here was deemed
satisfactory. The implementation of variable projection used is from the R pack-
age TIMP (Mullen and van Stokkum, 2007b), and a script to reproduce these
results is included on the webpage of the package (Mullen and van Stokkum,
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Figure 2.3: The concentration profiles C(z) (upper panel) and spectra E (lower
panel) that result from using the compartmental model shown in Figure 2.2 to
describe the kinetics of PS-I core complexes. The legend shown in the upper
panel applies to the spectra as well. The concentration profile and spectrum of
compartment 1 is not shown, since it is non-emissive. Standard error estimates
are shown on the spectra as vertical bars, and are so small as to be barely visible.

2008b).

2.4 Microscopy applications

Applications of variable projection to modeling time-resolved microscopy data
have been developed since the review of applications of the algorithm by Golub
and Pereyra (2003), and are becoming increasingly important as the technique
of Fluorescent Lifetime Imaging Microscopy (FLIM) matures. FLIM is widely
applied to detect interactions between fluorescently labeled biological molecules
such as proteins, lipids, DNA and RNA, and results in a count of photons de-
tected for many time points, at many spatial locations, often with 250 nanometer
spatial resolution and sub-nanosecond temporal resolution. In many FLIM ex-
periments, proteins of interest are genetically tagged with variants of the green
fluorescent protein (GFP) (Tsien, 1998).

FLIM experiments give rise to a global analysis problem when the same
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Figure 2.4: Columns of a matrix of time-resolved spectroscopy data (grey), each
representing the wavelength λ in nanometers (nm) shown in the upper right
corner of each panel. The x-axis represents time in picoseconds. The model is
shown in black. Free parameters were fit using variable projection.

ncomp kinetic processes may be assumed to underlie the fluorescent decay at all
locations. The decay of each kinetic process is exponential, but is complicated
by the fact that it must be convolved with the time profile of the instrument
response function (IRF). The IRF is often not described well by an analytical
function with only a few parameters, and it is often necessary to make a mea-
surement of the IRF time profile, and numerically convolve it with that of the
exponential decay used to describe each kinetic process. Thus data analysis
requires solution of an instance of Problem 2.6 where each kinetic process g is
represented by a column of C(z)

C[, g] = exp(−kgt)⊕ i(t) (2.27)

where t is the vector of time points represented by the rows of C(z), kg ∈ z is a
parameter to be estimated, ⊕ indicates convolution and i(t) is the measured time
profile of the IRF. In many FLIM experiments, fluorescent dyes give rise to the
observed fluorescence, which is measured at the maximum emission wavelength
of the dye of interest, and can typically be described by two to four kinetic
processes. The amplitude that each kinetic process contributes to the collected
image at pixel j (that is, location j) is the row E[j, ] that appears in Ψ =
C(z)ET , where Ψ is the time-resolved image. The goal of data analysis is to
estimate z and E.

Verveer et al. (2000) recognized that variable projection could be applied to
global analysis problems arising in FLIM data analysis, but did not implement
the partitioned technique described in Section 2.2.1 and therefore were stymied
by the large memory resources required. Chapter 6 studies the utility of vari-
able projection for modeling FLIM data via a number of simulation studies
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and a control study in estimating the parameters describing the decay of Cyan
Fluorescent Protein (CFP).

Note that FLIM data and fluorescence data in general represent a count
of the number of photons detected at a given pixel and time. Poisson noise
statistics apply to such non-negative count data. For datasets in which the
counts are large, the assumption of NID(0, σ2) noise made by least squares
methods is acceptable. However, for datasets in which most counts are not
large, optimal estimates under least squares criteria do not well-approximate
the true underlying parameter values, an issue that has been studied by Maus
et al. (2001). This issue can be addressed to some extent by weighting each data

point Ψ[i, j] by
1√

Ψ[i, j]
, but in order to obtain fully correct estimates it would

be necessary to develop an analogue of variable projection for the Poisson noise
case.

2.4.1 Example: detection of protein-protein interactions

In this example we consider the simultaneous analysis of multiple FLIM im-
ages. Each pixel j in each image 1, 2, . . . ,K is modeled using Equation 2.7.
The nonlinear parameters kg ∈ z used to describe the fluorescent decay are esti-
mated using all data included in the simultaneous analysis. To allow a physical
interpretation, the vectors aj1 , aj2 , . . . , ajK , describing the amplitudes of the ki-
netic processes at pixel j in each dataset are constrained to non-negative values
by the NNLS method, and the fluorescence decay rate parameters kg ∈ z are
also constrained to non-negative values by a simple logarithmic transformation
(zg = log(kg)).

The experiments giving rise to the data involve two proteins known to be ho-
mogeneously distributed in the cell nucleus. In one set of experiments, the first
protein is tagged with CFP. In the second set of experiments, the first protein
is tagged with CFP, and the second protein of interest is tagged with yellow flu-
orescent protein (YFP). When intracellular dynamics bring the proteins within
1-10 nm of each other, the CFP molecule transfers energy to the YFP molecule.
This results in an increase in the decay rate of CFP, which can be observed. The
general process in which excited-state energy of a donor fluorophore, like CFP,
is non-radiatively transferred to a ground-state acceptor molecule, like YFP,
is termed Förster Resonance Energy Transfer (FRET). FRET as measured by
FLIM is extensively used to detect protein-protein interactions, as Suhling et al.
(2005) review.

Since CFP acts as a donor in the CFP-YFP FRET pair, we can use the FLIM
set-up to measure only the wavelength at which CFP fluoresces, and examine
whether the decay rate of CFP increases in the experiment with CFP and YFP
tags as compared to in the experiment with only CFP tags. Such a decrease
would be interpreted as evidence of FRET, which would imply that the proteins
are often expressed in close proximity.

For the analysis, we select those pixels that represent the nucleus. The two
CFP-only datasets whose intensity images are shown in Figure 2.5 (left) are
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used in a simultaneous analysis to estimate the associated decay rates. The
two CFP-YFP datasets shown in Figure 2.5 (right) are analyzed together in the
same way. The decay of CFP is described by a bi-exponential decay in both
pairs of datasets.
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Figure 2.5: Intensity images resulting from FLIM experiments that measure
fluorescence from cells at the wavelength at which CFP emission is maximum.
Each pixel represents the sum of the data at that pixel over the 206 time-points
in the entire time-resolved FLIM dataset. The left plots represent CFP tagged
cells; the right plots represent cells tagged with both CFP and YFP. Only pixels
representing the cell nucleus are subject to analysis.

The estimated decay rates for CFP in the first pair of datasets are k̂ =
{1.53, 0.34} whereas in the second pair of datasets these decay rates are esti-
mated to be k̂ = {2.13, 0.44}. The average decay rate for pixel j is given as

< kg >=

∑ncomp
g=1 kgaj [g]∑ncomp
g=1 aj [g]

(2.28)

Figure 2.6 shows the estimated average decay rate per-pixel for CFP in the
CFP-only datasets (left panels) and in the CFP-YFP datasets (right panels).
Clearly, the bi-exponential decay of CFP is significantly faster in the CFP-YFP
datasets as compared to in the CFP-only datasets. We conclude that there
is evidence of significant FRET, and that the two tagged proteins are often
expressed simultaneously in close proximity.

2.5 Mass spectrometry applications

The experimental techniques of gas chromatography mass spectrometry (GC/MS)
and liquid chromatography mass spectrometry (LC/MS) measure the mass spec-
trum of a complex sample as it elutes from a chromatography column (see e.g.,
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Figure 2.6: Average decay rate per pixel for the cells shown in Figure 2.5 after
parameter estimation via global analysis. The higher decay rates in the datasets
at right indicate protein-protein interactions.

the book by de Hoffmann and Stroobant (2007) for a discussion of the ex-
perimental technique). The mass spectrum of a chemical compound acts as
its fingerprint: it allows the compound to be uniquely identified. The time a
chemical compound takes to pass through a liquid or gas chromotographer, in
contrast, may not be unique. Therefore, if more than one chemical compound
elutes at the same time, the mass spectrum at those times represents a mixture
of the pure mass spectra of the underlying compounds. Since the purpose of
GC/MS and LC/MS experiments is typically to obtain the pure mass spectra of
the underlying compounds of a sample in order to perform compound identifica-
tion and possibly quantification, it is necessary to solve a component resolution
problem if compounds are co-eluting.

GC/MS or LC/MS measurements of a single sample can be modeled as
Ψ = CET where C are the elution profiles of components, and E are the as-
sociated mass spectra, which are resolved with respect to mass-to-charge ratio
(m/z). For the case that multiple datasets are modeled, the same mass spectra
are assumed to be present in all samples Ψ1,Ψ2, . . . ,ΨK , though the elution
profiles are usually not assumed to be constant, so that Equation 2.14 applies.
The inverse problem of estimating C and E, or in the multiple sample case
C1, C2, . . . , CK and E from Ψ or Ψ1,Ψ2, . . . ,ΨK , respectively, is often tackled
with the multivariate curve resolution alternating least squares (MCR-ALS) al-
gorithm, as in, e.g., Tauler et al. (1995); Tauler (1995); de Juan and Tauler
(2003); Jonsson et al. (2005); Garrido et al. (2008).

MCR-ALS is a non-parametric algorithm, and the number of free parame-
ters involved in estimating an elution profile C[, g] is length(C[, g]). In situations
where the overlap of the elution profiles is large, using a parametric description
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for C[, g] may be desirable, as Chapters 7 and 8 explore. This reduces the num-
ber of free parameters associated with estimating an elution profile dramatically,
since C[, g] can often be described well by an exponentially modified Gaussian
with only four parameters. The problem of estimating E and the nonlinear pa-
rameters z associated with the model for the elution profiles C(z) is an instance
of Problem 2.6, which may be addressed with variable projection.

0 5 10 15 20 25 30

0.
0

0.
1

0.
2

0.
3

0.
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0.
5

time (scan number)

35 65 95 125

35 65 95 125

m/z

Figure 2.7: (left) Estimated concentration profiles for component 1 (black) and
component 2 (grey). Solid lines are for Ψ1, while dashed lines are for Ψ2, and
the profiles differ in the two datasets by amplitude only. (right) Mass spectra
associated with component 1 (black) and component 2 (grey), which are assumed
to underlie both Ψ1 and Ψ2.

2.5.1 Example: component resolution in GC/MS data

We consider briefly GC/MS measurements Ψ1 and Ψ2 of two samples known
to represent the same unknown compounds. We model the data using Equa-
tion 2.14. Each column Cj [, g](z) is represented by an exponentially modified
Gaussian (EMG) function with four parameters, for width, location, decay rate,
and amplitude. The elution profiles Cj1 [, g] and Cj2 [, g] for component g in the
two datasets at mass j are described with the same parameter values except
for the amplitude, (because the elution profiles in these datasets are aligned;
for datasets in which the locations of components are not aligned, the location
parameter also varies per-dataset). A singular value decomposition of the data
yields two singular values that clearly exceed the remaining values on a log
scale; we therefore choose to model two components. It is furthermore known
that data at 38 - 44 m/z represent a large peak at every timepoint. We therefore
assign these m/z values a very low weight, so that the model for Cj(z) is depen-
dent on the m/z value j considered. The full model specification is found on the
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webpage of the TIMP package. The estimated mass spectra and concentration
profiles that result from fitting this model are shown in Figure 2.7. Data and
model fit at selected masses are shown in Figure 2.8.
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Figure 2.8: Data shown as points at selected mass values from two datasets Ψ1

(black) and Ψ2 (grey). The fitted model associated with a simultaneous analysis
of both datasets is shown as lines.

2.6 Future work

We see several possibilities for further development of algorithms for separable
nonlinear optimization problems. It would be of interest to develop methodology
and software for separable optimization problems in which the noise is described
by a non-Gaussian distribution. Of most practical importance would be the
generalization to the Poisson noise case.

It would also be desirable to develop variable projection implementations
to regularize ill-conditioned or over-parametrized models. Golub and Pereyra
(2003) suggest that this be accomplished via use of a truncated singular value
decomposition method to obtain the Jacobian. Recent work by Shen and Ypma
(2007) is in this direction. However, to our knowledge no public domain general
purpose optimization routines for the case that C(z) is rank deficient have been
made available.
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2.7 Conclusions

We have surveyed the variable projection algorithm and its implementation with
emphasis on matrix-data fitting problems. Methodology for standard error esti-
mation was discussed, along with extensions to constrain the linear parameters.

The variable projection algorithm has been an important tool for modeling
time-resolved spectroscopy data for many years, and we outlined some of the
most influential work in this domain. Implementations allowing the flexible
specification of models (e.g., the R package TIMP) are contributing to the spread
of the use of the algorithm, and will continue to do so as such software further
matures.

Two new application domains in which variable projection is making an
impact are time-resolved fluorescence microscopy and GC/MS mass spectrome-
try data analysis. Datasets associated with microscopy and mass spectrometry
techniques are often large, and more heuristic methods for data analysis have
previously been popular largely to avoid the prohibitive execution time and
memory needed for model-based analysis. Improvements in computer hardware
are changing this and making model-based analysis more feasible. Here again
the variable projection algorithm is posed to play a central role, since the pa-
rameter estimation task associated with many models applicable to microscopy
and mass spectrometry data consists of fitting a linear combination of nonlinear
functions.
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Chapter 3

Algorithms for separable
nonlinear least squares with
application to modeling
time-resolved spectra1

3.1 Introduction

State-of-the-art dynamical experiments in photophysics result in datasets that
represent a spectral property associated with a photoactive system at m times
and n wavelengths by an m × n matrix Ψ. For typical experiments, m and n
are of order 103. A model-based analysis is mandatory for interactive validation
of hypotheses regarding physicochemical mechanisms of the underlying system.
The basic kinetic model applied to Ψ is

Ψ = CET + Ξ =
ncomp∑
l=1

cle
T
l + Ξ =

ncomp∑
l=1

exp(−φlt)eTl + Ξ (3.1)

where column l of C represents the concentration in time of a spectrally distinct
subsystem contributing a component to Ψ, column l of E describes the spectrum
of that subsystem, ncomp is the number of contributing components, and Ξ is
a matrix of residuals, the entries of which are Gaussian random variables with
mean zero and constant standard deviation. Elements of Ψ, C, E and Ξ are
in R. Estimation of parameters φ under least-squares criteria is thus a multi-
exponential analysis problem, the difficulty of which is well-known (Seber and
Wild, 2003; Basu and Bresler, 2000). Problems in multi-exponential analysis

1A version of this chapter appears as Mullen, Vengris, and van Stokkum (2007) in the
Journal of Global Optimization, 38(2), 201-213.
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are ubiquitous in physics applications in which data is modeled by the solution
of first-order differential equations, as (Istratov and Vyvenko, 1999) review.

The estimation problem associated with estimating φ and E in Model (3.1)
under least-squares criteria is

Minimize ‖ vec(C(φ)ET −Ψ) ‖2, (3.2)

where, as throughout ‖ . ‖ is the 2-norm. The bilinear structure of Equation 3.2
means that it is a separable problem. An unconstrained optimization problem
Minimize γ(x), x ∈ Rn is separable if the variables separate into x = (y, z) with
y ∈ Rp, z ∈ Rq, p+ q = n, and the subproblem

Minimize γ(y, z), (3.3)

is easy to solve for fixed z. Such problems are connected to bilinear programming
(Al-Khayyal, 1990; Brimberg et al., 2002; Horst and Tuy, 1996). Separating the
parameters reduces the n-dimensional unconstrained optimization problem to
the q-dimensional unconstrained problem

Minimize γ(y(z), z), (3.4)

where y(z) denotes a solution of (3.3). In the considered application y(z) is
solved as the solution of a linear-least squares problem for fixed z, there are
hundreds more conditionally linear parameters y than intrinsically nonlinear pa-
rameters z, and linear approximation standard error estimates about estimates
for z are desired for model validation. These structural features of the problem
and the requirement for standard error estimates make gradient-based algo-
rithms that exploit the conditional linearity of Problem (3.2) attractive, though
a variety of other algorithms, e.g., Branch and Cut methods (Audet et al., 2000),
evolutionary search (Wohlleben et al., 2003; Fisz, 2006), or Prony-based methods
(Osborne and Smyth, 1995) are also applicable. The development of gradient-
based methods for the separable Problem (3.4) is chronicled in, e.g., Golub and
Pereyra (2003); Parks (1985); Smyth (1996). The gradient-based algorithms
most commonly applied to Problem (3.2) are based on alternating least squares
(Bijlsma et al., 2000, 2002; Jandanklang et al., 2001; Dioumaev, 1997) or vari-
able projection (Golub and LeVeque, 1979; Nagle, 1991b; van Stokkum et al.,
2004). These techniques have been numerically compared by Bates and Lind-
strom (1986) for a single nonlinear parameter, and by Gay and Kaufman (1991)
for small datasets (< 70 datapoints). Theoretical comparisons of gradient-based
methods for separable problems have been made by Bates and Lindstrom (1986);
Böckmann (1995); Kaufman (1975); Parks (1985); Ruhe and Wedin (1980). In
this chapter we extend the literature comparing gradient-based methods for sep-
arable nonlinear optimization problems to Problem (3.2), the central estimation
problem in fitting parametric kinetic models to time-resolved spectra.

A comparison of techniques in the photophysical modeling application do-
main is desirable due to the difficulty of Problem (3.2), which is not identifiable
(Varah, 1985) and sensitive to starting values (Petersson and Holmström, 1997;
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van den Bos, 2007). Convergence issues due to ill-conditioning when two or
more decay rate parameters φl are close are well-known (Osborne and Smyth,
1995; Petersson and Holmström, 1998). The stochastic noise term contained in
measured Ψ introduces a further source of difficulty by complicating the sum
of squared errors parameter surface of φ with local minima. The performance
of alternating least squares and variable projection variants is studied here in
such a way as to expose the vulnerabilities and strengths of the algorithms in
the face of these difficulties as they occur in typical photophysical model fitting
problems. To the best of our knowledge this is the first such comparison in the
literature.

Alternating least squares and variable projection variants are presented in
Section 3.2. The ability of the algorithms to deal with degeneracy in the case
of similar decay rate parameters φl, φj is studied theoretically in Section 3.3
by comparison of Fisher information matrices (FIM) associated with parame-
ter estimates under variable projection variants. This section contains a new
derivation of the FIM under the full Golub-Pereyra variable projection func-
tional. Section 3.4 discusses the simulation of realistic datasets of time-resolved
spectra to be used in numerical comparison. A numerical study is made in
Section 3.5 to highlight convergence issues and sensitivity to starting values.
Section 3.5.2 contains a numerical comparison of variable projection techniques
using FIMs as rate constants vary in such a way to make Problem (3.2) more
nearly-degenerate.

3.2 Gradient-based algorithms for separable non-
linear least squares

Gradient-based algorithms for solution of Problem (3.2) estimate E as ÊT (φ) =
C+Ψ where + is the Moore-Penrose pseudoinverse, so that Problem (3.2) may
be written as

Minimize ‖ (I − C(φ)C+(φ))Ψ ‖2 . (3.5)

The gradient-based techniques most often applied to Problem (3.5) are based on
the Jacobian of either the alternating least squares (ALS) or variable projection
functionals. ALS was introduced by Wold and Lyttkens (1969) as NIPALS and
has a simple functional form which neglects the derivative of the pseudoinverse
C+ in an approximation of J . The analytical variable projection Jacobian (GP)
makes use of the derivative of C+ due to Golub and Pereyra (1972, 1973). The
analytical approximation to the Jacobian given by GP introduced by Kaufman
(1975) (KAUF) is more efficient to compute and for simple models has been
shown to return nearly as precise parameter estimates as the full functional
(Bates and Lindstrom, 1986; Gay and Kaufman, 1991).

In order to make clear the core differences between algorithms, we present
ALS, KAUF and GP and a finite difference approximation of (I−C(φ)C+(φ))Ψ
in terms of the Jacobian of the residuals (I −C(φ)C+(φ))Ψ with respect to the
nonlinear parameters φ, using the notation of Bates and Lindstrom (1986). The
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derivative of C with respect to the nonlinear parameters is denoted

Cφ =
dC

dφT
(3.6)

so that for parameter φi it is ∂C
∂φ . Applying the QR decomposition, C = QR =

[Q1 Q2]R, where Q1 is m × ncomp, Q2 is m × (m − ncomp), Q is orthogonal,

and R is m × ncomp, R =
[
R11

0

]
, with R11 being ncomp × ncomp and upper

triangular (Golub and van Loan, 1996). Assuming C is of full column rank,
C+ = R−1

11 Q
T
1 . Then, where “convergence” is some appropriate stopping crite-

rion and the iteration subscript s is suppressed, we have

Algorithms ALS, KAUF, GP, NUM:
1. Choose starting φ approximately
2. For s := 1, 2 . . . until convergence do

Calculate the residual vector as res = (I − C(φ)C+(φ))Ψ
Calculate J = d res

d φ using one of the following prescriptions:

JNUM := finite difference approximation of d(I−CC+)
dφ Ψ

JGP := Q2Q
T
2 CφC

+Ψ−Q1R
−T
11 C

T
φQ2Q

T
2 Ψ

JKAUF := Q2Q
T
2 CφC

+Ψ
JALS := CφC

+Ψ
φs+1 := step, direction(φs, res, J , . . .)

The sub-routine step, direction that determines the direction and the step-
sizes to move φ as a function of φs, res, and J is found in standard algorithms for
nonlinear least squares such as Levenberg-Marquardt or Gauss-Newton (Bates
and Watts, 1988). Here the step and direction are calculated with Gauss-
Newton. Simulation studies indicate that for the numerical problems consid-
ered in Section 3.5, replacement of the Gauss-Newton step, direction with
the Levenberg-Marquardt step, direction does not appreciably alter the per-
formance of any of the algorithms.

For a numerical comparison we also consider varieties of ALS differing in the
step method. The first (ALS-GN) makes a step in the direction determined by
Gauss-Newton given JALS . The second (ALS-LS) makes a step in the direction
determined by Gauss-Newton as well, but augments this step by a line search
until the sum of squared errors (SSE) is seen to increase.

Implementation is straightforward using library subroutines for QR decom-
position, finite difference derivatives, and nonlinear least squares. Such subrou-
tines are found, for instance, in the base and stats packages of the R language
and environment for statistical computing (R Development Core Team, 2008),
where we base the implementation for numerical comparison. An analytical
expression for Cφ is used for models based on a sum-of-exponentials. Under
more complicated models for C a finite difference approximation of Cφ is often
desirable.
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We now summarize some prior results comparing subsets of the algorithms
under consideration. Ruhe and Wedin (1980) have shown that for starting φ
close to the solution, the asymptotic convergence rates of KAUF and GP are su-
perlinear whenever application of Gauss-Newton to the unseparated parameter
set (φ+E) has a superlinear rate of convergence, and that ALS always has only
a linear rate of convergence. Bates and Lindstrom (1986) demonstrated that for
a simple model having a single nonlinear parameter the performance of KAUF
and GP was similar. Gay and Kaufman (1991) also performed a comparison
of KAUF and GP on several small datasets, (< 70 data points), demonstrating
that the time to compute KAUF was about 25% less than the time to compute
GP for the range of problems considered.

3.3 Parameter precision under variable projec-
tion variants

When optimal estimates for two or more nonlinear parameters in a sum-of-
exponential decays are close, so that the data are well-approximated by a lower-
order sum-of-exponentials, Problem (3.2) is termed nearly-degenerate. In such
situations the precision of nonlinear parameter estimates determines whether
all exponential decays can be resolved. Section 3.4.1 further elaborates the
importance of parameter precision in solving nearly-degenerate problems.

A means of quantifying the precision of a vector of parameter estimates is
found in the FIM. The structure of the FIM provides insight into contributions
to parameter precision, and FIMs may be numerically compared under different
Jacobians, as in Section 3.5.2. The resolution limit of exponential analysis has
been often studied in terms of FIMs and other information-theoretic metrics,
as discussed in Istratov and Vyvenko (1999). Basu and Bresler (2000) have
studied the connection between the stochastic stability of nonlinear least squares
problems and the FIM with attention to separable problems such as Problem
(3.2).

Definition 3.3.1: Define J as the Jacobian of the residual function with
respect to the nonlinear parameters φ. Assume the model error σ2 is estimated
as σ2 = SSE(φ)/df , where df is the degrees of freedom of the model. Further-
more, assume as throughout, the noise Ξ is additive, with entries comprised of
independent Gaussian random variables with mean zero and constant standard
deviation. Then the FIM M may be defined as

M = σ−2vec(J)T vec(J) = σ−2M̃. (3.7)

When M is positive definite the covariance estimate of any unbiased estimator
of parameter vector φ is bounded below by the inverse of M (the Cramér-Rao
Bound), so that

Cov[φ̂] ≥M−1. (3.8)

We will now give functions for M̃ under the variable projection algorithms
KAUF and GP .
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Proposition 3.3.1.

M̃KAUF = vec(Cφ)T (ETE ⊗ P )vec(Cφ). (3.9)

Proof. JKAUF is given as

JKAUF = Q2Q
T
2 CφC

+Ψ = PCφE
T , (3.10)

where P = Q2Q
T
2 .

Writing JKAUF in vectorized form,

vec(JKAUF ) = vec(PCφET ) (3.11)
= (E ⊗ P )vec(Cφ). (3.12)

Then from van Stokkum (1997),

M̃KAUF = vec(JKAUF )T vec(JKAUF ) (3.13)
= ((E ⊗ P )vec(Cφ))T ((E ⊗ P )vec(Cφ)) (3.14)
= vec(Cφ)T (ETE ⊗ P )vec(Cφ). (3.15)

It is often convenient to consider M̃ by entry M̃ij . This is

(M̃KAUF )ij = vec(Cφi)
TETE ⊗ Pvec(Cφj ), (3.16)

where vec(Cφi
) is the vector representation of dC

dφi
.

For a two column matrix C in which cl = exp(−tφl), vec(Cφ1) =
(
g1

0

)
and vec(Cφ2) =

(
0
g2

)
, where gi = −texp(−φit). For this case the expression

for M̃KAUF simplifies to

(M̃KAUF )ij = eTi ejg
T
i Pgj . (3.17)

Proposition 3.3.2. Writing M̃GP per entry,

(M̃GP )ij = (M̃KAUF )ij + vec(CTφi
)T (PΨ)(PΨ)T ⊗ C+(C+)T vec(CTφj

). (3.18)

Proof. The Jacobian JGP of the residuals with respect to the nonlinear param-
eters contains the extra term Q1R

−T
11 C

T
φQ2Q

T
2 Ψ as compared to JKAUF , so

that

JGP = Q2Q
T
2 CφC

+Ψ +Q1R
−T
11 C

T
φQ2Q

T
2 Ψ (3.19)

= JKAUF + (C+)TCTφ PΨ. (3.20)

Vectorizing JGP ,

vec(JGP ) = (E ⊗ P )vec(Cφ) + (PΨ)T ⊗ (C+)T vec(CTφ ), (3.21)
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and

vec(JGP )T = vec(Cφ)T (ET ⊗ P ) + vec(CTφ )T (PΨ)⊗ C+. (3.22)

Then, writing M̃GP per entry,

(M̃GP )ij = (M̃KAUF )ij + vec(CTφi
)T (PΨ)(PΨ)T ⊗ C+(C+)T vec(CTφj

). (3.23)

where we have used the orthogonality of JKAUF and (C+)TCφPΨ.

For a two column matrix C in which cl = exp(−tφl), the expression for ˜MGP

simplifies to

(M̃GP )ij = (M̃KAUF )ij + gTi PΨ(PΨ)T gj(RT11R11)−1
ij . (3.24)

The extra term in M̃GP as compared to M̃KAUF is associated with the more
accurate representation of the Hessian of Problem (3.2) under JGP as compared
to under JKAUF . The extent to which this extra term is of benefit in solving
Problem (3.2) in practice is evaluated numerically in Section 3.5.2.

3.4 Data for a simulation study
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Figure 3.1: Contour map of typical simulated data Ψ used in computational
study. Model fitting will resolve the two contributing components.

For a simulation study we used a model giving rise to a multi-exponential
analysis problem involving two exponentials with rate constant parameters φ =
{k1, k2}. The generative model for the matrix C of concentrations is then cl =
exp(−klt), where t is a vector of times and ncomp = 2.

The spectra E associated with the exponential decays are modeled as a
mixture of Gaussians in the wavenumber ν̄ (reciprocal of wavelength) domain,
so that

el(µν̄ ,∆ν̄) = alν̄
5 exp(−ln(2)(2(ν̄ − µν̄)/∆ν̄)2), (3.25)
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where el is column l of E describing the lth spectrum, with parameters µν̄ , ∆ν̄ ,
and al, for the location, full width at half maximum (FWHM), and amplitude,
respectively. This underlying model for E is chosen because it is a simple model
capable of representing real spectra in practice (van Stokkum, 1997), and be-
cause the use of Gaussians to represent spectral shapes is wide-spread, (as, e.g.,
van Stokkum et al. (2004) and references therein describe). The algorithms pre-
sented in Section 3.2 to solve Problem (3.2) treat the entries of E as conditionally
linear parameters so that the spectral shapes are recoverable without specifica-
tion of an underlying parametric model. This is often desirable because the
set of parameters necessary to adequately describe the spectra of photophysical
systems of interest is often large and more difficult to determine in comparison
to the small and relatively simple parametrization φ of the concentrations C.

component k µν̄ ∆ν̄ a
1 .5 22 9 1
2 .6 18 8 2

Table 3.1: Rate constants, spectral parameters (in 103 cm−1), and amplitudes
for simulated Ψ

Given these models for C and E, data was generated with the parameter
values in Table 3.1. Values for kinetic parameters k1 and k2 are similar and the
spectral parameters represent overlapping spectral shapes. n = 51 time points
equidistant in the interval 0-2 ns and m = 51 wavelengths equidistant in the
interval 350-550 nm. These parameter values are inspired by real data (van
Stokkum, 1997).

3.4.1 Degeneracy and multimodality due to noise

Measured time-resolved spectra Ψ always contain stochastic noise. The pres-
ence of noise may introduce stationary points where dJ(φ)

dφ = 0 at φ distinct
from those values underlying the deterministic model, so that the algorithms
presented in Section 3.2 are sensitive to starting values. This numerical identi-
fiability problem is well-known in kinetic modeling (Godfrey, 1983). In the case
of convergence to a local minimum introduced by noise, estimates for kinetic
parameters and spectra are often implausible from physicochemical first princi-
ples. Uninterpretable parameter estimates typically allow spurious solutions to
be recognized and discarded.

In fitting Model (3.1) to measured time-resolved spectra the signal-to-noise
ratio may be such that degeneracy is a significant issue. That is, optimal es-
timates for two or more rate constant parameters in the vector of nonlinear
parameters φ may be close enough that noise disrupts the SSE surface in such a
way that the globally optimal solution is a sum of less than ncomp exponentials,
as reviewed in van den Bos and Swarte (1993). Then the least-squares solution
yields estimates with k1 = k2 for {k1, k2} ∈ φ. In nearly-degenerate cases the
least squares solution is with k1 ≈ k2, and the parameters may be resolved if the
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precision with which they are estimated is sufficiently high, as is studied numer-
ically under the KAUF and GP algorithms in Section 3.5.2. For the simulated
dataset described in Section 3.4 degeneracy is probable for noise with standard
deviation of about 7 × 10−3 the maximal value in the deterministic data. The
SSE surface of parameters φ for a noise realization that results in degeneracy is
shown in Figure 3.2.
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k 2
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Figure 3.2: The SSE surface in parameter space for the contour plot of the
dataset described in Section 3.4 with a stochastic noise term with Gaussian
distribution and zero mean having standard deviation ∆ equal to 7× 10−3 the
maximum of the deterministic dataset. The parameter values φ = {.5, .6} or
symmetrically φ = {.6, .5} (closed circles) underlie the deterministic part of the
data, and would be the globally optimal parameter estimates except for the
effect of noise, which makes the lower order solution φ = {.45, .45} globally
optimal.

3.5 Computational results

Model (3.1) was fit to the data described in Section 3.4 with a stochastic noise
term with Gaussian distribution and zero mean having standard deviation ∆
equal to 3 × 10−3 the maximum of the deterministic dataset using each of the
algorithms described in Section 3.2. The convergence criterion was reduction of
sum of squared errors (SSE) ||vec(Ψ − CET )||2 by a factor of less than 1/210

between iterations. Estimated spectra found as conditionally linear parameters
under KAUF, GP, ALS-LS or NUM well-represent the spectra used in generating
the simulated data, as shown in Figure 3.3.

To visualize the progress of the algorithms per iteration, the SSE as a func-
tion of the rate constants k1, k2 is evaluated, with the result being the surface
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Figure 3.3: Estimated spectra (dashed lines) as found with KAUF, GP or NUM
by fitting the simulated dataset depicted in Figure 3.1 with the two-component
kinetic model described in Section 3.5. Spectra used to generate the determin-
istic part of the dataset (solid lines) are shown for comparison.

shown in Figure 3.4. Figure 3.4 also shows the values found by each algo-
rithm under consideration for each of 50 iterations from the starting values
k1 = .1, k2 = 1. KAUF, GP, ALS-LS and NUM converge to the same (globally
optimal) solution in 4 iterations. ALS-GN does not generally converge after
many hundreds of iterations, and from this case study and others we conclude
that the Gauss-Newton step coupled with the Jacobian calculated under ALS
is not sufficient for the solution of typical estimation problems in this domain.

Performance from a range of starting values and on variants of the dataset
under different noise realizations was examined. For cases in which globally
optimal parameter values are located at the end of a valley on the SSE surface
with respect to the starting values, the performance of ALS-LS is very much
hampered in terms of iterations required to convergence in comparison to KAUF,
GP, and NUM. A plot of the SSE surface in this case shows that ALS-LS follows
a zig-zagging path between the walls of the valley toward a globally optimal
solution.

We conclude that ALS coupled with a line search and both variable projec-
tion methods KAUF and GP solve this problem for the considered data realiza-
tions. The KAUF algorithm typically requires the same number of iterations as
the GP algorithm. ALS with line search converges in a greater or equal number
of iterations as compared to KAUF and GP. The iterations required for ALS-LS
are greater than for KAUF and GP when the globally optimal parameter values
are at the end of a valley in SSE with respect to starting parameter estimates.
Therefore in terms of iterations to convergence and sensitivity of computational
efficiency to starting values, the variable projection-based algorithms demon-



3.5. COMPUTATIONAL RESULTS 41

k1

k 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●

● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

k1

k 2

0.40 0.45 0.50 0.55

0.
4

0.
5

0.
6

0.
7

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Figure 3.4: Contour map of the sum square of residuals ||vec(Ψ − CET )||2
as rate constants k1, k2 vary, at a relatively large (left panel) and relatively
small (right panel) scale. The progress of ALS-GN (unfilled triangle), ALS-LS
(square), KAUF (filled triangle), and GP/NUM (filled and unfilled circles) is
depicted from starting values k1 = .1, k2 = 1; rate constant estimates are marked
with the symbol associated with each algorithm after each iteration. Spacing
between contour lines is not uniform.

strate the best performance.

3.5.1 Standard error estimates

In order to examine the properties of linear approximation standard error esti-
mates as returned by the algorithms under consideration, 1000 realizations of
the dataset described in Section 3.4 were simulated. For each realization, the
deviation(k) = ‖k̂ − k‖, where k̂ is the estimated rate constant value, and k
is the value used in simulation, the linear approximation standard error (σ̂k̂),
derived from cov(φ̂) = ς̂2(JTJ)−1, where ς̂2 denotes the estimated model vari-
ance and J is the Jacobian of the residuals evaluated at φ̂. The studentized
parameter deviation is formed as the ratio (deviation/σ̂k̂) (Bates and Watts,
1988; Seber and Wild, 2003; van Stokkum, 1997). Table 3.2 reports root mean
square (RMS) results for these quantities over 1000 noise realizations.

At the level of precision collated in Table 3.2, results for NUM, KAUF and
GP are identical. NUM and GP only differ from KAUF in the 3rd decimal place
of RMS (deviation/σ̂k̂), and from each other in the 6th.

RMS (deviation/σ̂k̂) is expected to be 1 in linear models, and hence the
degree to which this ratio approximates 1 can be used as a measure of the ap-
plicability of the linear approximation standard error returned by the respective
algorithms. Under ALS, σ̂k̂ is much too small, and not useful as a measure of
confidence in parameter value estimates.
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ALS-LS KAUF/GP/NUM
RMS deviation (k̂ − k) k1 0.022 0.022

k2 0.025 0.025
RMS σ̂k̂ k1 0.00033 0.021

k2 0.00048 0.027
RMS (deviation/σ̂k̂) k1 55 1.3

k2 37 1.2

Table 3.2: Root mean square deviation and standard error of nonlinear param-
eters after fitting a two-component sum-of-exponentials model (Model 3.1) to
1000 realizations of the dataset described in Section 3.4.

Likelihood-based confidence regions may be constructed around parameter
estimates based on the likelihood ratio between the sum of squared residuals
S(φ̂) = ||vec(Ψ−CET )||2 at the solution and at values S(φ) around the solution
as φ = {k1, k2} is varied. The confidence level 1− α is estimated as

1− α = F

(
P,N − P, (N − P )/P

S(φ)− S(φ̂)

S(φ̂)

)
(3.26)

where F is the cumulative F -distribution, P = ncomp = 2, and N is the degrees
of freedom in the model, which here is withN = (times−ncomp)(wavelengths) =
(51−2)(51) (Bates and Watts, 1988; Seber and Wild, 2003). The resulting con-
tour plot of confidence regions about the parameter estimates is shown in Figure
3.5(a). For comparison, the linear approximation confidence regions calculated
from cov(φ) for KAUF, GP, or NUM are shown in Figure 3.5(b). Note that the
linear approximation confidence regions are slightly too small as compared to
the likelihood-based confidence regions, which is consistent with the slight un-
derestimation of σ̂k̂ in Table 3.2, as measured by the overshoot of deviation/σ̂k̂
to 1.

In conclusion, the standard error estimates returned by both variable projec-
tion variants are usable as a measure of confidence in the associated parameter
estimates, and allow, e.g., the construction of confidence regions about param-
eter estimates. The standard error estimates returned by ALS with line search
are so poor as to prohibit inference regarding the associated parameter esti-
mates. Hence the variable projection-based algorithms also demonstrate better
performance relative to ALS-based algorithms under the criteria of goodness of
standard error estimates.

3.5.2 Numerical comparison of Fisher information matri-
ces

The functional forms for the FIM are useful in accessing the loss of parame-
ter precision under KAUF as compared to GP for typical problems. Relation
(3.8) allows standard error bounds under both algorithms to be numerically
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Figure 3.5: For the dataset depicted in Figure 3.4, (left panel) contour map
of confidence levels 1 − α as estimated by Equation 3.26 as rate constants
k1, k2 vary, (right panel) linear approximation confidence regions as found using
KAUF, GP, or NUM for the same levels as at left. In both panels a trian-
gle marks the rate constant values used in simulation, and a circle marks the
globally optimal values found by KAUF, GP, NUM, and ALS-LS.

compared. This comparison is of particular interest for estimation problems as-
sociated with a SSE surface of the nonlinear parameters φ with multiple closely
spaced global minima.

For fitting Model (3.1) to the dataset described in Section 3.4 realized with
a noise distribution having standard deviation 1 × 10−4 the maximum of the
deterministic dataset, we studied the standard error bounds returned by KAUF
and GP using Relation (3.8). We varied the separation between rate constants
k2 − k1 by letting k1 = .5 and varying k2 between 1 and .5075. The standard
error bounds under KAUF never increased by more than 5 × 10−4 percent in
comparison to the bounds under GP, even when the separation k2 − k1 became
very small. Hence the decrease in parameter precision under KAUF as compared
to under GP is negligible even for nearly-degenerate instances of Problem (6.4).
Since KAUF is faster to compute it may therefore be preferred for application.

3.6 Conclusions

Gradient-based algorithms for separable nonlinear least squares based on alter-
nating least squares and variable projection were compared for an application in
multi-exponential analysis that is common and important in fitting photophys-
ical kinetic models to time-resolved spectra. The number of iterations required
by the variable projection algorithms was found to be less sensitive to starting
values as compared to the algorithms based on alternating least squares. The
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linear approximation confidence regions about parameter estimates using vari-
able projection variants were furthermore found to well-approximate likelihood-
based confidence regions, while those based on an alternating least squares did
not. Using a new derivation of the Fisher information matrix under the Golub-
Pereyra variable projection algorithm, parameter precision under variable pro-
jection techniques was compared numerically. The loss of precision under the
Kaufman approximation as compared to the Golub-Pereya variable projection
functional was found to be acceptable even on nearly-degenerate problems, so
that the faster Kaufman approximation algorithm can be recommended for ap-
plication to the problem in photophysical modeling considered here.



Chapter 4

Separable nonlinear least
squares with constraints on
the conditionally linear
parameters1

4.1 Introduction

Consider the unconstrained optimization problem

min
x∈Rn

γ(x) (4.1)

where γ is a nonlinear function of x. If Problem 4.1 is separable, the parameters
x ∈ Rp separate into x = (y, z) with y ∈ Rp, z ∈ Rq, p + q = n such that the
sub-problem

min
y∈Rp

γ(y, z) (4.2)

is easy to solve for fixed z. Easy to solve means that y can be treated as
dependent on z, so that y is a function of z, which we write y(z), and Problem
4.1 can be transformed to

min
z∈Rq

γ(y(z), z) (4.3)

with some advantage (such as speed, better conditioning, or not having to pro-
vide starting values for y) as compared to optimization with respect to x directly
as in Problem 4.1.

The problem of fitting a linear combination of nonlinear functions to data

1A version of this chapter is submitted as Mullen and van Stokkum (2008c).
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under least squares criteria, that is,

min
z∈Rq

‖ ψ −
ncomp∑
i=1

ci(z)a[i] ‖2 (4.4)

where ψ is an m−vector of data, ci is a nonlinear function of z that outputs an
m−vector, a[i] ∈ y for i = 1, . . . , ncomp and, as throughout ‖ . ‖ is the 2-norm is
common in applications (Golub and Pereyra, 2003). We term a[i] conditionally
linear parameters since a[i] that are optimal under least squares criteria may be
obtained by solving a linear least squares problem given fixed z. Problem 4.4
can be written in matrix notation as

min
z∈Rq

‖ ψ − C(z)a ‖2 (4.5)

where column i of C corresponds to ci(z), and a = a[1], a[2], . . . , a[ncomp]. If
the same ncomp nonlinear functions ci(z) may be used to model n measured
vectors ψj but the amplitude aj [i] with which each function ci(z) contributes
to ψj must be estimated separately for j = 1, . . . , n, the optimization problem
becomes

min
z∈Rq

‖ Ψ− C(z)ET ‖2 (4.6)

where Ψ is an m × n matrix of data, with column j storing ψj , and E is an
n× ncomp matrix with row j storing aj = aj [1], aj [2], . . . , aj [ncomp].

Attempting to solve Problem 4.6 is termed global analysis in the physics and
chemistry literature, and is commonly performed in time-resolved spectroscopy
(Golub and LeVeque, 1979; Nagle, 1991b) and fluorescence lifetime image mea-
surement (FLIM) (Verveer et al., 2000) data analysis. Chapters 5 and 6 describe
global analysis of spectroscopy and FLIM measurements in detail. For physics
and chemistry applications, ci is very often based on a sum of distributions
in the exponential family. Since many physical phenomena are described by
first-order differential equations whose solution is an exponential decay func-
tion, ci representing exponential decays are often used, as reviewed by Istratov
and Vyvenko (1999), and discussed in the context of modeling time-resolved
spectroscopy data in van Stokkum et al. (2004).

In certain situations, it is desirable to apply constraints to the conditionally
linear parameters, leading, for instance, to the problem

min
z∈Rq

‖
n∑
j=1

(ψj −
ncomp∑
i=1

aj [i]ci(z)) ‖2

subject to 0 ≤ aj [i] for i = 1, 2, . . . , ncomp and j = 1, 2, . . . , n

(4.7)

and more generally

min
z∈Rq

‖
n∑
j=1

(ψj −
ncomp∑
i=1

aj [i]ci(z)) ‖2

subject to lj [i] ≤ aj [i] ≤ uj [i] for i = 1, 2, . . . , ncomp and j = 1, 2, . . . , n

(4.8)
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which are represented in matrix notation as

min
z∈Rq

‖ Ψ− C(z)ET ‖2

subject to 0 ≤ ET [i, j] for i = 1, 2, . . . , ncomp and j = 1, 2, . . . , n
(4.9)

and

min
z∈Rq

‖ Ψ− C(z)ET ‖2

subject to lj [i] ≤ ET [i, j] ≤ uj [i] for i = 1, 2, . . . , ncomp and j = 1, 2, . . . , n
(4.10)

respectively. Problem 4.9 often arises in optical spectroscopy, microscopy and
mass spectrometry data analysis, where there are typically tens of intrinsi-
cally nonlinear parameters z and thousands of conditionally linear parameters
ET [i, j].

In this chapter, we present a framework for addressing Problem 4.5 and
its global analysis counterpart, Problem 4.6, in the case that constraints are
to be applied to the linear coefficients a. In practice the constraints will be
limited to linear or quadratic relations, since Problem 4.2 should remain easy
to solve given fixed values of z. The considered approach elaborates on the
gradient-based variable projection algorithm developed by Golub and Pereyra
(1972, 1973). The history of the development of variable projection as well as
an overview of its application in various fields was given by Golub and Pereyra
(2003). Kaufman and Pereyra (1978) considered extensions of variable pro-
jection to account for nonlinear equality constraints. Parks (1985) noted that
in order to enforce constraints on a, a may be determined as the solution of
an arbitrary linear or quadratic programming problem. Sima and Van Huffel
(2007) described an algorithm to constrain a to non-negative values, and also
noted the possibility of a generalization of their approach to include other linear
or quadratic constraints, as will be suggested here. The main contribution of
this chapter is to explicitly present a framework for the introduction of con-
straints on the conditionally linear parameters a into variable projection, and
to demonstrate the utility of the approach in the context of global analysis for
some problems inspired by the analysis of time-resolved emission spectroscopy
data.

While the functions ci are always differentiable in applications of interest to
us, so that gradient-based algorithms like variable projection are attractive, in
the general case Problem 4.3 may be addressed by algorithms for the bilinear
programming problem, as reviewed by Al-Khayyal (1990).

The remainder of this chapter is organized as follows: Section 4.2 describes
a framework for modifying variable projection to address Problem 4.5 in the
case that a is subject to constraints. Algorithms for Problem 4.7 and Problem
4.8 are described in detail. Section 4.3 discusses the effect on the precision
with which nonlinear parameters z are estimated when a is subject to non-
negativity constraints. Section 4.4 examines the deviation of estimates for z and
a from values used in simulation of a dataset inspired by time-resolved emission
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spectra obtained using variable projection with and without the modification to
constrain a to non-negativity. Section 4.6 contains conclusions.

4.2 Variable projection with constraints on the
conditionally linear parameters

Golub and Pereyra (1972, 1973) developed the variable projection algorithm
based on the observation that given a bilinear model of form

ψ = C(z)a+ ξ (4.11)

where ξ is a vector comprised of Gaussian random variables with zero mean
and constant standard deviation with the same length as the data vector ψ,
a can be solved for in terms of C(z) and ψ using the equality a = C(z)+ψ,
where + denotes the Moore-Penrose pseudoinverse. Substituting C(z)+ψ for a
in Problem 4.5 we obtain

min
z∈Rq

‖ (I − C(z)C(z)+)ψ ‖2 (4.12)

In the following we write C(z) as simply C. Golub and Pereyra determined the
Jacobian of (I − CC+)ψ with respect to z analytically as

J =
d(I − CC+)ψ

dz
= −Q2Q

T
2 CzC

+ψ −Q1R
−T
11 C

T
z Q2Q

T
2 ψ (4.13)

where Cz = dC
dzT and the QR decomposition C = QR = [Q1 Q2]R is used

for numerical stability, where Q1 is m × ncomp, Q2 is m × (m − ncomp), Q is

orthogonal, and R is m×ncomp is upper triangular and R =
[
R11

0

]
, with R11

being ncomp×ncomp and upper triangular (Golub and van Loan, 1996). Kaufman
(1975) suggested that the second term in the expression for the Jacobian of the
residuals can be dropped, so that J = −Q2Q

T
2 CzC

+ψ, without undue loss
of precision and enabling faster computation, as shown empirically for various
problems in Bates and Lindstrom (1986); Gay and Kaufman (1991); Mullen
et al. (2007).

For many modern applications (van Stokkum et al., 2004) the nonlinear func-
tions on which C is based are sufficiently complex to render analytical derivation
unattractive or impossible. A finite difference approximation of the Jacobian
J = d (I−CC+)ψ

d z may be used in such cases to substitute for an analytical deter-
mination of J .

Variable projection may thus be formulated as

Algorithm VarPro:
1. Choose starting z0.
2. For s := 1, 2 . . . until stopping criteria are met do

2a. Calculate the residual vector as res = ψ − Ca = Q2Q
T
2 ψ
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2b. Determine J = d res
d z using one of the following prescriptions

JNUM := finite difference approximation of d res
d z

JGP := −Q2Q
T
2 CzC

+ψ −Q1R
−T
11 C

T
z Q2Q

T
2 ψ

JKAUF := −Q2Q
T
2 CzC

+ψ
zs+1 := step, direction(zs, res, J , . . .)

Standard nonlinear least squares algorithms such as Levenberg-Marquardt
or Gauss-Newton determine the direction and the step-size to move the param-
eter vector z as a function of zs, res, and J (see e.g. Seber and Wild (2003)
for a detailed formulation). Should simple bound constraints apply to the non-
linear parameters z, the VarPro approach remains viable, though zs should
be subject to the appropriate transformation before being used as an argument
to step, direction (e.g., by letting zi = exp(φi) to constrain φi to positive
values, where φi is a nonlinear parameter of the function ci).

Note that under the KAUF and NUM methods for determining J the resid-
ual vector may be projected into Q-space by letting res = QT2 ψ in step 2a of
VarPro, and dropping the first factor of Q2 in step 2b. This modification
results in some gain in computational efficiency.

In order to modify VarPro to constrain a, only the residual calculation in
step 2a needs to be modified, provided that J is determined as JNUM . Whereas
calculating the residual as res = ψ − CaT = Q2Q

T
2 ψ is to solve for a as the

solution of the least squares problem

min
a∈Rp

‖ ψ − Ca ‖2 (4.14)

any desired constrained optimization algorithm may be substituted for Problem
4.14. The resulting constrained estimates a∗ may be used in step 2a as

res = ψ − Ca∗ (4.15)

with the result being a modified algorithm that enforces the desired constraints
on a. The only restriction on the constrained optimization algorithm that may
be substituted for Problem 4.14 is practical: a∗ and that z that are optimal
under least squares criteria should remain easier to obtain using the modified
variable projection approach in relation to solving a constrained optimization
problem in which the variables are not separated.

Variable projection with constraints on the conditionally linear parameters
a may thus be formulated as

Algorithm ConVarPro:
1. Choose starting z0.
2. For s := 1, 2 . . . until stopping criteria are met do

2a. Calculate the residual vector as res = ψ − Ca∗
2b. Determine J = d res

d z using JNUM where
JNUM := finite difference approximation of d res

d z
zs+1 := step, direction(zs, res, J , . . .)
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To obtain a∗ in the case that a is constrained to be non-negative, the sub-
problem

min
a∗∈Rp

‖ ψ − Ca∗ ‖2

subject to 0 ≤ a∗[i] for i = 1, 2, . . . , ncomp

(4.16)

is solved. The Lawson-Hanson non-negative least squares (NNLS) algorithm
(Lawson and Hanson, 1974, 1995) is an efficient means of solving Problem 4.16.
Sima and Van Huffel (2007) have applied the Lawson-Hanson NNLS algorithm
to solve for a∗ within a modified variable projection algorithm to problems
in magnetic resonance spectroscopy data analysis. Bro and Jong (1997) and
Benthem and Keenan (2004) have suggested some modifications to Lawson-
Hanson NNLS that render the algorithm more efficient in some contexts.

To obtain a∗ in the case that the desired constraints on a amount to lower
and upper bounds on each element a[i], the sub-problem

min
a∗∈Rp

‖ ψ − Ca∗ ‖2

subject to li ≤ a∗[i] ≤ ui for i = 1, 2, . . . , ncomp

(4.17)

is solved. An efficient algorithm for this problem is the bounded variable least
squares (BVLS) algorithm of Stark and Parker (1995), which is computation-
ally more efficient than a standard simplex method or the “L-BFGS-B” box-
constraint algorithm of Byrd et al. (1995).

Further varieties of constraints may be imposed on a by formulation of, e.g.,
an appropriate quadratic programming problem.

4.3 Non-negativity constraints on a: effect on
precision of ẑ

Constraint of a[i] to non-negativity in Problem 4.5 is motivated whenever the
nonlinear functions ci describe phenomena for which negative values are not
interpretable. An example of such phenomena is a count of emission photons
measured at 1, 2, . . . ,m times. Such measurements often arise in time-resolved
spectroscopy experiments.

In practice we observe that the addition of constraints such as imposing non-
negativity on a in such situations increases the precision with which both a and
the nonlinear parameters z are estimated. The increase in parameter precision
under constraints to ensure the non-negativity of a may be studied using the
Fisher information matrix (FIM). The FIM can be calculated for the case that
a are estimated with NNLS criteria within the framework presented in Section
4.2, as well as for the case that the standard variable projection algorithm is
used. Comparison of the resulting FIMs then will reveal any differences in the
parameter precision possible to obtain under the two algorithms. van den Bos
(2007) reviews the use of the FIM for the quantification of parameter precision.
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Define J as the Jacobian of the residual function with respect to the nonlin-
ear parameters φ. Assume the model error σ2 is estimated as σ2 = SSE(φ)/df ,
where df is the degrees of freedom of the model. Furthermore, assume as
throughout, the noise Ξ is additive, with entries comprised of independent Gaus-
sian random variables with mean zero and constant standard deviation. Then
the FIM M may be defined as

M = σ−2vec(J)T vec(J) = σ−2M̃. (4.18)

When M is positive definite the covariance estimate of any unbiased estimator
of parameter vector φ is bounded below by the inverse of M (the Cramér-Rao
Bound), so that

Cov[φ̂] ≥M−1. (4.19)

It has been shown in Chapter 3 that for variable projection in the absence of
constraints on a, writing M̃KAUF per entry (i, j), with P = Q2Q

T
2 in the case

that a is unconstrained and where vec(Czi) is the vector representation of dC
dzi

,

(M̃KAUF )ij = vec(Czi
)TaaT ⊗ Pvec(Czj

) (4.20)

When the conditionally linear parameters are represented by the matrix E as for
Problem 4.6 this is (M̃KAUF )ij = vec(Czi)

TETE ⊗ Pvec(Czj ). The extra term
in the FIM under the Golub-Pereyra gradient given in Chapter 5 is negligible for
all problems known to exist in applications and (M̃GP )ij is nearly identical to
(M̃NUM )ij when (M̃NUM )ij is obtained by inverting the linear approximation
unscaled covariance matrix. Therefore we will consider (M̃KAUF )ij to well-
approximate both (M̃GP )ij and (M̃NUM )ij , and henceforth write (M̃KAUF )ij
as simply M̃ij .

Lawson-Hanson NNLS, which is an active-set algorithm, always solves Prob-
lem 4.16 provided C is of full rank, and terminates in a finite number of steps
(Lawson and Hanson, 1974). At termination, Lawson-Hanson NNLS has clas-
sified each of the ncomp constraints a∗i ≥ 0 as either active or passive, where a
constraint is active if in its absence a[i] ≤ 0 and passive otherwise. The data
ψ are projected into the subspace defined by the columns of C whose indices i
appear in the passive set; we write the columns whose indices appear in the pas-
sive set Cp. Then a[i]∗ for i that occur in the passive set are obtained as C+

p ψ,
and a[i] for i that occur in the active set are zero. Writing Pp = (I − CpC+

p ),
and ap for those elements of a∗ that are non-zero, M̃ij for the case that a is
constrained to non-negativity is,

(M̃CON )ij = vec(Czi)
Tapa

T
p ⊗ Ppvec(Czj ) (4.21)

In the case that the active set is non-empty, Cp represents fewer columns as
compared to C, which is to say that the data are represented as a lower order
sum of nonlinear functions ci. The result is an increase in the precision of the
nonlinear parameter estimates ẑ.
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When nonlinear parameters zi and zj determine ci and cj , respectively, and
are very close, variable projection may be unstable due to the near-collinearity
of C. If cj is a column that is present in C but not in Cp, the non-negativity
constraints will render the constrained algorithm more stable, and problems due
to the collinearity of C may be avoided.

Note that when the conditionally linear parameters a are represented by the
matrix E as for Problem 4.6 and each nonlinear parameter zi contributes to the
determination of exactly one column of C, Equation 4.21 may be rewritten as

(M̃CON )ij =
n∑
k=1

ET [k, i] ∗ ET [k, j] ∗ gTi Ppk
gj (4.22)

where gi = dci

dzi
and gj = dcj

dzj
, and Ppk

is the matrix Pp associated with row k of
ET .
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Figure 4.1: Simulated concentration profiles C (right) and spectra E (left).
Both C and E are matrices comprised of three columns; each of the columns is
plotted here, with its index given in the legend. The decay rates z = [z1, z2, z3] =
[.4, .8, 2] determine column i of C as exp(−zi ∗ t), where t is a vector of times.

4.3.1 Numerical examples of an increase in parameter pre-
cision under non-negativity constraints

We now give an example of the increase in precision under variable projec-
tion with non-negativity constraints on the conditionally linear parameters as
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Figure 4.2: Estimates of E from VarPro (left) and ConVarPro with con-
straints to non-negativity on E (right) for a representative noise realization,
with each column i of E plotted as a line. Values of E used in simulating the
data are shown in grey. A solid line marks zero on the y-axis. The index i of
the column of E corresponding to each line is given in the legend.

relative to unconstrained variable projection, as measured by the FIM under
the respective algorithms.

Consider the dataset Ψ = C(z)ET , where Ψ is a matrix of dimension m× n
and C and E are matrices of dimension m× ncomp and n× ncomp, respectively.
Here a = vec(ET ). Since VarPro requires the data to be in vectorized form,
we rewrite Ψ = CET as

vec(Ψ) = vec(CET In) = (In ⊗ C)vec(ET ) (4.23)

A partitioned variable projection algorithm that avoids manipulating (In ⊗ C)
directly and thereby allows datasets for which n is large to be modeled without
huge memory resources is discussed in Chapter 5 and used in the code accom-
panying this example.

Let C be determined as ci(zi) = exp(−zit) where t is an m-vector. Let each
column of E contain a Gaussian shape. C and E simulated using this model
with ncomp = 3 are shown in Figure 4.1, where z = [z1, z2, z3] = [.4, .8, 2]. Let
independent, normally distributed noise be added with amplitude 1/100 of the
maximum of the deterministic data. Variable projection without constraints
may return Ê with some estimates less than zero whereas solving Problem 4.16
within ConVarPro returns Ê ≥ 0, as shown in the left and right panels of
Figure 4.2, respectively.

The unconstrained and constrained results in Figure 4.2 are associated with
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Figure 4.3: Mean RMS deviation z − ẑ over 100 instances of the problem de-
scribed in Section 4.4, for various noise amplitudes. The x-axis indicates the
amplitude of the noise term as a percent of the maximum of the deterministic
data.

the FIMs

M̃ =


z1 z2 z3

z1 0.0581 -0.0060 0.0009
z2 -0.0060 0.0355 -0.0049
z3 0.0009 -0.0049 0.0564

 (4.24)

and

M̃CON =


z1 z2 z3

z1 3.4733 -0.1624 -0.0150
z2 -0.1624 1.5372 -0.0967
z3 -0.0150 -0.0967 1.1612

 (4.25)

The diagonal elements which describe the precision with which each parameter zi
is estimated are much larger in M̃CON as compared to M̃ . For the unconstrained
and constrained algorithms, the average contribution over n columns of ET of
the diagonal terms gTi Pgj and gTi Ppk

gj where i = j is .002862 and 0.5111,
respectively, which illustrates the gain in precision achieved by the active non-
negativity constraints on E.

Scripts to reproduce this numerical example are included in the supporting
information (from Mullen and van Stokkum (2008b)).
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4.4 Simulation study

To investigate the effect of the addition of non-negativity constraints on the
conditionally linear parameters in the manner suggested in Section 4.2 on the
accuracy of estimates for z and a for a problem that is typical of those encoun-
tered in the analysis of measured time-resolved emission spectroscopy data, we
performed a simulation study. VarPro and ConVarPro with non-negativity
constraints on the conditionally linear parameters were used to solve Problems
4.6 and 4.8, respectively.

The concentration profiles C and spectra E used to generate the determin-
istic part of the simulated data Ψ = CET were similar to those shown in Figure
4.1, with a three-column matrix C in which each column represents an expo-
nential decay, and a three-column E matrix with each column represented by a
Gaussian shape. Independent, normally distributed stochastic noise was added
to the data, with an amplitude that varied between 1% and 9% of the maxi-
mum of the deterministic data. The full specification of the simulation study is
given in scripts contained in the supporting information (from Mullen and van
Stokkum (2008b)).
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Figure 4.4: For an instance of the dataset in which the noise is 8% of the max-
imum of the deterministic data, the unconstrained algorithm results in catas-
trophically compensating estimates for E (right panel), whereas the constrained
algorithm returns E (left panel) that qualitatively resemble the values used in
simulating the data, which are shown in grey. Here the unconstrained algo-
rithm returns ẑ = [0.501, 2.237, 2.239], so that two columns of C are nearly
collinear, and converges after 36 iterations. The constrained algorithm returns
ẑ = [0.345, 0.798, 2.220], which is much closer to the values of z = [0.4, 0.8, 2]
used in simulation, and converges after 6 iterations.

Figure 4.3 shows that for all noise amplitudes, the use of the constrained
version of variable projection significantly increases the accuracy of ẑ.
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Figure 4.5: Mean RMS deviation E − Ê over 100 instances of the problem de-
scribed in Section 4.4, for various noise amplitudes. The x-axis indicates the
amplitude of the noise term as a percent of the maximum of the deterministic
data. Results returned by the unconstrained algorithm that were catastrophi-
cally compensating were omitted.

The unconstrained algorithm will occasionally estimate very compensating
values for the parameters represented by E, as shown by example in the right
panel of Figure 4.4. These catastrophic failures of the unconstrained algorithm
represent 0% of the solutions on problem instances with 1% noise, 9-12% of the
problem instances with 2-4% noise, and 26-30% of the problem instances with 5-
9% noise (where the definition of catastrophic was taken to be RMS E−Ê > 1).
In calculation of the mean RMS deviation E− Ê over the 100 instances for each
noise level shown in Figure 4.5, the catastrophically compensating results were
omitted.

That the unconstrained algorithm sometimes demonstrates catastrophic fail-
ure to return qualitatively correct estimates Ê shows that VarPro, like other al-
gorithms for least squares regression, is unstable in the sense that small changes
in the data (due to the peculiarities of the sample of random noise it contains)
may result in huge changes in the RMS deviation of parameter estimates. This
instability comes about when two columns of C, ci and cj are nearly collinear.
For the simple exponential decay model here, this occurs when optimal ẑi and
ẑj used as ci(zi) = exp(−zit) and cj(zj) = exp(−zjt), respectively, are very
similar under least squares criteria, so that ẑi and ẑj are not both resolvable, an
issue that has been studied in great detail by van den Bos and Swarte (1993).
The constrained algorithm eliminates the instability problem when ẑi and ẑj are
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associated with compensating positive and negative values for E[k, i] and E[k, j]
for some wavelength k, since in such situations the column of C associated with
the negative value of E will in effect be removed from the model.

Scripts to reproduce these results are provided in the supporting information
(from Mullen and van Stokkum (2008b)).

4.5 Implementation

TIMP, a package for the R language and environment for statistical computing
(R Development Core Team, 2008) described in Chapter 5, has been developed
to solve the problems discussed thus far for the case that C(z) is based on func-
tions useful for modeling the kinetics or the spectral dynamics of spectroscopy,
microscopy or mass spectrometry data. Lawson and Hanson (1974) and Stark
and Parker (1995) made FORTRAN implementations of Lawson-Hanson and
BVLS, respectively, publicly available. The present authors have made an in-
terface to this FORTRAN code available in R via the packages nnls and bvls,
which may facilitate the embedding of these algorithms in the ConVarPro
algorithm discussed in Section 4.2. R and the packages TIMP, nnls and bvls are
freely available under the terms of the GNU General Public License from the
Comprehensive R Archive Network (http://cran.r-project.org/).

4.6 Conclusion

A framework for modification of the variable projection algorithm to include
constraints on the conditionally linear parameters was presented. For the case
that the modified algorithm enforces non-negativity constraints on the condi-
tionally linear parameters, the precision with which the nonlinear parameters
are estimated was shown to increase as compared to estimates obtained un-
der classical variable projection. This result was explored via fitting simulated
time-resolved emission spectroscopy datasets with and without non-negativity
constraints on the spectra, which comprise the conditionally linear parameters.
It was shown that in this context, the extra precision afforded by the non-
negativity constraints helps avoid problems due to collinearity.

Future work will include application of the algorithms modified with con-
straints discussed here to the parametric modeling of mass spectrometry data.

http://cran.r-project.org/
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Chapter 5

TIMP: an R package for
fitting separable nonlinear
models to data arising in
physics and chemistry
applications1

5.1 Introduction

TIMP2 is a package for the R language and environment for statistical com-
puting (R Development Core Team, 2008) that enables the specification, fitting
and validation of separable nonlinear models to data arising in physics and
chemistry applications. It is a fully cross-platform problem-solving environment
freely available under the terms of the GNU General Public License (GPL).

This chapter outlines the capabilities, structure, and application of the pack-
age. The introduction gives an overview of the problems in scientific model
discovery that the package has been designed to address. Section 5.2 describes
some aspects of the implementation, and includes a description of the partitioned
variable projection algorithm that allows variable projection to be used with-
out large memory requirements for parameter estimation problems that arise in
the description of 2-way and n-way data. Section 5.3 describes in brief user-
accessible functions. Section 5.4 describes general model options. Sections 5.5
and 5.6 describe the specification, fitting and validation of kinetic and spectral

1A version of this chapter appears as Mullen and van Stokkum (2007b) in the Journal of
Statistical Software, 18(3), 1-46.

2The name of the package refers to its origins in the tim collection of FORTRAN routines
developed over the past fifteen years by Ivo H. M. van Stokkum to model time-resolved
spectroscopy data; TIMP stands for tim package.

59
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Figure 5.1: Scientific model discovery is often an iterative process of model
specification, parameter estimation and validation.

models with the package, respectively. Both of these sections include case stud-
ies. Section 5.7 discusses in brief the extension of TIMP to new model types.
Conclusions are contained in Section 5.8.

5.1.1 Interactive scientific model-discovery

We term scientific model discovery the identification of a statistical model able
to reproduce experimentally collected measurements to a satisfactory degree of
accuracy, with the additional constraint that the model be well-interpretable
according to physico-chemical theory. Scientific model discovery very often re-
quires iterating the steps of formulation of a candidate model, model fitting, and
model validation. Postulation of a candidate model is guided by a priori knowl-
edge of the system underlying the data as well as by exploratory analysis of
the dataset (e.g., with decomposition techniques like the singular value decom-
position). Model fitting provides estimates for free parameters that are more
statistically likely (often under least squares criteria) than the estimates pro-
vided during postulation of the candidate model. Validation considers whether
the fitted parameter values are precise and likely to be correct according to
physico-chemical theory, whether the residuals are sufficiently small and un-
structured, and whether adjustment of the candidate model is desirable. The
cycle of model formulation, fitting and validation is often iterative because val-
idation often helps identify a more appropriate candidate model.

Scientific model discovery is interactive in the case that the time to complete
the model formulation, fitting, and validation cycle is determined primarily by
the ability of the researcher to decide on and validate candidate models. To
allow for interactive scientific model discovery the applied computer hardware
and software must enable the researcher to quickly specify and fit a model, and
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must provide information for model validation that allows for efficient evaluation
of model fit and physical feasibility. TIMP provides a framework for interactive
scientific model discovery in the multiway spectroscopy data modeling problem
domain.

5.1.2 Multiway spectroscopy data and models

A major application domain of TIMP is in fitting models to multiway spec-
troscopy data. A two-way spectroscopy dataset Ψq arising under experimental
conditions q may be represented as the matrix

Ψq =

26664
λ1 λ2 ... λn

t1 ψ(t1, λ1) ψ(t1, λ2) . . . ψ(t1, λn)
t2 ψ(t2, λ1) ψ(t2, λ2) . . . ψ(t2, λn)
...

...
...

. . .
...

tm ψ(tm, λ1) ψ(tm, λ2) . . . ψ(tm, λn)

37775 (5.1)

Each row of Ψq is a spectrum in the variable λ (which is often wavelength, but
may be wavenumber or magnetic field strength; Chapter 6 describes the case
that the variable is location). Spectra are represented at m instances of an inde-
pendent experimental variable t such as time, pH, pD, temperature, excitation
wavelength or quencher concentration. The independent experimental variable
is chosen so as to monitor spectral change in a manner that provides information
on the dynamics of the underlying system. More than one such variable may
also be considered, as will be described shortly.

Ψq represents a contribution from ncomp spectrally distinct components.
When a matrix analogue of the Beer-Lambert law for absorption applies to the
data, the concentration and spectral property of each component may be repre-
sented as column l of matrices C and E, respectively, in the linear superposition
model

Ψq = CET (5.2)

Each column of C represents a concentration profile of a component in the
independent variable t. Likewise, each column of the matrix E represents a
spectrum of a component in a second independent variable λ.

The inverse problem of recovery of the entries of C or E in terms of physi-
cally significant parameters (descriptive of, e.g., the decay rate of a component,
or the location of the maximum of a spectrum) is often of interest. Adequate
parameterizations of either C or E are nonlinear, and are usually comprised of
many submodels representative of various model aspects. Such parameteriza-
tions have been reviewed for the case of time-resolved spectroscopy data by van
Stokkum et al. (2004); van Stokkum (2005). Very often a model-based descrip-
tion is possible for either C or E, but not both matrices. This gives rise to a
separable nonlinear model

Ψq = C(θ)ET + Ξ (5.3)
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or symmetrically, in the case that the parametric description applies to the
matrix E as opposed to the matrix C,

Ψq = CE(θ)T + Ξ (5.4)

The term Ξ represents a matrix of noise, each entry of which is assumed to be
an independent Gaussian random variable with expectation zero and constant
standard deviation. The assumption of noise with these properties will apply to
all models discussed in this chapter.

Let us assume that it is the kinetics C that are described with a parametric
model (the presentation for the case that the spectra E are described para-
metrically is symmetric). Then it may be a case that the parametrization for
the kinetics changes per-wavelength represented in Ψq. This means that each
column j of the data, ψj , is described as

ψj = Cj(Θ)E[j, ]T (5.5)

where the function Cj may vary for different columns j. Equation 5.5 also al-
lows description of datasets Ψq that form a ragged matrix, with a different num-
ber of observations per-row and per-column. It furthermore allows description
of many different datasets Ψ1,Ψ2, . . . ,ΨK with the same vector of nonlinear
parameters Θ but using different functional descriptions Cjq , where q is the
dataset index. In applications it is common that observations take the form
of vectors ψj1 , ψj2 , . . . , ψjX with j representing an independent variable (e.g.,
wavelength) measured many times under different experimental conditions in-
dexed 1, 2, . . . , x. An assumption that is often physically motivated is that the
same vector of conditionally linear parameters a underlies ψj1 , ψj2 , . . . , ψjX , as
will be discussed further in Section 5.2.

As Golub and LeVeque (1979); Golub and Pereyra (2003) review, Θ and
the conditionally linear parameters (the entries of the matrix ET in Equation
5.3 and the entries of C in Equation 5.4) may be estimated from the data Ψq

under least squares criteria using the variable projection algorithm, which has
been shown to be very effective for fitting separable nonlinear models. TIMP
includes a partitioned implementation of variable projection that allows the
application of the algorithm to fitting the free parameters of models for matrix
data without large memory resources. This method is compared to the standard
variable projection implementation (found, e.g., in the plinear option of the
nls function in the R environment) in detail in Appendix 5.A.

5.1.3 An introduction to modeling with TIMP

The application of TIMP to a very simple parameter estimation task on a single
simulated time-resolved spectroscopy dataset serves to introduce the use of the
package. As discussed in the previous section, a spectroscopy dataset Ψq can
be considered to represent a linear superposition of the concentration profiles C
and spectral properties E of components, so that Ψq = CET (Equation 5.2).
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We will simulate a dataset in which two spectrally distinct components con-
tribute to Ψq, where C represents concentration in time and E represents spectra
resolved with respect to wavenumber. The most simple realistic model for C
lets the time-profile of each component cl be described by an exponential decay
with decay rate parameter kl, so that

cl(t) = exp(−klt), (5.6)

where t is time. (for elaboration on the use of exponential models for kinetic
processes, see e.g., the review by Istratov and Vyvenko (1999)). We let the two
components contributing to Ψq have associated decay rate parameters .5 and 1,
and let the concentrations be measured at 51 times equidistant in the interval
0-2 ns. Then the following R commands calculate C.

R> C <- matrix(nrow = 51, ncol = 2)
R> k <- c(.5, 1)
R> t <- seq(0, 2, by = 2/50)
R> C[, 1] <- exp( - k[1] * t)
R> C[, 2] <- exp( - k[2] * t)

The most basic model for the spectrum el associated with a single component in
wavenumber ν̄ is a Gaussian with parameters µν̄ , ∆ν̄ , and al, for the location,
full width at half maximum (FWHM), and amplitude, respectively, so that

el(ν̄) = al exp

(
− ln(2)

(
2

(ν̄ − µν̄)
∆ν̄

)2
)
, (5.7)

(see e.g., van Stokkum (1997) and references therein regarding the ubiquity
of Gaussian models for spectra). Let us consider spectra represented by 51
wavenumbers equidistant in the interval 18000 - 28000 cm−1, with locations
25000 and 20000, FWHMs 5000 and 7000, and amplitudes 1 and 2, respectively.
In R we can then calculate E as

R> E <- matrix(nrow = 51, ncol = 2)
R> wavenum <- seq(18000,28000, by = 200)
R> location <- c(25000, 20000)
R> delta <- c(5000, 7000)
R> amp <- c(1, 2)
R> E[, 1] <- amp[1] * exp( - log(2) * (2 *
+ (wavenum - location[1])/delta[1])^2)
R> E[, 2] <- amp[2] * exp( - log(2) * (2 *
+ (wavenum - location[2])/delta[2])^2)

Given these R expressions for C and E, a dataset Ψq with Gaussian noise
with zero mean and width σ = .001 may be generated and added to the data
with

R> sigma <- .001
R> Psi_q <- C %*% t(E) + sigma * rnorm(nrow(C) * nrow(E))
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Plots of C and E are shown in Figure 5.2. The simulated dataset Ψq is shown
in Figure 5.3
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Figure 5.2: (Left) Simulated concentrations (Right) simulated spectra. Compo-
nent 1 is in black; component 2 is in grey.
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Figure 5.3: Simulated data; model fitting will resolve the two contributing
components.

Given a dataset such as the simulated Psi_q shown in Figure 5.3 it is often
the case that either a kinetic model for C or a spectral model for E is desirable
to apply to the data. Given estimates for the nonlinear model parameters that
determine one of the two matrices, the entries of the other matrix may be solved
for as conditionally linear parameters (clp). Let us assume that the kinetic model
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used in simulating the data is known to describe Psi_q, and that approximate
starting values for the two rate constants are known. Then the following R
commands can be used to estimate the rate constants k and clp E.

TIMP is loaded with

R> library("TIMP")

The simulated dataset is placed into an instance of the class dat which is used
to store data and model objects in TIMP. The dat object contains not only the
data but also some information like its dimensions.

R> Psi_q_data <- dat(psi.df = Psi_q, x = t, nt = length(t),
+ x2 = wavenum, nl = length(wavenum))

A model to be applied to the data is initialized with the initModel function.
The seqmod = FALSE option indicates that the components decay in parallel;
the starting values for the decay rates are given in the vector kinpar.

R> kinetic_model <- initModel(mod_type = "kin", seqmod = FALSE,
+ kinpar = c(.1, 2))

With the next command model parameters are optimized over the course of four
iterations using the fitModel function of TIMP.

R> kinetic_fit <- fitModel(data = list(Psi_q_data),
+ modspec = list(kinetic_model),
+ opt = kinopt(iter = 4))

The call to the fitModel function results in a composite plot displaying the
fit of the model to the data at each wavenumber, a window showing parameter
estimates for the two rate constants and information regarding the residuals,
and a summary figure showing the estimated spectra and rate constants. For
the case considered here the estimated spectra and concentration profiles well-
approximate the entries of E and C used in simulation. TIMP employed the
nls function in estimating the nonlinear parameters k = {k1, k2}.

This introduction to the application of TIMP shows how, given a single
dataset Ψq, a parametric description of the concentration profiles of contributing
components can be fit under least squares criteria, while the spectra E are solved
for as clp. Subsequent sections will describe the application of TIMP to fitting
more complex models to possibly many datasets.

5.1.4 Hierarchical models for possibly many datasets

The goal of data analysis given a collection of two-way spectroscopy datasets
Ψ = {Ψ1, . . . ,Ψx} is often to describe the totality of the data Ψ in terms of
a unified separable nonlinear model, the parameters of which are estimated
according to least squares criteria. Where Θ denotes the nonlinear parameters of
such a model, the parameter estimation task requires solving min ‖Ψ̂(Θ)−Ψ‖2,
where, as throughout ‖.‖ denotes the 2-norm. The model specifies a prescription
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to determine residual matrices Z1(Θ), . . . , Zx(Θ) associated with datasets Ψq.
The model may be such that residual matrix Zq depends on only a subset of Θ.
Parameters in Θ that determine the residuals associated with multiple residual
matrices Zq (or in formulations considered later, residual vectors) are said to be
linked between the datasets. Parameters that do not determine the residuals of
a given dataset are said to be unlinked to the dataset. See e.g., Soo and Bates
(1992) for further discussion of models with this structure.

Models applied to data Ψ may be comprised of many submodels, each of
which describe a distinct aspect of the underlying system giving rise to the
measurements. Examples of submodels include a parametric description of an
instrument response function (IRF), a coherent artifact, or the shape of a spec-
trum. Submodels may also include a prescription for the transformation of
parameters in order to enforce constraints or apply relations between parame-
ters, as illustrated in the case study contained in Section 5.5.6. Description in
terms of a tree is often well-representative of such parameterizations. As an ex-
ample, a tree representation for a model describing two datasets Ψ = {Ψ1,Ψ2}
is given in Figure 5.4. The parameters associated with models for the individual
datasets Ψ1 and Ψ2 are themselves comprised of submodels for various aspects
of the underlying system. Note that distinct submodels may depend on the same
parameter θi ∈ Θ, so that parameters are linked between datasets, as Figure 5.5
illustrates diagrammatically.

Figure 5.4: A hierarchical model Θ for datasets Ψ = {Ψ1,Ψ2}. The model
is comprised of a submodel for each dataset with associated nonlinear param-
eters ΘΨ1 and ΘΨ2. These submodels are each comprised of a submodel for
the kinetic decay rates parametrized with ΘK1 and ΘK2, a submodel for the
IRF, parametrized with ΘI1 and ΘI2, and a submodel for a coherent artifact
parametrized with ΘC1 and ΘC2.
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}

ΘΨ1

ΘΨ2
ΘL

= {Θ

Figure 5.5: The vector of nonlinear model parameters Θ may parametrize a
model for multiple datasets. Some parameters θ ∈ Θ may be used to model more
than one dataset, so that θ is linked between datasets, while other parameters
may be used to model only one dataset. Still other parameters may be used to
model a relationship between datasets, such as a linear scaling. In the above
figure, the vectors of parameters ΘΨ1 and ΘΨ2 parametrizing the models for
datasets Ψ1 and Ψ2, respectively, include some of the same elements from the full
vector of nonlinear model parameters Θ. Parameters to determine a relationship
between datasets are written as ΘL, and apply to how the model functions
associated with datasets are scaled.

5.2 The implementation of TIMP

TIMP has been designed to facilitate interactive scientific model discovery of
the multidataset hierarchical models introduced in Section 5.1.4 and reviewed
in van Stokkum et al. (2004). In this section we attempt to give a brief overview
of the design of the package.

5.2.1 The role of S4 classes and methods in TIMP

S4 classes and methods are the preferred means by which object-oriented pro-
gramming is implemented in R. See e.g., Chambers (1998) for a review of the S4
classes and methods system, and e.g., Bates and DebRoy (2003) for a description
of their utility within a large R package.

S4 classes and methods are central to the implementation of TIMP. Slots
of S4 classes are used to store each component of a hierarchical model. In
the course of optimization (initiated with the fitModel function), an object is
associated with the parametrization of the multidataset model and the current
values of the parameters associated with this model, respectively. The object
containing a prescription for the multidataset model is of class multimodel. The
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Selected S4 classes defined by TIMP
class represents
dat single dataset Ψq and an associated model
kin kinetic model specification, inherits from dat
spec spectral model specification, inherits from dat
theta parameter estimates for model for single dataset Ψq

multitheta parameter estimates for (possibly) multiple dataset model
multimodel multiple dataset model and fit
res results of fitting (possibly) many datasets

Table 5.1: Some S4 classes used in TIMP.

object used to store the current parameter estimates associated with this model
is of class multitheta.

During each iteration of parameter estimation, TIMP updates the S4 object
representing the current nonlinear parameter estimates using the updated vector
of nonlinear parameter estimates returned by a routine to perform nonlinear
least squares. The update is performed by the function getThetaCl. The S4
object representing the parameter estimates is subsequently used to form the
residual vector to be minimized with respect to the nonlinear parameter vector.
By determining the residuals as a function of this object as opposed to as a
direct function of the “raw” vector of nonlinear parameter estimates Θ (which is
typically of length 101− 102), the residual function implementation is relatively
concise and readable. All bookkeeping necessary to account for fixed parameters,
parameter relations, and parameter constraints is performed in getThetaCl, not
the residual function. This allows for the rapid implementation of support for
model types associated with new residual functions, as elaborated in Section 5.7.

As elaborated in Section 5.4, aspects of model parametrization not specific
to model type (e.g., a weighting specification, constraints, or a specification
of fixed parameter values) are specified in the slots of the class dat. Aspects
of model parametrization specific to a given sort of model (e.g., a model in
which the nonlinear parameters apply to the kinetics) are specified in the slots
of classes inheriting from dat. S4 methods switch the definition of the function
that determines the residuals and the output/plotting based on the class of the
model type.

5.2.2 Model specification

A model in TIMP is specified using the function initModel. Either initModel
can be used to specify multiple models to be applied to the list of datasets, or per-
dataset model differences from a single model may be given as the modeldiffs
argument to the function fitModel, or these possibilities may be combined with
each other.

To be concrete, the first four arguments of fitModel are data, modspec,
datasetind and modeldiffs. The argument data is a list of dataset objects,
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each of which is of class dat and is typically created using the readData function.
The argument modspec is a list of model objects, each of which also has class
dat and is created via the function initModel. The argument datasetind is a
vector that has the same length as data; it specifies the model each dataset in
data should have as an index into modspec; if not given, then the first model in
modspec is applied to all datasets. Where the same model is applied to multiple
datasets, the argument modeldiffs allows the specification of any per-dataset
differences such as a parameter that is free to vary per-dataset. modeldiffs
also allows the specification of parameters used for scaling between datasets.

5.2.3 Parameter estimation

The variable projection algorithm for separable nonlinear least squares problems
is central to parameter estimation in TIMP. The conditionally linear parameters
in Equation 5.3 and 5.4 are possible to determine given estimates for Θ as
β = X(Θ)+ψj where X(Θ) is the matrix explicitly determined by nonlinear
parameters Θ, and ψj is a vector of data. Note that we use the notation X
and β in place of C and E here in order to stress that a nonlinear model may
be applied to describe either C or E directly, resulting in the same parameter
estimation task.

The parameter estimation task is possible to formulate in terms of Θ alone,
as

Minimize ‖ ψj −X(Θ)β ‖2 (5.8)

where ‖ . ‖ is, as throughout, the 2-norm. Using the QR decomposition, C =
QR = [Q1 Q2]R, where Q1 is m×ncomp, Q2 is m×(m−ncomp), Q is orthogonal,

and R is m × ncomp, R =
[
R11

0

]
, with R11 being ncomp × ncomp and upper

triangular (Golub and van Loan, 1996), the residuals ψj −X(Θ)β appearing in
the objective function can be written as r(Θ) = (I−X(Θ)X+(Θ))ψj = Q2Q

T
2 ψj .

For computational efficiency, the first factor of Q2 may be dropped with no
effect on the final parameter estimates, so that r(Θ) = QT2 ψj . By solving for
the conditionally linear parameters as a function of the intrinsically nonlinear
parameters Θ, the nonlinear search space is often very significantly reduced,
leading to a much better-determined model that is faster to fit.

(I − X(Θ)X+(Θ))ψj is termed the variable projection functional. Golub
and Pereyra (1972, 1973) give an analytical expression for the Jacobian of first
derivatives of this vector with respect to Θ. This functional may also be mini-
mized, as in TIMP, using a finite difference approximation for the Jacobian.

The Jacobian allows the determination of the gradient and an approximation
of the Hessian in a standard nonlinear least squares algorithm. TIMP allows
either the Gauss-Newton implementation in nls function of R, the nl2sol im-
plementation also in nls, or the Levenberg-Marquardt implementation in the R
function nls.lm from the package minpack.lm (Elzhov and Mullen, 2008) to be
used for the minimization of r(Θ) with respect to Θ under least squares criteria.
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5.2.4 Partitioned variable projection

The models 5.3 and 5.4 discussed in the introduction are for matrix data. When
Equation 5.5 is applied to account for a dependence of the model Xj(Θ) on the
column j of the (ragged) matrix data being modeled, the residual vector is
formed as

r(z) =


QT2 Ψ[, 1]
QT2 Ψ[, 2]

...
QT2 Ψ[, n]

 . (5.9)

Above, the matrix QT2 is calculated for each matrix Xj in 1, 2, . . . , n.
For the case of modeling multiple datasets Ψ1,Ψ2, . . . ,Ψx, observations often

take the form of vectors ψj1 , ψj2 , . . . , ψjK with j representing an independent
variable (like a wavelength, or a location) measured many times under the dif-
ferent conditions indexed 1, 2, . . . , x. Then the assumption that the same vector
of conditionally linear parameters a underlies ψj1 , ψj2 , . . . , ψjK , is possible to
account for by letting

ψj =


ψj1
ψj2

...
ψjK

 =


Xj1(Θ)
Xj2(Θ)

...
XjK (Θ)

 aj = Xj(Θ)aj (5.10)

where the second subscript on ψ and X is the dataset index. The residual vector
associated with using Equations 5.10 to model the columns j = 1, 2, . . . , n of
(ragged) matrix data is also determined as in Equation 5.9 with the modification
that QT2 is re-calculated for each matrix Xj(Θ).

We refer to this partitioned strategy for forming the residual vector per-part
p as PartitionedVarPro. The alternative to this strategy is to formulate
the matrix data fitting problem in vectorized form, as explained in the Ap-
pendix 5.A. The vectorized formulation of the model and the data is required
by standard variable projection implementations such as that found in e.g., the
plinear function of nls in R. The advantage of PartitionedVarPro is that
significantly less memory is required, allowing application of the algorithm on
large datasets on a personal computer.

To examine the implementation of partitioned variable projection in TIMP,
see the rescomp function which collects the residual vector Z and one of the S4
methods for residPart, which returns the residuals (with a contribution from
possibly many datasets) associated with a single part p.

5.2.5 Validation

Model validation in TIMP may be performed via a variety of means. Nonlinear
parameter estimates as returned by nls may be validated via the linear ap-



5.3. USER-ACCESSIBLE FUNCTIONS 71

proximation standard error estimates returned. Relatively large standard errors
indicate an over-parametrization of the model.

For each model type, an S4 method plotter is implemented to output model
type-specific results, both in the form of plots and in the form of ASCII files
representing the model fit and other estimates.

Analysis of the residuals is an important aspect of model validation. This
analysis is often facilitated by taking a singular value decomposition (SVD) of
the residual matrix, which allows structure in the misfit of the model to the
data to be readily observed. Also important for an evaluation of the model fit
are plots of the fit of the model to the data for each row or column of the data
(possibly for each of multiple datasets).

It is often desirable in scientific modeling applications to perform model
validation after the satisfaction of stopping criteria, as opposed to convergence
criteria, are satisfied. For example, it is often desirable to validate the model
fit after a set number of iterations, or at the starting values of parameters to
be optimized. In order to allow validation to be performed after a set number
of iterations, the nls function of R was extended with new options, which are
described in Appendix 5.B. These options allow the fitModel of TIMP to return
information validating the model fit after any desired number of iterations.

5.3 User-accessible functions

TIMP is currently structured around five core user-accessible functions. More
complete information regarding function arguments and output is found in the
help functions of the package; here a higher-level description of the purpose and
structure of the arguments and output is given.

5.3.1 readData

readData takes as an argument a string containing the path to an ASCII-file
containing data and reads the data into R. The supported data formats, are de-
scribed in Appendix 5.C. The data (and inferred attributes, such as the number
of wavelengths by which spectra are represented, etc.) are returned as an object
of class dat.

5.3.2 preProcess

preProcess takes an argument of class dat and a specification of the desired
data sampling, selection, baseline correction, or axis scaling, and the dimension
in which to perform the preprocessing (which may be the spectral dimension
or the dimension in which spectra are resolved, e.g., time). The preProcess
function returns an object of class dat.



72 CHAPTER 5. IMPLEMENTATION IN THE R PACKAGE TIMP

5.3.3 initModel

The initModel function is used to specify a model. A string mod_type giving
the class of the model being specified, ("kin" for kinetic models, "spec" for
spectral models, and so forth) is a mandatory argument. Additional arguments
may be any model options described in the help page for the dat class, plus
options described on the help page of the desired model class given as mod_type.
Output is an object of the desired model class, which inherits from dat.

5.3.4 fitModel

fitModel performs optimization of a model to an arbitrary number of datasets.
Arguments to fitModel include those described in Section 5.2.2. Options to
control the number of iterations, and various other aspects of the optimization
and output of results are specified in the opt argument, which should be an
object of class opt. Subclasses of class opt include kinopt and specopt which
allow options specific to kinetic and spectral models, respectively, to be set.

5.3.5 examineFit

examineFit takes as input the list returned by fitModel and re-calls the plot-
ting and functions to write output. This function is useful for the comparison
of fit of several models. An output object is not returned.

5.4 General model options

This section seeks to outline at a higher level than that found in the package’s
help pages model parametrization options that may be applied to all model
types. The specification of each such option becomes a slot in the class dat,
possibly after processing (within the initModel or getModel functions). Op-
tions that are specific to a given model type that inherits from dat (e.g., the
class kin for kinetic model options or the class spec for spectral model options)
are described in later sections.

The function initModel takes as arguments a specification of model options.
Note that for multidataset models, any aspect of a parametrization of a model
possible to specify in initModel may be modified, removed or added to the
prescription of per-dataset model differences given as the modeldiffs argument
to the fitting function fitModel.

5.4.1 Data weighting

A weighting scheme W has the form of an m by n matrix (where m by n is
the dimension of the data matrix Ψ). W may lessen the weight of portions of
the data known to contain less information regarding the model parameters.
Such data may result from noisy experimental conditions, for instance. The
application of a weighting scheme may also be desirable from first principles,
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e.g., in the case that the data are known to have a variance related to their
magnitude as in single photon counting (SPC) experiments, in which the data
are Poisson distributed, with

σ̂Ψ(ti,λj) =
√

Ψ(ti, λj). (5.11)

For the case of Poisson distributed count data, W (i, j) is

W (i, j) =
1

σ̂Ψ(ti,λj)
. (5.12)

Once W has been determined, the Hadamard product (element-by-element
product) of W and Ψ is taken, so that

ΨW (ti, λj) = Ψ(ti, λj) ∗W (ti, λj) (5.13)

which we write as
ΨW = Ψ ◦W (5.14)

In the case that Ψ is transformed by a weight matrix W into ΨW , the
associated concentration matrix becomes CW where

CWλj
(ti, l) = Cλj

(ti, l) ◦Wj = C ◦Wj (5.15)

where Wj is the column of W corrosponding to λj .
ΨW and CW may then be used in place of Ψ and C in parameter estimation.

Specification in TIMP: Weighting

The list argument weightpar specifies a prescription for the matrix of weights
to be applied to the dataset. weightpar is a list of vectors. The vectors have
form
c(first_x, last_x, first_x2, last_x2, weight). first_x and last_x are
the least and greatest times (or other variable with which spectra are resolved)
having weight weight; first_x2 and last_x2 are the least and greatest values
of the spectral variable having weight weight.

Note that if vector elements 1-4 are NA, the first point of the data is taken
for elements 1 and 3, and the last points are taken for 2 and 4. For example,
for a dataset in which spectra are measured in wavelength at many different
times in picoseconds, the specification weightpar = list(c(40, 1500, 400,
600, .9), c(NA, NA, 700, 800, .1)) will weight data between 40-1500 ps
and 400 and 600 nm by .9, and will weight data at all times between 700 and
800 nm by .1.

For single photon counting data or other types of count datasets, weightpar
= list(poisson = TRUE) will apply Poisson weighting to all non-zero elements
of the data.
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5.4.2 Fixed parameters

It is often of interest to set nonlinear model parameters to fixed values. Fixing
model parameters may make use of a priori knowledge of true parameter values,
or may be performed to decrease the number of free parameters of the model.

Specification in TIMP: Fixed parameters

Every model parametrization option with an associated list or vector of nonlin-
ear parameter starting values is named. For instance, the name of the starting
values for kinetic decay rates is "kinpar". In order to fix nonlinear parame-
ters, the name of their list or vector of starting values is given, along with the
indices into the list or vector at which parameter values should be fixed. This
specification is contained in a list fixed.

For instance fixed = list(kinpar = c(1,3,5), parmu = list(c(1,1),
c(1,2), c(1,3))) will fix the 1st, 3rd, and 5th elements of the kinpar vector
of starting values for kinetic decay rates, and the 1st, 2nd, and 3rd elements
of the 1st list of parameters in the parmu list of starting values for parameters
describing wavelength-dependence of the IRF.

5.4.3 Constraint of clp

The basic superposition model Ψ = CET (Equation 5.2) is of bilinear form,
where the matrix C describes concentrations and the matrix E describes spectra.
A nonlinear model may be used to describe either C or E, and the entries of
the remaining matrix estimated as clp, as described in Section 5.2.3.

It is often desirable to constrain clp to account for a priori knowledge or to
reduce the number of free parameters in the model. TIMP currently allows clp
to be constrained to a linear relationship with a scaling parameter (that may
be fixed at 1 to equate clp), or to be constrained to zero. All clp may be also
constrained to non-negative values via the methodology described in Chapter 4.

It is often useful to name the clp to be constrained in terms of the component
they represent, (i.e., the column of C or E they are contained in).

Specification in TIMP: Constraint of clp to zero

The list clp0 contains lists that specify clp to constrain to zero. The elements of
these lists are named low, high, comp, specifying the least and greatest absolute
values of the clp dimension to constrain to zero, and the component to which
to apply the zero constraint, respectively. For example, where clp represent
spectra in wavelength, clp0 = list(list(low=400, high = 600, comp=2),
list(low = 600, high = 650, comp = 4)) applies zero constraints to the spec-
tra associated with component 2 between 400 and 600 nm, and to the spectra
associated with component 4 between 600 and 650 nm.
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Specification in TIMP: Constraint of clp to a linear relationship

The list clpequspec contains lists that specify collections of clp to relate. The el-
ements of these lists are named to, from, low, high. An optional element named
dataset specifies the dataset from which to get the reference clp determining
the relationship. to is the component from which clp are to be fixed in relation
to clp from some other component; from is the reference component. low and
high are the least and greatest absolute values of the clp dimension to con-
strain. For example, where clp represent spectra in wavelength, clpequspec =
list(list(low = 400, high = 600, to = 1, from = 2)) will constrain the
spectra associated with the first and the second components to equality between
400 and 600 nm according to ε1 ← ε2θε where ε1 and ε2 are the spectra associ-
ated with components 1 and 2, ← indicates that ε1 is dependent on ε2, and θε
parametrizes the linear relation.

The vector clpequ contains length(clpequspec) numerics, where the ith
numeric is a starting value θεi parametrizing the linear relation specified between
clp by the ith list in clpequspec. Fixing the starting value of an element of
clpequ at 1 constrains the associated clp to equality.

Specification in TIMP: Constraint of clp to non-negativity

To constrain clp to non-negativity, the opt argument of fitModel should set
nnls = TRUE, as in opt = kinopt(nnls = TRUE).

5.4.4 Relations between nonlinear parameters

It may be desirable to enforce a relationship between two nonlinear parameters
θ1 and θ2 so that θ2 = f(θ1). The relationship of nonlinear parameters is usually
performed in order to take into account a priori knowledge of the system being
modeled.

A linear relationship between parameters is currently implemented, (and
other functional relationships will be added).

Specification in TIMP: Nonlinear parameter relations

As in the case of fixing parameters, in order to relate nonlinear parameters,
the name of the associated list or vector of starting values is given, along with
the indices into the list or vector at which parameter values are related. This
specification is contained in a list prelspec.

Each element of prelspec is a list having elements named what1 (a char-
acter string describing the parameter type to relate, e.g., "kinpar"), what2 the
parameter type on which the relation is based; usually the same as what1),
ind1 (an index into what1) and ind2 (an index into what2), and the optional
argument rel (a character string to specify the functional relation type, by de-
fault "linear"). For examples, prelspec = list(list(what1 = "kinpar",
what2 = "kinpar", ind1 = 1, ind2 = 5)) relates the 1st element of kinpar
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to the 5th element of kinpar according to kinpar[2] ← kinpar[1] where ←
indicates that kinpar[2] is dependent on kinpar[1].

The vector prel is of length length(prelspec) and contains numeric start-
ing values parametrizing the linear relationships described in prelspec.

5.4.5 Constraint of nonlinear parameters to positivity

It may be known a priori that the nonlinear parameters associated with a sub-
model should be positive. Then optimizing on the log of these parameters and
transforming the results by exponentiation of the estimated parameters is a
means of enforcing the desired constraint.

Specification in TIMP: Constraint of parameters to positivity

The vector positivepar includes a character string containing the name of the
vector or list of starting parameters that should be constrained to positivity,
e.g., positivepar = c("kinpar").

5.5 Kinetic models

Kinetic models describe the concentrations of components in time. For multiway
spectroscopy data modeling applications the basic model for the kinetics of each
component (i.e., each column of the matrix C) is an exponential decay in time
t, so that

Ψ = CET =
ncomp∑
l=1

clε
T
l =

ncomp∑
l=1

(exp(−φlt)⊕ i(t))εTl (5.16)

where i is the instrument response function (IRF) and ⊕ is convolution. The
parameter estimation problem of optimal values for the amplitudes εl of the
exponential decays (i.e., the spectra E) along with the decay rates φl under
least squares criteria is called the multiexponential analysis problem, and is
ubiquitous in physics applications in which data is modeled by the solution of
first-order differential equations, as Istratov and Vyvenko (1999) review.

Kinetic models are represented in TIMP with the class kin. Options for the
parametrization of kinetic models in TIMP are here outlined.

5.5.1 Model for the decay of components

The basic model for the concentration matrix C is a sum of ncomp exponen-
tial decays parametrized as ΘK = (k1, . . . , kncomp), so that the entries of the
concentration matrix C(i, l) are given as

C(i, l) = exp(−klti). (5.17)
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Specification in TIMP: Kinetic decay rates

The vector kinpar contains numeric starting values for the kinetic decay rates,
which in the absence of a compartmental scheme parametrize exponential de-
cays. The number of values given determines ncomp, the number of components
dedicated to modeling kinetic decays.

5.5.2 Instrument response models

Multiway spectroscopy experiments often employ a short laser pulse to excite the
system under study and measure the resulting spectra in time. The convolution
of the shape of this exciting pulse and the detector response is the IRF. With
pump-probe spectroscopy the IRF is given by the convolution of a pump and a
probe pulse. With Gaussian-shaped pump and probe pulses, the convolution of
the two will again be Gaussian-shaped, but with an increased width.

An IRF may either be parametrized in the model, or measured. A parametric
model for the IRF i as a Gaussian in the time dimension t gives the following
model for column l of the concentration matrix C

cl(t, kl, µ,∆) =
exp(−klt)

2
exp(kl(µ+ kl∆̃2/2))

{
1 + erf

[
t− (µ+ kl∆̃2)√

2∆̃

]}
(5.18)

where t is time, kl is the lth decay rate, µ and ∆ are the location and
full width half maximum (FWHM) parameters of the Gaussian distribution,
respectively, ∆̃ is the Gaussian width parameter (such that ∆̃ = ∆/2

√
2 ln 2).

Recall that the FWHM of the Gaussian distribution is related to the standard
deviation σ as FWHM = 2

√
2 ln 2σ.

In the case that a measured IRF is used as opposed to a model for the IRF
with parameters to be estimated, its numerical convolution with the exponential
decay function yielding the kinetic decays is required. TIMP allows for either
methods of including the effects of the IRF to be applied.

Specification in TIMP: Gaussian IRF

The vector irfpar contains starting values for the parametric description of
the IRF in terms of a Gaussian. The vector is ordered irfpar = c(µ,∆).
For example, irfpar = c(-2, .05) specifies a starting location parameter µ
as -2 and a width ∆ as .05, where the starting values are in the unit of time
represented by the data, e.g., picoseconds.

Specification in TIMP: Measured IRF

The vector measured_irf is of length equal to the number of times represented
by the data, and contains the measured IRF; if specified, it will be applied to
the data.
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The integer convalg is between 1-4 and determines the numerical convolu-
tion algorithm used. convalg = 1 is the default and is recommended.

5.5.3 Models for dependence of IRF parameters on spec-
tral variable

In the case that an IRF is included in the model using a parametric description,
it is often desirable that the parameters involved are dependent on a spectral
variable (e.g., wavelength). The dependence of IRF on the spectral variable is
termed dispersion.

Time-gated spectra are measurements of an optical property (e.g., emission
or absorption) as a function of a spectral variable like wavelength taken simulta-
neously across some range, repeated at many distinct times. In kinetic models
of time-gated spectra, dispersion is often well-modeled as a smooth function of
the spectral variable. Polynomial functions of degree nparmu and npartau are
often used to describe the variance in the spectral variable of the IRF location
parameter µ and FWHM parameter ∆, the coefficients of which become addi-
tional parameters of ΘI . Then the IRF µ and ∆ are calculated per wavelength
as

µ(λ) = µ0 +
nparmu∑
i=1

µi

(
λ− λc

100

)i
, (5.19)

∆(λ) = ∆0 +
npartau∑
i=1

∆i

(
λ− λc

100

)i
(5.20)

where µ is a function that takes a wavelength or wavenumber and gives the
location of the IRF, µ0 is the location of the IRF at λc, ∆ is a function that
takes a wavelength or wavenumber and gives the scaled width of the IRF, and
∆0 is the scaled width of the IRF at λc.

For data collected by measuring decay traces at many different wavelengths
dispersion is often well-modeled by shift parameters for µ and ∆ per-wavelength.
Where nl is the number of points whereby spectra are represented, this results
in nl shift parameters parametrize the dispersion of µ and nl shift parameters
parametrizing the dispersion of ∆. We refer to models of dispersion employing
a shift parameter per-wavelength as discrete.

Specification in TIMP: Dispersion models

The character strings dispmufun and disptaufun determine the functional form
of the dispersion of the IRF location parameter. The default is a polynomial
description. If dispmufun or disptaufun is equal to ”discrete” a discrete model
for dispersion of the corresponding variable is applied. For the discrete case
parmu or partau should contain a starting value for the shift for every point by
which spectra are represented (e.g., for each wavelength).
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The numeric lambdac is supplied if a polynomial description of either disper-
sion of location or FWHM is applied. Then lambdac is the center-wavelength
in this description (λc in Equations 5.19 and 5.20).

The list parmu contains starting values for the parameters of the model for
dispersion of the IRF location. The vector partau contains starting values for
the parameters of the model for dispersion of the IRF FWHM.

5.5.4 Coherent artifact/scatter models

Should the measurements contain an instantaneous response or coherent artifact
due to Raman scatter, it may be desirable to include in the model for the
concentrations C its description in time. This is done by adding components
(which are columns of the C matrix) to represent its contribution.

A commonly used model for coherent artifact/scatter has the time character-
istics of the IRF, in which case a single column is appended to the concentration
matrix with the IRF time profile. A variation of this model maintains separate
coherent artifact spectra for each of x datasets Ψq.

Another commonly used model type employs a sequential scheme with, e.g.,
femtosecond lifetimes, in which the signs of the amplitude of consecutive com-
ponents alternates. This model type often well-describes an oscillatory coherent
artifact. In the case that the instantaneous response of the exciting pulse has
both scatter and coherent response components, a linear superposition of the
model that follows the IRF time profile and a model based on a sequential
scheme may be applied.

An aside on the implementation of ultra-fast coherent artifact life-
times

Models for the coherent artifact model type that employ a sequential kinetic
scheme are often well-fit with ultra-fast lifetimes, and hence large exponential
decay rates. For very large decay rates under Equation 5.18, it may be desir-
able to employ the exponentially scaled error function exp(x2)erfc(x), as in the
decayirf function of TIMP. An implementation of the exponentially scaled er-
ror function (erfce) is currently unavailable within R. Its use in TIMP is made
possible by porting the implementation found in the Cephes Mathematical Li-
brary (Moshier, 1992) to an R shared library in C.

Specification in TIMP: Coherent artifact/scatter models

The list cohspec describes the model for coherent artifact/scatter component(s).
If cohspec$type is "irf", the coherent artifact/scatter has the time profile of
the IRF. If cohspec$type is "freeirfdisp" the coherent artifact/scatter has a
Gaussian time profile whose location and width are parametrized in the vector
coh (independent from the IRF parameters). If cohspec$type is "irfmulti"
the time profile of the IRF is used for the coherent artifact/scatter model, but
the IRF parameters are taken per dataset (for the multidataset case), and
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cohspec$numdatasets must be equal to the number of datasets modeled. If
cohspec$type is "seq" a sequential exponential decay model is applied, whose
parameters are contained in coh. If cohspec$type is “mix” a sequential expo-
nential decay model is applied along with a model that follows the time profile of
the IRF; the coherent artifact/scatter contribution is then a linear superposition
of these two models.

The vector coh contains starting values for the parametrization of a coherent
artifact/scatter model.

5.5.5 Compartmental models

A linear time-invariant compartmental model may be used to describe allowed
transitions between components, as Godfrey (1983) reviews. Transitions be-
tween compartments are described by microscopic rate constants which con-
stitute the off-diagonal elements of the transfer matrix K. The diagonal el-
ements of K contain the total decay rates of each compartment. The con-
centrations of the compartments in continuous time are described by a vector
c(t) = [c1(t), . . . , cncomp(t)]T . Thus, a linear compartmental model with ncomp

compartments is described by a differential equation for these concentrations

d

dt
c(t) = Kc(t) + j(t) (5.21)

where the input to the system is described by a vector j = i(t)[j1 j2 . . . jncomp ]
such that

∑ncomp
l=1 jl = 1, and jncomp ≡ 1 −∑ncomp−1

l=1 jl. Also, generally jl ≥ 0.
The IRF i(t) describes the time-profile of the inputs. Under the assumption
that the eigenvalues of K are different, and that c(−∞) = 0, Equation 5.21 is
solved as

c(t) = exp(Kt)⊕ j(t). (5.22)

Equation 5.22 is used as the prescription for the concentrations of the com-
ponents in discrete time. Note that Equation 5.22 requires evaluation of the
exponential of the K matrix. This exponentiation is implemented in TIMP as
described in van Stokkum (2005).

Analysis in the absence of a compartmental model is equivalent to the appli-
cation of a K matrix with non-zero elements only on the diagonal (Figure 2.1,
left panel). A commonly applied compartmental model is termed a sequen-
tial model, in which ncomp − 1 components decay to a single other component,
one component decays directly to the ground state and no loops are present
(Figure 2.1, right panel).

Specification in TIMP: Parallel/sequential compartmental model

The logical seqmod determines whether a sequential compartmental model is
applied. If seqmod = FALSE then a parallel compartmental model is applied.
The default is seqmod = TRUE.
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Specification in TIMP: Full compartmental model

The array kmat has dimension attribute c(2, ncomp, ncomp). That is, kmat consists
of two matrices of dimension ncomp × ncomp. The matrix kmat[1, 1 : ncomp, 1 :
ncomp] is l at position kmat[1, j, i] if a transition from component i to component
j is allowed, and is parameterized by the lth element of kinpar, and else is
0. Non-zero elements kmat[1, j, j] on the diagonal indicate transfer out of the
system (to a ground state).

The matrix kmat[2, 1 : ncomp, 1 : ncomp] is k at position kmat[2, j, i] if the
transition from component i to component j is parametrized by a branching
parameter from kinscal with index k, and else is 0.

The vector jvec contains the j vector descriptive of the inputs to the transfer
matrix K.

The vector kinscal is descriptive of starting values for branching parameters
of K.

5.5.6 Case study: Multiexperiment analysis with a kinetic
model

An example of multiexperiment kinetic modeling of data Ψ = {Ψ1,Ψ2} is consid-
ered in this section. Time-resolved difference absorption spectroscopy datasets
Ψ1 and Ψ2 representing wavelengths in the visible range were collected under
the same experimental conditions except the excitation laser intensity was dou-
bled during collection of Ψ1 relative to the laser intensity used during collection
of Ψ2. The challenge in modeling is to obtain a parametric description of the
kinetics of the underlying system as evidenced by both datasets, as well as a
parametric description of how the difference in laser intensity affects the system.

Data input

The data Ψ = {Ψ1,Ψ2} is read into TIMP in the time explicit format described
in Appendix 5.C via the commands

R> psi_1 <- readData("psi_1.txt")
Read 1 item
Read 2385 items

R> psi_2 <- readData("psi_2.txt")
Read 1 item
Read 2385 items

where Ψ1 is stored in the file “psi_1.txt” and Ψ2 is stored in the file “psi_-
2.txt” (distributed with the package).
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Figure 5.6: (Left) Dataset Ψ1 measured using twice the laser intensity used to
measure (Right) dataset Ψ2. The color palette used to display these datasets
is generated with the diverge_hsv function of the vcd package (Meyer et al.,
2006).

Data preprocessing

The wavelength axis of the data is scaled via the prescription x = 3.78x+643.5.

R> psi_1 <- preProcess(data = psi_1, scalx2 = c(3.78, 643.5))
R> psi_2 <- preProcess(data = psi_2, scalx2 = c(3.78, 643.5))

An initial model

Figure 5.7: Kinetics are described by a five-component sequential compartmen-
tal model with identical decay rate parameters for both datasets.

It is known a priori that the underlying system is likely to contain five
components decaying sequentially, that a Gaussian IRF model is likely to be
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appropriate, and that a contribution from a coherent artifact must be accounted
for. Approximate starting estimates for parameter values are also known.

This leads to the following model specification in TIMP.

R> model1 <- initModel(mod_type = "kin",
+ kinpar = c(7.9, 1.08, 0.129, .0225, .00156),
+ irfpar = c( -.1018, 0.0434),
+ parmu = list(c(.230)),
+ lambdac = 650,
+ positivepar = c("kinpar"),
+ cohspec = list(type = "irf"))

The vector kinpar contains the starting values for five kinetic components.
These parameters are constrained to positive values during fitting by including
"kinpar" in the vector argument positivepar. The seqmod argument is by
default set to TRUE, and determines that the kinetics are described with a se-
quential compartmental model. The irfpar argument gives starting values for
the parameters of the default Gaussian IRF model. The parmu argument gives
starting values for the default model for dispersion in terms of a polynomial,
in this case of first-order. The lambdac argument gives the center wavelength
for the polynomial description of dispersion. The cohspec argument determines
that a model for a coherent artifact/scatter component is to be added with the
time-profile of the IRF.

Fitting and validating the initial model

In the absence of information regarding the effect of laser intensity on the un-
derlying system, the model initialized in Section 5.5.6 may be fit to both dataset
Ψ1 and dataset Ψ2 simultaneously, with the addition of a dataset scaling pa-
rameter ΘL to account for the difference in amplitude between datasets due to
laser intensity.

A call to the fitting function fitModel fits the initial model model1 to both
datasets, with the argument modeldiffs specifying per-dataset differences in
the applied model. By visual inspection of the data it is clear that the intensity
of dataset Ψ2 is approximately half that of dataset Ψ1. It is not obvious from
visual inspection what other per-dataset differences to include in the model.
Therefore modeldiffs only specifies that the second dataset is scaled to .5
times the first dataset (via the argument dscal = list(list(to = 2,from
= 1,value = .5))). The input argument opt specifies plotting and output
options.

R> denRes <- fitModel(data = list(denS4, denS5), list(model1),
+ opt = kinopt(iter = 5, divdrel = TRUE, linrange = .2,
+ makeps = "den1", selectedtraces = c(1,5,10), plotkinspec =TRUE,
+ output="pdf", xlab = "time (ps)", ylab = "wavelength"))

Figure 5.8 shows the fit of selected traces after fitting for five iterations.
Large misfits are present. Misfits around time zero are likely to be due to an
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Figure 5.8: A plot of three selected traces resulting from the fit of the initial
model to the data Ψ = {Ψ1,Ψ2}. Black represents data Ψ1 (solid) and the fit
of the initial model to Ψ1 (dotted); Grey represents data Ψ2 (solid) and the fit
of the initial model to Ψ2 (dotted). The RMS error associated with this fit is
.040.

insufficient IRF model, whereas misfits at later times are likely to be due to
differences in the kinetics of the two measured datasets. The root mean square
(RMS) error associated with this fit is .040. Note that the datasets appear to
have the same amplitudes due to the argument divrel to opt in the call to
fitModel, which divides Ψ2 and the fit of the model to Ψ2 by the estimate for
the dataset scaling parameter.

Model refinement and re-validation

Fitting the IRF location parameters and the slowest two kinetic decay rate
parameters per-dataset attempts to address the inadequacies of the model iden-
tified in validation.

R> denRes <- fitModel(data = list(denS4, denS5),
+ modspec = list(model1),
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+ modeldiffs = list(dscal = list(list(to = 2,from = 1,
+ value = .457)),
+ free = list(
+ list(what = "irfpar", ind = 1, dataset = 2, start =-.1932),
+ list(what = "kinpar", ind = 5, dataset = 2, start = .0004),
+ list(what = "kinpar", ind = 4, dataset = 2, start = .0159)
+ )),
+ opt = kinopt(iter = 5, divdrel = TRUE, linrange = .2,
+ xlab = "time (ps)", ylab = "wavelength", output = "pdf",
+ makeps = "den2", selectedtraces = c(1,5,10)))

The resulting fit is improved over the initial model, though a misfit remains
evident at early times. The data has an oscillatory nature in some traces in-
dicative of a contribution from a coherent artifact, as evident in Figure 5.9. The
RMS error associated with this fit is .027.

A satisfactory model

The model for the coherent artifact has followed the time profile of the IRF,
which is not sufficient to account for the oscillatory nature of its apparent con-
tribution to the data. Therefore the coherent artifact model is replaced via
a re-definition of the model (which could also be performed by specifying a
different model prescription for both datasets in the model differences list):

R> model2 <- initModel(mod_type = "kin",
+ kinpar = c(7.9, 1.08, 0.129, .0225, .00156),
+ irfpar = c( -.1018, 0.0434),
+ parmu = list(c(.230)),
+ lambdac = 650,
+ positivepar = c("kinpar", "coh"),
+ cohspec = list(type = "seq", start = c(8000, 1800)))

The new model is fit to the datasets. Again the IRF location and the two
slowest data rates are fit per-dataset. The estimated value of the data scaling
parameter between Ψ1 and Ψ2 obtained in fitting the refinement of the initial
model is used as a starting value.

R> denRes <- fitModel(data = list(denS4, denS5), list(model2),
+ modeldiffs = list(dscal = list(list(to = 2,from = 1,
+ value = .457)),
+ free = list(
+ list(what = "irfpar", ind = 1, dataset = 2, start = -.1932),
+ list(what = "kinpar", ind = 5, dataset = 2, start = .0004),
+ list(what = "kinpar", ind = 4, dataset = 2, start = .0159)
+ )),
+ opt = kinopt(iter = 5, divdrel = TRUE, linrange = .2,
+ makeps = "den3", selectedtraces = c(1,5,10), plotkinspec = TRUE,
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Figure 5.9: A plot of three selected traces resulting from the fit of the refined
model to the data Ψ = {Ψ1,Ψ2}, with the IRF location parameters and the two
slowest decay rates fit per-dataset. Black represents data Ψ1 (solid) and the fit
of the initial model to Ψ1 (dotted); Grey represents data Ψ2 (solid) and the fit
of the initial model to Ψ2 (dotted). The RMS error associated with this fit is
.027.

+ stderrclp = TRUE, kinspecerr = TRUE, output = "pdf",
+ xlab = "time (ps)", ylab = "wavelength",
+ breakdown = list(plot = c(643.50, 658.62, 677.52))))

The resulting parameter estimates mapped to a hierarchical representation
of the model are shown in Figure 5.13. For clarity the standard error estimates
returned by nls have been omitted. These standard errors are typically 1-5 in
the last significant digit reported, except for θC (which is not of interest) where
they are huge.

Figure 5.11 shows just the estimates of the kinetic decay rates, with the color
of each component the same as in Figure 5.14 and Figure 5.12. Figure 5.12 shows
the contribution to the fit of the kinetic decay components and the coherent ar-
tifact (which is in pink) at three different wavelengths. The fit associated with
the model after five iterations shown at three selected wavelengths in Figure 5.10



5.5. KINETIC MODELS 87

−
0.

2
0.

2

643.5 nm

time (ns)

am
pl

itu
de

−2 −0.2 0 0.2 2 20 200

−
0.

5
−

0.
2

0.
1

658.62 nm

time (ns)

am
pl

itu
de

−2 −0.2 0 0.2 2 20 200

−
1.

5
−

0.
5

673.74 nm

time (ns)

am
pl

itu
de

−2 −0.2 0 0.2 2 20 200

Figure 5.10: A plot of three selected traces resulting from the fit of a satisfactory
model to the data Ψ = {Ψ1,Ψ2}, with the IRF location parameters and the
two slowest decay rates fit per-dataset, and under application of an oscillatory
coherent artifact model. Black represents data Ψ1 (solid) and the fit of the
initial model to Ψ1 (dotted); Grey represents data Ψ2 (solid) and the fit of the
initial model to Ψ2 (dotted). The RMS error associated with this fit is .025.

Figure 5.11: Transitions between the five components of the compartmental
model are now fit with decay rates as labeled; the slowest two decays are fit
independently for each dataset.
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Figure 5.12: Contributions to fit per component show evolution. Pink rep-
resents the coherent artifact component; key to other colors is in Figure 5.11.
Dashed lines indicate the fit of the second dataset Ψ2, which has slower decay
rate estimates.

is deemed acceptable. The RMS error associated with this fit is .025. The spec-
tra associated with the kinetic decay components (Figure 5.14) have physically
plausible shapes. The discovery of an appropriate model for the data allows
the differences in the slow rate constant estimates between datasets to be at-
tributed to the effect of a difference in laser power. The parameter ΘL is also
interpretable as quantifying this difference.

5.6 Spectral models

Spectral models are those models in which the nonlinear parameters determine
the matrix of spectra E. The spectral bandshapes are typically described
in terms of a linear superposition of standard band shapes (e.g., Gaussian,
Lorentzian, Voigt, skewed Gaussian) or in terms of splines. In the case that
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Figure 5.13: Parameter estimates associated with the fit of the satisfactory
model mapped to a hierarchical model representation. ΘL is a dataset scaling
parameter descriptive of the difference in intensity of Ψ2 as compared to Ψ1.
Parameter estimates linked between datasets Ψ1 and Ψ2 are in blue. Parameter
estimates fit per-dataset are in magenta and green respectively, for Ψ1 and Ψ2.
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Figure 5.14: Estimated spectra associated with the five kinetic decays have
physically plausible shapes. The mapping of spectra to kinetic decays is given
in the color code of Figures 5.11 and 5.12. Errors bars are calculated as described
in Chapter 2.
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a superposition of standard band shapes is used, each column of E, εl, is mod-
eled as

εl = (amp1)(g1l) + . . .+ (amph)(ghl) (5.23)

where amp1, . . . , amph are amplitude parameters, and g is the band shape func-
tion. The concentration profiles are then estimated as clp.

Spectral models are represented in TIMP with the class spec. Model parametriza-
tion options for spectral models are here outlined.

5.6.1 Bandshape models

The most commonly applied bandshape model is a superposition of skewed
Gaussians. This underlying model for E is chosen because it is a simple model
capable of representing real spectra in practice and because the use of (skewed)
Gaussians to represent spectral shapes is wide-spread, (see, e.g., van Stokkum
et al. (2004) and van Stokkum (1997) and references therein).

The model for εl under a single skewed Gaussian distribution where ν̄ =
107/λ is

εl(ν̄max,∆ν̄, b) ≡ ν̄−n exp

(
− ln(2)

(
ln
(

1 +
2b(ν̄ − ν̄max)

∆ν̄

)
/b

)2
)
, (5.24)

except if 1 + (2b(ν̄i − ν̄max))/∆ν̄ ≤ 0, in which case εl(ν̄max,∆ν̄, b) ≡ 0.
When skewness b = 0, (and the skewed Gaussian distribution reduces to the
Gaussian distribution), ν̄max corresponds to the maximum of the distribution,
and ∆ν̄ corresponds to the full width at half maximum (FWHM). When b 6= 0,
ν̄max and ∆ν̄ do not have this exact correspondence. Typically, n = 1 for
absorption and n = 5 for emission, as discussed by van Stokkum et al. (2004).
The FWHM may then be calculated as ∆ν̄ sinh(b)/b. The average wavenumber
of the skewed Gaussian is given by

ν̄avg = ν̄max +
∆ν̄
2b

(
exp

(
− 3b

4 ln(2)

)
− 1
)

(5.25)

A linear superposition of spectra as in Equation 5.24 is a common model for a
single spectrum εl.

Specification in TIMP: Bandshape model

The list specpar contains vectors of starting values for spectral parameters;
the number of vectors gives the number of components in the resulting spectral
model. Each vector contains the parameters associated with a component. e.g.,
specpar = list(c(20000, 3000, .3, 21000, 2000, .4), c(18000, 1000,
.2)); the parameters in each vector are grouped c(location_spectra,
width_spectra, skew_spectra). The location and width parameters are given
in wavenumbers. Note that this means that each component may be modeled
with a superposition of many skewed Gaussians.
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The character string specfun specifies the model used in the description of
bandshapes.

Inclusion of the amplitude parameters is not yet implemented, so that all
skewed bandshapes contributing to a single component spectrum εl contribute
equally.

5.6.2 Dependence of bandshape parameters on indepen-
dent variable

It is often desirable to model bandshape parameters of spectra as a function of
the independent variable in which spectra are resolved, (e.g., time or tempera-
ture). Parametrization of this variation is a means of studying protein confor-
mational stability (for temperature-resolved data), and vibrational relaxation
(for time-resolved data).

Dependence on the variable in which spectra are resolved may often be well-
described by a polynomial model. Where θ is some parameter contributing
to the determination of a bandshape (i.e., either a location, width, skewness
or amplitude parameter), t is a value of the independent variable with which
spectra are resolved, v is the number of coefficients parametrizing the polynomial
(in addition to θ), tref is the center-point of the polynomial, and α1, . . . , αv
parametrize the dependence, then

θ(t) = θ +
v∑
i=1

αi((t− tref)/100)i. (5.26)

An exponential model of dependence on the variable in which spectra are
resolved is also often of interest. Then where tref is a reference time, and other
variables are as in the polynomial description,

θ(t) = θ + α1 exp(−α2(t− tref)). (5.27)

A multiexponential model may also be of use in some cases. For the bi-
exponential case

θ(t) = θ + ((θ0 − θ)exp(−k1(t− tref)) + α2 exp(−k2(t− tref))
1 + α2

), (5.28)

where θ(t0) = θ0 and θ(∞) = θ.
For the general case of a multiexponential decay,

θ(t) = θ + (θ0 − θ)
∑

(αi exp(−ki(t− tref)))∑
αi

(5.29)

where α1 ≡ 1.
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Specification in TIMP: Dependence of bandshape parameters on in-
dependent variable

The character string parmufunc determines the function modeling dependence
of the bandshape parameters on the independent variable. Options are "poly"
for the polynomial case (Equation 5.26) "exp" for the single exponential de-
scription (Equation 5.27) and "multiexp" for the multiexponential description
(Equation 5.29).

The numeric specref gives the index of the center variable, tref in Equations
5.26, 5.27 and 5.29).

The list specdispindex defines those indices of specpar whose dependence
on the variable in which spectra are resolved is to be modeled. For example,
specdispindex = list(c(1,1), c(1,2), c(1,3)) indicates that parameters
1-3 of spectra 1 are to be modeled as variable.

The list specdisppar contains vectors of the parameters describing time-
dependence. One vector of parameters is given for each vector of indices in
specdispindex. These parameters describe a polynomial time-dependence by
default. There are three ways to interpret these vectors, depending on the value
of parmufunc. If parmufunc is "poly" for the polynomial case, the vectors are
of the length of the desired degree of the polynomial parametrization; e.g., use
specdisppar = list(c(-2000, 1, .1), c(1, .1, .01), c(.2, .1)) for a
3rd order dependence of two spectral parameters, and a 2nd order dependence
on one spectral parameter. If parmufunc is "exp" the first parameter is a linear
coefficient and the second is a rate; if all but the first vector have the rate
omitted then rates will be linked across all parameters that are time-dependent;
otherwise rates will be fit per-parameter that is dependent on the variable with
which spectra are resolved. If parmufunc is "multiexp" an arbitrary number of
vectors of coefficients and rates in the form c(α1, k1, α2, k2, . . .) may be specified
as elements of the specdisppar list.

5.6.3 Case study: Time-dependence of spectral parame-
ters

A spectral model is fit to the time-resolved dataset shown in Figure 5.15. A
goal is the parametric description of the relaxation of the bandshape in time.
As in the kinetic modeling case study, (Section 5.5.6) this section describes the
use of TIMP for interactive model discovery.

Data input

The data Ψ = {Ψ1} is read into TIMP in the time explicit format described in
Appendix 5.C via the command

R> psi_1 <- readData("psitspec.txt")
Read 1 item
Read 181063 items

where Ψ1 is stored in the file“psitspec.txt”, (distributed with the package).
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Figure 5.15: A dataset of time-resolved spectra. We are interested in application
of a spectral model to the selection of this data shown in Figure 5.16.

Data preprocessing

The dataset was truncated to the wavelength range 440-640 nm, and to times af-
ter 53 ps (from time indices 178 to 478), since we are only interested in modeling
processes occurring in this range.

R> psi_1_full <- preProcess(psi_1, sel_time = c(178, 478),
+ sel_lambda_ab = c(440, 640))

To expedite parameter estimation only every fifth timepoint is sampled from
the selected dataset. When a model likely to be satisfactory is identified on the
sampled dataset, it may be applied to the unsampled selected dataset.

R> psi_1_sampled <- preProcess(psi_1, sel_time = c(178, 478),
+ sel_lambda_ab = c(440, 640), sample_time = 5)

Figure 5.16 shows the selected and sampled dataset resulting from the above
calls to the preProcess function.
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Figure 5.16: The dataset in Figure 5.15 selected to include only the range of
times and wavelengths of interest for modeling, and sampled to include only
every fifth timepoint to expedite parameter estimation.

Initial model: Polynomial dependence of spectral variables on time

A spectra with bandshape model comprised of a single skewed Gaussian is ini-
tialized, first with linear polynomial dependence of the spectral variables on
time.

R> model_polylin <- initModel(mod_type = "spec",
+ specpar = list(c(20000,3100,-.3) ), specdisp = TRUE,
+ specdispindex = list(c(1,1), c(1,2), c(1,3)),
+ specdisppar = list(c(-2000),c(1), c(.2)),
+ specref = 53, specfun = "gaus")

R> res_polylin <- fitModel(data = list(psi_1_sampled),
+ modspec = list(model_polylin),
+ opt = specopt(iter = 7, linrange = 20, stderrclp = TRUE,
+ plotkinspec = TRUE, kinspecerr = TRUE,
+ makeps = "polylin",
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+ title = "Polynomial parameterization of time dep.",
+ selectedspectra = seq(1, psi_1_sampled@nt, by = 7),
+ residplot = TRUE,
+ xlab = "time", ylab = "wavelength"))
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Figure 5.17: Residuals associated with the fit of the initial spectral model in
which dependence of the spectral bandshape on parameters is described with a
first-order polynomial. The first left and right singular vector and the singular
values associated with their SVD are also plotted. Note the structure in the
first left singular vector of the residuals, indicating inadequacy in the model fit.
The RMS error associated with this fit is 414.

Structure in the residuals as evidenced by their SVD in Figure 5.17 indicates
an inadequate model. A different parametrization of the dependence of spectral
parameters on time will be applied as a model refinement.

Refined model: Exponential dependence of spectral variable on time

The initial model is refined to describe an exponential dependence of spectral
variables on time, in an attempt to address the inadequacy in the fit of the
initial model. The applied model is such that α2 from Equation 5.27 is equated
for all spectral bandshape parameters.
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R> model_exp_linkedrates <- initModel(mod_type = "spec",
+ specpar = list(c(18000, 3200, -.1)), specdisp = TRUE,
+ specdispindex = list(c(1,1), c(1,2), c(1,3)),
+ specdisppar = list(c(600,1/20), c(400), c(.1)),
+ specref = 53, specfun = "gaus", parmufunc = "exp")

R> res_model_exp_linkedrates <- fitModel(data = list(psi_1_sampled),
+ modspec = list(model_exp_linkedrates),
+ opt = specopt(iter = 5, linrange = 20, residplot = TRUE,
+ makeps = "explinked", stderrclp = TRUE,
+ title = "Exponential parameterization of time dep., linked rates",
+ plotkinspec = TRUE, kinspecerr = TRUE, superimpose = 1,
+ selectedspectra = seq(1, psi_1_sampled@nt, by = 7),
+ xlab = "time", ylab = "wavelength"))
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Figure 5.18: (Left) A plot of selected spectra resulting from the fit (dashed line)
of a spectral model in which time-dependence of spectral bandshape parameters
is modeled with an exponential function to data Ψ = {Ψ1} (solid line). Each
sub-plot represents the data at the timepoint on the left axis. The RMS error
associated with this fit is 312.
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Figure 5.19: Residuals associated with the fit of the spectral model, and the
first left and right singular vector and the singular values associated with their
SVD. Note the lack of structure in the first left singular vector of the residuals,
a sign that the model fit is satisfactory. There remains some structure in the
first right singular vector, but we accept the model as satisfactory nonetheless.

The fit of the refined spectral model that employs an exponential description
of time-dependence of spectral bandshape parameters is well-fit to the data, as
evidenced by plots showing the fit of the model to the data in Figure 5.18.
Further evidence for the satisfactory model fit is contained in plots regarding
the residuals in Figure 5.19. An SVD decomposition of the residuals shows little
structure in the first left singular vector. Some structure remains evident in the
first right singular vector, indicating that there remains room for improvement
in the model. Despite this, we conclude that the model fit is satisfactorily
descriptive of the data. The exponential rate estimate α1 = .07 is therefore
useful as a descriptor of the relaxation of the spectral bandshape parameters in
time.
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5.6.4 Case study: Temperature-dependence of spectral
parameters

Protein conformational stability may be studied spectroscopically by monitoring
spectra as a function of temperature. For the study considered here, a protein
in solution was heated from 25◦C to 75◦C. Absorption spectra were measured
at 57 temperatures as the temperature rose. Then the protein was cooled to
25◦C, and the absorption spectra was re-measured. During heating the protein
is denatured. The data is shown in Figure 5.20.

The spectral model fit to the data has two components, comprised of a lin-
ear superposition of three and two skewed Gaussian shapes, respectively. The
location and width parameter of each skewed Gaussian is modeled as having
a linear temperature-dependence. An increase in concentration of the second
component and a decrease in concentration of the first component will be inter-
preted as indicative of a heat-induced conformational change in the protein.
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Figure 5.20: A dataset of temperature-resolved spectra. Temperatures to the
left of the vertical black line represent the absorption spectra of a protein as
it is heated. Temperatures to the right of the vertical black line represent the
same protein after cooling.

Data input

The data Ψ is read into R with the command

R> G9 <- readData("spectresG9")
Read 1 item
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Read 28025 items

Data preprocessing

The dataset was truncated to the wavelength range 650-950 nm, and a baseline
estimated as the average of data at wavelengths 326-451 was subtracted from
data at all temperatures.

R> G9_p <- preProcess(G9, baselinetime = c(1,61,326,451))
R> G9_p <- preProcess(G9_p, sel_lambda_ab = c(1, 950))

Some of the temperatures represented by the dataset are not unique. So that
the concentration at these temperatures is estimated independently, we add a
small jitter to the temperature labels.

R> G9_p@x[c(1:4,54:61)] <- jitter(G9_p@x[c(1:4,54:61)], amount = .01)

Temperature dependent spectral model

The two bandshapes are represented by a superposition of three and two skewed
Gaussians, respectively, parametrized by the following list. Each vector in
specpar contains groups of four parameters representing location, width, skew-
ness and amplitude (in wavenumbers) for each of the skewed Gaussian shapes.

R> specp <-
+ list(c(11330, 417.8, -0.01144, 1,
+ 11540, 468.2, 0.3576, 1.339,
+ 12450, 361, -0.3261, 0.1063),
+ c(12680, 2347, 0.08118, 1,
+ 15050, 2167, 0.7181, 0.3073))

Starting values for the linear temperature dependence of the thirteen param-
eters representing the width and location and skewness (when it is free to vary)
is parametrized by a vector of values.

R> dispp <- list(394.5, 604.1, 20.18, 251.1, -1.268, -309, 1344,
+ 0.1299, 667.6, -2466, -1129, -946.3, -0.01269)

The model sets the indices of parameters in specp that are temperature-
dependent via the argument specdispindex. In each band one of the ampli-
tudes for the linear superposition of skewed Gaussian is fixed, so that the other
amplitudes are relative to these values.

modelF <- initModel(mod_type = "spec",
+ specpar = specp,
+ fixed = list(specpar = list(c(1,4), c(2,4))),
+ specdisp = TRUE,
+ specdispindex = list(c(1,1), c(1,2), c(1,5),
+ c(1, 6), c(1, 8), c(1, 9), c(1, 10),
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+ c(1, 12), c(2, 1), c(2,2), c(2, 5),
+ c(2, 6), c(2, 8)),
+ specdisppar = dispar, specref = 25,
+ specfun = "gaus", nupow = 1)

The model is fit to the data with the command

R> ranres <- fitModel(data = list(G9_p), modspec = list(modelF),
+ opt = specopt(iter = 10, makeps = "final2",
+ xlab = "temperature", ylab = "amplitude",
+ title = "Linear dispersion model",
+ plotkinspec = TRUE, kinspecerr = TRUE,
+ stderrclp = TRUE))

The concentration profiles that result appear in Figure 5.21. The rise of
the second component and the fall of the first is interpreted as indicative of a
conformational change in the protein.
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Figure 5.21: Concentration profiles of two components estimated using a spec-
tral model. Temperatures to the left of the vertical black line represent the
absorption spectrum of a protein as it is heated. Temperatures to the right of
the vertical black line represent the same protein after cooling.

The spectra that are estimated depend on the temperature considered. Fig-
ure 5.22 shows the spectra at nine temperatures as the protein is heated.

The model described in Section 5.4 represents the data very well, with the
exception of the spectra taken after the protein has been heated and then re-
cooled, as shown by data at a selection of temperatures in Figure 5.23. After
heating (and denaturation), irreversible changes in the sample occur, so that
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Figure 5.22: Estimated absorption spectra at nine temperatures as the system
giving rise to the measurements is heated.
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Figure 5.23: Data (grey) and model fit (black) at selected temperatures. Only
the data after cooling contains significant misfits.

the data taken at 25◦C before and after heating require different models. The
formulation of an appropriate model for the data after cooling remains as future
work. Note that Pandit et al. (2001) discuss an association model for assembly
of the antenna with intermediate steps. We find hints of intermediates only
in the cooling spectra, where the chosen two-component spectral model is not
sufficient.
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Figure 5.24: Estimated band amplitude curves derived from the model fit in
Section 5.6.4 as points. A thermodynamic model is fit to the band amplitude
curve for the first component in the heating regime, and is shown as a solid
curve. Temperatures to the left of the vertical black line represent the absorption
spectra of a protein as it is heated. Temperatures to the right of the vertical
black line represent the same protein after cooling.

Extraction of thermodynamic information from model fit

The area of the bandshape for each component at each temperature is used
to scale the corresponding concentration profile, resulting in a band area curve
that is indicative of the oscillator strength fab of the component per-temperature
(van Stokkum et al., 1995). Oscillator strength fab compares the intensity of
absorption to that expected from a three-dimensional harmonic oscillator, which
can be shown to be

fab = 4.315× 10−9

∫
ε(ν)dν (5.30)

(Cantor and Schimmel, 1980).
The transition defined by the decrease of the band area curve associated with

the first component and the increase in the band area curve associated with the
second component is an important feature of the fitted model. Whether the
band area curves as fitted correspond to those expected from a pure two-state
transition is of interest. A thermodynamic model for a two-state transition in
band area curves may be written

ba(T ) =
a

1 + exp
(
−∆Hm

(
1
T − 1

Tm

)) (5.31)
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where ba is the band area curve, Tm is the temperature marking the midpoint
of the transition, a is an amplitude parameter indicative of the difference be-
tween the band areas before and after the transition, and ∆Hm is the apparent
enthalpy change at Tm divided by the gas constant R van Stokkum et al. (1995).

Taking ba as the estimated band area code for the first component for the
temperatures that represent the heating regime, we obtain estimates for Tm, a,
and ∆Hm in Equation 5.31 that are optimal under least squares criteria. Figure
5.24 shows the band amplitude curves, with the fit of the thermodynamic model
shown as a line superimposed on component 1. The fitted curve is a rough ap-
proximation of the band area curve. The small misfit indicates some complexity
in the transition not described by the simple two-state thermodynamic model.

5.7 Extension of supported model types

TIMP has been designed to allow for rapid implementation of new options and
new model types. The process of adding an entirely new model type newmodel
can be described in terms of four steps:

• definition of a new class for the model type newmodel that inherits from
dat

• for every slot par representing a list/vector of nonlinear parameter value
starting values in the definition of newmodel adding a slot for a list/vector
of the same name par to the class theta so that the vector of parameters Θ
can be inferred, and so that updated parameter estimates can be plugged
back into the model specification each iteration

• definition of methods for residPart (and/or getClpIndepX depending on
whether clp are involved) that supply a prescription for the calculation
of residuals for a single dataset Ψq given a model

• definition of desired output plots and other information via a method for
plotter

• definition, if desired, of a new subclass inheriting from class opt that allows
options for plotting and model optimization that are specific to the new
model type to be defined

The remaining code of TIMP should not require any modification.

5.8 Conclusions

TIMP, an R package for interactive scientific model discovery for multiway spec-
troscopy data has been introduced. The design of the package has been out-
lined. The partitioned variable projection algorithm that is central to solving
separable nonlinear least squares parameter estimation problems with TIMP
was presented.
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General options for models in TIMP were introduced, along with options
specific to kinetic and spectral model types. A case study in application of a
kinetic model to two datasets simultaneously illustrated many kinetic model op-
tions. A case study in application of a spectral model illustrated many spectral
model options.

TIMP is in active development. Future work includes the development of
new model types for data collected in multipulse laser experiments, anisotropy
experiments, and experiments designed to extract information on photocycles,
as well as the implementation of additional options to support model specifica-
tion and validation. The development of a GUI to support interactivity is also
planned.
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5.A Partitioned vs. unpartitioned variable pro-
jection algorithms

This appendix considers in detail the memory requirements of the partitioned
variable projection algorithm introduced in Section 5.2.4, and compares these
requirements to those of the standard (unpartitioned) variable projection algo-
rithm that applies to data that is in vector form. In order to fit a model for
matrix data using the standard variable projection algorithm, the data and the
model must first be vectorized. Let us consider the case that a different func-
tion Cj is used to describe each column ψj of a matrix dataset, where ψj =
Cj(Θ)E[j, ] as in Equation 5.5. Then to convert the data and the model into a
vectorized format, we can use vec(Ψ) = vec(CsuperE

T In) = (In⊗Csuper)vec(ET )
where

Csuper =


C1(Θ)
C2(Θ)

...
Cn(Θ)

 . (5.32)

However, large memory resources are required to form and operate on the matrix
(In ⊗Csuper) for the case that n is large. This is a significant disadvantage and
may prohibit the use of the approach (as e.g., in the experience of Verveer et al.
(2000)).

The ability to apply the variable projection functional without operating on
large matrices is the main motivation for introduction of the partitioned variant
of the algorithm. PartitionedVarPro and the standard implementation of
variable projection, as found for instance in the plinear function of nls, return
the same results. The algorithms differ only in the memory resources required.

5.A.1 Empirical comparison of partitioned and unparti-
tioned variable projection algorithms

The nls function of R allows application of the variable projection algorithm
via the plinear option. We show here how the simple kinetic modeling prob-
lem considered in Section 5.1.3 may be fit using nls and the plinear option.
We then compare the memory requirements under plinear to those under the
partitioned variable projection algorithm implemented in TIMP.

We assume that a dataset Psi_q is simulated in R as described in Sec-
tion 5.1.3. Commands to simulate the dataset and set up the workspace are
contained in full in the file “memory_prof_plin.R” (distrubuted with the pack-
age). In order to use nls under the plinear option, the model for concentrations
is placed into a function calcC, which is also found in TIMP, as follows.

"calcC" <- function (k, t)
{
tfun <- function(t,k) exp(-k*t)
## get C with tfun
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mapply(tfun, k = k, MoreArgs = list(t = t))
}

The sum-of-exponentials model can then be fit to the data using calcC,
with the plinear option using the standard variable projection functional to
determine the residuals, and with the spectra as conditionally linear parameters.

R> psi_q_vector <- as.vector(Psi_q)

R> onls <- nls(psi_q_vector ~ kronecker(diag(length(wavenum)),
+ calcC(k, t)), data.frame(psi_q_vector),
+ start = list(k = c(.1,2)), alg = "plinear", trace = T)

To profile the memory allocated in the course of solving this problem, we
apply the gc function, (note that more refined memory profiling is possible with
the Rprof and Rprofmem functions under builds of R compiled to enable memory
profiling). Before and after the call to nls, the results of a call gc(verbose =
TRUE) on our system are

Garbage collection 11 = 9+0+2 (level 2) ...
6.4 Mbytes of cons cells used (58%)
0.9 Mbytes of vectors used (14%)

and

Garbage collection 100 = 45+26+29 (level 2) ...
6.6 Mbytes of cons cells used (53%)
13.2 Mbytes of vectors used (32%)

respectively. This shows that under the plinear implementation of variable
projection about 12 Mbytes of vector space is allocated in the course of solving
this example problem.

To contrast this with the memory allocated under the partitioned variable
projection implementation found in TIMP on the same system, we load the
package and initialize a model object as described in Section 5.1.3 and in the
file “memory_prof_pvarpro.R”. A call to gc(verbose = TRUE) before calling
the fitModel function that applies the partitioned variable projection algorithm
to fitting the sum-of-exponentials model with the spectra as clp has the following
result

Garbage collection 35 = 31+2+2 (level 2) ...
7.5 Mbytes of cons cells used (68%)
1.0 Mbytes of vectors used (16%)

Then fitting the model as in Section 5.1.3 with

kinetic_fit <- fitModel(data = list(Psi_q_data),
modspec = list(kinetic_model),
opt = kinopt(iter = 4, plot = FALSE))
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and subsequently calling gc(verbose = TRUE) results in

Garbage collection 52 = 46+3+3 (level 2) ...
7.8 Mbytes of cons cells used (62%)
1.5 Mbytes of vectors used (25%)

This shows that in the course of applying the partitioned variable projection
implementation to the problem, about .5 Mbytes of vector space is allocated,
about 20 times less than under plinear on the same problem.

The savings in memory allocated via the use of the partitioned variable pro-
jection algorithm found in TIMP is very significant for problems of interest
in the multiway spectroscopy modeling domain. As larger amounts of data are
involved the memory requirements of the standard non-partitioned implementa-
tion found in the plinear option grow so large as to prohibit its use on a modern
personal computer, while the memory requirements of the partitioned version
of the algorithm found in TIMP remain modest.

5.B New nls options

It is often desirable in scientific modeling applications to terminate the iterative
optimization of free model parameters when stopping criteria are met, as op-
posed to when convergence criteria are met. For instance, it is often desirable
to evaluate the fit of a model at a given set of starting estimates, or after fitting
for a modest number of iterations. Then the stopping criteria is completion of a
maximum number of iterations, after which output is desired, even though the
fit may be far from satisfying convergence criteria.

It is often also desirable to examine output in the case that the fitting algo-
rithm encountered a problem and terminated fitting with an error. For instance,
if the gradient of the residual vector with respect to nonlinear parameter esti-
mates becomes singular, examination of the current parameter estimates may
shed light on how the model can be modified to be better determined with
respect to the data.

The R function nls is widely applied in scientific model discovery and is
used in TIMP to iteratively improve nonlinear parameter estimates. Prior to
R version 2.5 nls did not return output in the case that any of the following
conditions are met

• the maximum number of iterations x is met (as specified with nls(. . .,
control = list(maxiter = x, . . .)))

• the step-size is below the minimum x (as specified with nls(. . ., control
= list(minFac = x, . . .)))

• a singular gradient occurs

In all these cases return of the output object may be valuable for scientific
model discovery, for the reasons sketched above. We have implemented the
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option ‘warnOnly’ to determine if an output object is returned in the case that
one of the above conditions is met. The implementation of this option has been
incorporated into R version 2.5. A logical slot in the class nls.control is used
to toggle the ‘warnOnly’ option. To output a result object even in the case that
an error is triggered, nls is called with nls(. . ., control = list(warnOnly =
TRUE, . . .).

A better understanding of the residual surface on which optimization occurs
is sometimes gained by knowledge of how many times nls halves the step-size in
the descent direction. We have implemented the option ‘printEval’ to print
the number of evaluations (of the step-size) required each iteration; this option
is also included in R version 2.5. A logical slot in the class nls.control is used
to toggle the ‘printEval’ option. To print the number of evaluations required
(as well as the achieved convergence tolerance), nls may be called with nls(. . .,
control = list(warnOnly = TRUE, . . .).

5.C Data formats for input into TIMP

Currently TIMP allows the input of data using the readData function, and
supports the following formats.

5.C.1 Plain format

The plain format is an ASCII file in which the first row represents column labels
and the first column represents row labels, and remaining entries represent data.
For time-resolved spectroscopy data the first row should represent wavelengths,
and the first column represents times. This data is read into TIMP via readData
with the argument typ set to ‘plain’. The argument sep may be used to specify
the delimiter in the case that the ASCII data is not space delimited.

5.C.2 Time explicit format

The time explicit format for data input contains 5 lines and then a matrix of
data in which each row represents a time profile, and each column represents a
measured spectrum.

Heading line 1
Heading line 2
Time explicit
Intervalnr 5

t1 t2 . . . tm
λ1 Ψ(t1, λ1) Ψ(t2, λ1) . . . Ψ(tm, λ1)
λ2 Ψ(t1, λ2) Ψ(t2, λ2) . . . Ψ(tm, λ2)
. . . . . . . . . . . . . . .
λn Ψ(t1, λn) Ψ(t2, λn) . . . Ψ(tm, λn)

Data matrix elements are space-delimited. ‘Heading line 1’ and ‘Heading
line 2’ are two lines that may be filled as desired (e.g., with a data file title).
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The string ‘Time explicit’ indicates the data format. The string ‘Intervalnr’
and a scalar m indicates the number of distinct points m at which spectra were
measured, (note that the number of wavelengths n need not be specified). The
following line contains the real-valued variable values (such as times) t1, . . . , tm
at which measurements were taken. The first value of each of the remaining lines
represents the wavelength at which the concentration profile contained on that
row was taken. The rest of each remaining row represents a (space-delimited)
concentration profile Ψ(t1, λ),Ψ(t2, λ), . . . ,Ψ(tm, λ).

5.C.3 Wavelength explicit format

The wavelength explicit format for data input contains 5 lines and then a matrix
of data in which each row represents a measured spectrum, and each column
represents a time profile.

Heading line 1
Heading line 2
Wavelength explicit
Intervalnr 5

λ1 λ2 . . . λn
t1 Ψ(t1, λ1) Ψ(t1, λ2) . . . Ψ(t1, λn)
t2 Ψ(t2, λ1) Ψ(t2, λ2) . . . Ψ(t2, λn)
. . . . . . . . . . . . . . .
tm Ψ(tm, λ1) Ψ(tm, λ2) . . . Ψ(tm, λn)

All entries above are space delimited.‘Heading line 1’ and ‘Heading line 2’
are two lines that may be filled as desired (e.g., with a data file title). The string
‘Wavelength explicit’ indicates the format that the input data is to take. The
string ‘Intervalnr’ and a scalar n indicates the number of distinct wavelengths
n at which measurements were taken, (note that the number of time points m
need not be specified). The following line contains the real-valued wavelengths
λ1, λ2, . . . , λn at which measurements were taken. The first value of each of
the remaining lines represent the independent variable value (such as a time) at
which the spectrum contained on that row was taken. The rest of each remaining
row represents a (space-delimited) spectrum Ψ(t, λ1),Ψ(t, λ2), . . . ,Ψ(t, λn).

5.C.4 FLIM format

Fluorescence Lifetime Imaging Microscopy (FLIM) data is read into TIMP in
the format described in Chapter 6 of this monograph.
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Chapter 6

Fluorescence Lifetime
Imaging Microscopy
(FLIM) data analysis with
TIMP1

6.1 Introduction

This chapter describes the utility of the TIMP package for the R language and
environment for statistical computing (R Development Core Team, 2008) for the
global analysis of images collected by Fluorescence Lifetime Imaging Microscopy
(FLIM) experiments. FLIM experiments typically measure the fluorescence of
biological objects at 250 nm lateral resolution and with (sub-) nanosecond tem-
poral resolution. FLIM has been widely applied in cell biology to detect interac-
tions between fluorescently labeled biological molecules such as proteins, lipids,
DNA and RNA.

One experimental technique that is particularly useful for the study of pro-
tein interactions in particular is the detection of Förster Resonance Energy
Transfer (FRET). FRET is a bi-molecular process in which the excited-state
energy of a donor fluorophore is non-radiatively transferred to a ground-state
acceptor molecule by dipole-dipole coupling. The FRET efficiency varies with
the inverse 6th power of the distance between donor and acceptor and is usually
negligible when the distance is larger than 10 nm. FRET can be identified by a
shorter fluorescence lifetime of the donor molecule. That is, it is a fluorescence
quenching process. FLIM experiments involving the detection of FRET typi-
cally use genetically modified cells in which two intracellular proteins of interest
are tagged with variants of the green fluorescent protein (GFP) (Tsien, 1998)

1A version of this chapter appears as Laptenok, Mullen, Borst, van Stokkum, Apanasovich,
and Visser (2007) in the Journal of Statistical Software, 18(8), 1-20.
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that act as a donor-acceptor FRET pair. Spectral variants cyan fluorescent
protein (CFP, donor) and yellow fluorescent protein (YFP, acceptor) are the
FRET-pair that is most commonly used in practice. When the fluorescently
tagged proteins are within 1-10 nm of each other, FRET occurs. This can be
detected by estimating the fluorescent lifetime of the donor in the FRET pair,
and observing that the estimated lifetime is shortened in comparison to the
lifetime estimated in a control experiment in which only the donor fluorescent
tag is used. FRET as measured by FLIM experiments can therefore be used
as a “spectroscopic ruler” to map protein-protein interactions inside cells. For
recent applications see Barber et al. (2005) and Grailhe et al. (2006). Suhling
et al. (2005) have comprehensively reviewed different FLIM methods, FLIM and
FRET examples and other FLIM applications.

Well-designed data analysis techniques are required to process the measured
FLIM images to estimate the lifetimes associated with the fluorescence. It is
often the case that the dynamics of the system are well-described by a model
in which a small number of exponential decays with equal decay rates across all
pixels underlie the measured fluorescence, with amplitude parameters for the
exponentials that vary per-pixel. Then estimates for the amplitude parameters
are conditionally linear on estimates for the decay rate parameters, allowing
application of the variable projection algorithm (Golub and LeVeque, 1979),
which has been shown to have many desirable properties (Golub and Pereyra,
2003; Mullen et al., 2007) for problems of this form. A disadvantage of the
variable projection method that has prevented its application in this problem
domain (Verveer et al., 2000) is that large memory resources are required. The
TIMP package contains an implementation of a partitioned variable projection
algorithm that returns the same results as the standard variable projection
algorithm but requires much less memory, as described in Chapter 5. The ability
to apply the variable projection functional to estimation problems in the absence
of large memory resources is a primary advantage of the application of TIMP
in the FLIM image analysis problem domain. A further primary advantage is
the support the package provides for visual interpretation and validation of the
results of model fit.

The organization of the chapter is as follows. Section 6.2 describes the
sum-of-exponentials model that is often used to describe FLIM images and the
optimization problem associated with fitting the parameters of this model. Sec-
tion 6.3 discusses approaches to the parameter estimation task associated with
the analysis of FLIM images, including the partitioned variable projection ap-
proach employed by TIMP. Section 6.4 describes extensions to TIMP imple-
mented to support FLIM image analysis. Section 6.5 contains a simulation
study in the application of the package to the analysis of datasets inspired by
measured FLIM data. Section 6.6 describes the use of TIMP to fit a measured
FLIM image. Section 6.7 contains conclusions.
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6.2 Statistical model for FLIM data

FLIM images represent the decay of fluorescence in time at many different lo-
cations in the underlying system. Each location is represented by a pixel x, so
that the image may be represented as a matrix

Ψ =


x1 x2 . . . xn

t1 ψ(t1, x1) ψ(t1, x2) . . . ψ(t1, xn)
t2 ψ(t2, x1) ψ(t2, x2) . . . ψ(t2, xn)
...

...
...

. . .
...

tm ψ(tm, x1) ψ(tm, x2) . . . ψ(tm, xn)

 . (6.1)

Each column of Ψ represents a fluorescence decay in time at a given pixel x.
The decay of fluorescence data in time ψ(t) at pixel x can often be satisfac-

torily modeled as a sum of ncomp first-order kinetic processes convolved with an
instrument response function (IRF) g(t), so that

ψx(t) =
ncomp∑
l=1

clax,l =
ncomp∑
l=1

exp(−t/τl)⊕ g(t)ax,l (6.2)

where cl represents the contribution to the data from process l in time t, ax,l,
represents the amplitude of decay l at pixel x, and ⊕ is the convolution operator.
The model parameters to be fit are then the lifetimes τl and the associated linear
coefficients ax,l representative of intensity.

When the same kinetic processes underlie the fluorescence at all n locations,
Equation 6.2 can be applied globally to the image Ψ, so that the deterministic
aspects of the data are modeled as

Ψ = CET =
ncomp∑
l=1

cla
T
l =

ncomp∑
l=1

(exp(−t/τl)⊕ g(t))aTl (6.3)

where C is a matrix in which column l represents the time-profile of the lth
kinetic process, and E is a matrix in which column l represents the intensity
of kinetic process l across pixels. Then the parameter estimation task is global
analysis: estimation of the ncomp lifetimes τ associated with the image as a
whole and the ncomp amplitude parameters ax,l associated with each pixel x (so
that n∗ncomp amplitude parameters are estimated in total). Under least-squares
criteria this is

min ‖C(τ)ET −Ψ‖2 (6.4)

where ‖.‖ is the 2-norm. This is an instance of the multi-exponential analysis
problem, which is common in physics applications. Its difficulty is well-known,
as Istratov and Vyvenko (1999) review.

Ψ represents the number of photons fluorescing from the location represented
by pixel x at time t, and is therefore count data, the noise associated with which
is assumed to be Poisson distributed. That we fit the data using least squares
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criteria introduces a bias, which is small in the case that the counts in the data
are large. Maus et al. (2001) have investigated this issue. Note that the decay
of fluorescence in proteins like CFP and YFP is typically described by two or
more exponentially decaying kinetic process each (so that the decay is said to
be bi-or-multi-exponential).

6.3 Methods for FLIM data collection and
analysis

FLIM data is collected by exciting a sample (such as a cell) to fluoresce (i.e.,
emit photons) using a laser pulse. After a laser pulse the time t until the first
photon is detected at pixel x is measured; The process of applying a laser pulse
and recording the time of arrival of the first photon is repeated many times. The
resulting histograms of arrival times represent fluorescence decays per pixel x.
The FLIM experiments we consider here detect photons at a single wavelength.

Since samples of interest are in vivo, the power of the laser light used must
be low if the sample is to remain alive throughout the measurement. The use
of laser light of low power results in the arrival of few photons per location x.
The requirement to keep the sample alive and in the same condition also means
that the acquisition time cannot be long, (i.e., the sample cannot be subjected
to too many laser pulses).

To improve signal-to-noise ratio (SNR), the time resolution may be de-
creased, since under a wider histogram channel more photons will be collected.
The FLIM experiment is thus always compromising between time resolution and
SNR. FLIM experiments that measure process with sub-nanosecond time reso-
lution often have low SNRs (6-15 is typical). Further discussion of the method-
ology of FLIM experiments may be found in, e.g., Becker and Bergmann (2003).

Methods for the analysis of FLIM data commonly applied (Becker et al.,
2001, 2002) fit the model given by Equation 6.2 independently to each of the n
pixels in an image. This yields estimates for the decay rates of the ncomp kinetic
process as well as ncomp estimates of the amplitude of each process, for each
pixel in the image. This is not desirable if the assumption that the same ncomp

kinetic processes underlie measurements at all pixels is valid.
Data analysis methods that acknowledge the desirability of global analysis,

which assumes that the underlying kinetic processes have the same lifetimes but
different amplitudes across all pixels measured, as in Equation 6.3, often restrict
themselves to the bi-exponential instance of the model (Barber et al., 2005;
Pelet et al., 2000). Verveer et al. (2000) acknowledge that the global analysis
associated with Problem 6.4 is a separable nonlinear least-squares problem that
may be solved using variable projection, though the authors state that for the
large number of variables involved in fitting typical FLIM data, the memory
requirements prohibit the approach.

TIMP allows an arbitrary number of exponentials to be fit to the data,
though under experimentally realistic SNRs it is most often possible to well-
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estimate the parameters of only one or two such decays. TIMP applies a par-
titioned variable algorithm to the global analysis problem associated with the
analysis of FLIM images. This algorithm forms the residual vector prescribed
by the variable projection functional without the need to store and operate on
prohibitively large matrices, as is described in detail in Mullen and van Stokkum
(2007b) and Chapter 5 of this monograph. The present study of the applica-
tion of TIMP to FLIM data is to the best of the authors’ knowledge the first
application of variable projection to FLIM data in the literature.

6.4 Extension of TIMP for FLIM data analysis

Several new capabilities were added to the TIMP package to facilitate the anal-
ysis of FLIM data. As described in Section 6.4.1, a file format was defined for
the input of FLIM images into TIMP. A method for numerical convolution of an
exponential decay with a measured IRF was added to the kinetic model options
of the package, as Section 6.4.2 elaborates. New options to visually validate the
results of fitting were also added, and are discussed in Section 6.4.3.

6.4.1 Data format

Given a FLIM image, it is often desirable to select those pixels associated with
the subject of interest for modeling. For example, given a FLIM image of a
cell, only those pixels interior to the cell wall are typically representative of
the fluorescence decay of interest, and accordingly only these pixels are usually
selected for modeling. Pre-processing dedicated to pixel selection is currently
performed outside of TIMP. The indices of selected pixels are then included in
the ASCII input file.

The format of the input file is as follows.

line 1: reserved for comments, not read
line 2: reserved for comments, not read
line 3: the character string “FLIM Image”
line 4: dimension of image as x y (space-delimited)
line 5: number of times t in image
line 6: number of pixels x selected for analysis
line 7: vector of the times at which measurements were made
line 8: index of selected pixel and decay trace from this pixel Ψ(, p)
. . . . . .
Line (8+number of selected pixels): the character string “Intensity map”
Remaining lines: FLIM intensity image as matrix of dimension x× y

Examples of this file format are included with this contribution. Files in this
format may be read into R using the TIMP function readData. Section 6.4.3
defined the meaning of the intensity image; Section 6.6 contains an example of
the use of the readData function.
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6.4.2 Options for numerical convolution with a measured
IRF

The analysis of FLIM data typically employs a measured IRF g(t) in fitting the
exponential decay model contained in Equation 6.3. Evaluation of Equation 6.3
requires the numerical convolution of g(t) with an exponential decay. Methods
to perform this convolution have been addressed in the literature at least since
the seminal paper of Grinvald and Steinberg (1974), as Bajzer et al. (1995) dis-
cuss. For FLIM data (in which g(t) and the exponential decay are very often
represented by 256 or less time points), we have found that methods based on a
Fourier transformation are problematic, and that iterative methods give better
results. Since an iterative method for the convolution of a vector and an expo-
nential decay was not found implemented in R or in openly available scientific
programming libraries, a method based on an iterative technique suggested in
Grinvald and Steinberg (1974) was implemented in the shared C library used by
TIMP, as the function Conv1.

To validate that the implementation of this iterative convolution technique
returns an un-biased result, we considered its operation on the convolution of an
IRF g(t) simulated as a Gaussian with location µ and full width half maximum
∆ parameters inspired by values occurring in FLIM experiments. The convo-
lution of a Gaussian with an exponential decay is determined by the analytical
expression

cl(t) =
exp(−klt)

2
exp(kl(µ+ kl∆̃

2/2))


1 + erf

»
t− (µ+ kl∆̃

2)√
2∆̃

–ff
(6.5)

where ∆̃ = ∆/(2
√

2 log(2)) and erf is the error function. Note that Equa-
tion 6.5 uses the decay rate kl (which is also the parameter estimated), whereas
its reciprocal τl = 1/kl is commonly reported. For times and decay rates kl
inspired by values in measured data of interest, the results determined by the
implementation of the iterative technique are unbiased as compared to results
obtained using the analytical expression.

6.4.3 Model validation

Model validation in the FLIM image analysis application domain is ideally
largely visual. The magnitude of residuals and fitted parameter estimated are
possible to map per-pixel onto the modeled image as colors, allowing the re-
sults of fitting to be quickly evaluated. Several options for this display are
implemented in TIMP. The analysis of a FLIM image with the TIMP function
fitModel results in a multipanel summary plot as shown in Figure 6.1, whose
components will be explained in turn.

First histograms of the estimated amplitudes associated with each component,
with the corresponding global lifetime estimate on the bottom are displayed. In
Figure 6.1 these are the two plots contained in row 1, columns 1 and 2. These
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Figure 6.1: An example multipanel summary plot of residuals and fit of a bi-
exponential model for measured FLIM data. Individual plots are explained in
the text of Section 6.4.3. The image is taken from a fixed BHK (baby hamster
kidney) cell with CFP expressed.

plots allow for an impression of the absolute contributions of the components
across all pixels of the image.

The following plots in the summary figure are ncomp − 1 histograms of the
relative contribution pl of component l, where

pl =
al∑ncomp

i ai
(6.6)

In Figure 6.1 this is the plot contained in row 1, column 3. These plots allow for
an impression of the relative contribution of the component l across all pixels
of the image.

A plot of the intensity image is then given. This intensity image includes
those pixels not selected for modeling, and represents the number of photons
per pixel measured over the course of all times t represented by the dataset.
From this intensity image only some pixels are typically selected for modeling.
The selected pixels are shown in the next plot in blue. The intensity image and
the intensity image with selected pixels in blue are contained in row 1, column
4 and row 2, column 1, respectively, in Figure 6.1.
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The plot entitled “< τ >” presents the average lifetime for each pixel x from
the selected region, where the average lifetime is given as

< τ >=
∑ncomp
l τlax,l∑ncomp
l ax,l

(6.7)

(row 2, column 2 of Figure 6.1). The average lifetime may allow insight into the
rate of energy transfer in processes on a per-pixel basis.

The next ncomp plots show normalized amplitudes in a color code mapped
to the associated image, for each component l. In Figure 6.1 these are the plots
contained in row 2, columns 3 and 4. The normalized amplitude plots allow
insight into spatial patterns in the contribution of components. For example,
these plots may allow identification of specific structures in a cell where the
contribution of a given component is large.

Next the residuals associated with each pixel from the selected region are
given as a color image, providing information on the quality of the fit both
spatially and temporally, (row 3, column 1 of Figure 6.1). The first left singular
vector of the residuals as results from a singular value decomposition (SVD)
is plotted next (row 3, column 2 of Figure 6.1). This plot allows insight into
structure in the residuals in time. For typical FLIM experiments, this structure
is large around time 0, where the exponentially decaying components and the
IRF contribute most. Structure in the left singular vectors after time 0 may
be indicative of an inadequacy in the applied model. The next plot shows the
first right singular vector associated with the SVD of the residuals mapped to
the pixels selected for analysis, which provides information on the quality of
the fit per pixel, and allows determination of whether the lack of fit is spatially
structured. The last plot shows the singular values associated with the SVD
of the data. The number of singular values that stand out in this plot indicate
how many spatially and temporally independent components are present in the
data. Further discussion of the use of the rank of the data in the estimation of
the number of components can be found in e.g., Henry (1997).

6.5 A simulation study

A study of the application of TIMP to the analysis of simulated FLIM images
was made in order to investigate the capabilities of the package in the problem
domain. The study was designed in two parts.

The first part, described in Section 6.5.1, examines the ability of the software
to estimate the lifetimes associated with bi-exponential decays in which the
decay of fluorescence in time was measured over 64 and 256 times (which we
refer to as channels throughout). 64 and 256 channel data is commonly collected
in FLIM experiments, and thus was of particular interest. Simulation of bi-
exponential decays was performed because Gratton et al. (2003) have shown
that resolution of more than two components is not possible over this number
of channels for experimentally realistic lifetime values and signal-to-noise ratios.
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The second part of the simulation study, described in Section 6.5.2, smoothly
varies the two amplitude parameters associated with bi-exponential decays across
columns of the image for the purpose of examining whether the software is able
to accurately estimate the relative contribution of the components.

Images Ψ(t, x) were simulated using Equation 6.2, as shown in Figure 6.2.
Each pixel is associated with a decay in the time window 12.5 ns, over either 64
channels or 256 channels (equidistant in the interval 0-12.5 ns). The IRF g(t)
was simulated as a Gaussian with mean 9 and 34 and standard deviation .4 and
1 for the 64 channel and 256 channel cases, respectively, in units of channels.
Note that non-zero contribution of the IRF in both the 64 channel and the
256 channel case is represented by very few channels (3-8), as is commonly the
case in FLIM experiments. Poisson noise was added to each decay trace ψx(t)
to obtain data of the desired signal-to-noise ratio (SNR) (using the R function
rpois). The result may be considered as count data where Ψ(t, x) represents the
number of photons collected at a given pixel x and time t, as in measured time-
correlated single photon counting data. The SNRs of simulated images were
chosen to reflect those commonly obtained in FLIM experiments. Note that
the optimization of parameters under least squares criteria will result in biased
estimates, since the noise applying to the data is Poisson and not Gaussian
distributed, as Maus et al. (2001) have studied, but for data comprised mostly
of large counts this bias is small.

6.5.1 A simulation study in the resolution of bi-exponential
decays

This part of the simulation study examines the ability of TIMP to recover sat-
isfactory estimates for the lifetimes underlying simulated images representative
of two components. Images simulated with three pairs of lifetimes (in nanosec-
onds) collated in Table 6.1 were studied. For each pair of lifetimes studied, the

Figure 6.2: (Left) Intensity image of simulated data comprised of 1600 pixels in
a 40× 40 pixel arrangement, where intensity means the total photons summed
over all channels. (Right) A fluorescence decay trace over 256 channels in the
interval 0-12.5 ns is associated with each of the 1600 pixels comprising an image.
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relative contribution of the two components was varied between .1 and .9, so
that 9 different images were simulated using each pair of lifetime values. The
lifetime values are experimentally motivated (Borst et al., 2005). The images
were simulated for both the SNR 8 and the SNR 15 case; the SNR 8 case is
average for typical FLIM experiments, while the SNR 15 is higher than average.

A bi-exponential model was fit to the images, with the relative contribution
of the two components being estimated as conditionally linear on values for
the nonlinear lifetime estimates. The results are shown for images simulated
with the pairs of lifetimes on row 1 and 2 of Table 6.1 in Figure 6.3. Note
that each boxplot describes the variance in lifetime estimates as the relative
amplitude of the components is varied. Our criteria for a satisfactory lifetime
estimate is that the estimate is ±5% of the lifetime value used in simulation
for data containing 256 channels, and within ±10% of the lifetime value used
in simulation for data containing 64 channels. Under these criteria, the lifetime
estimates obtained and shown graphically in Figure 6.3 are satisfactory. The
small bias is attributed to using the number of photons at the leftmost point
of each bin of times comprising a time-channel as representative of the average
lifetime within the bin; because the data is exponentially decaying, there are
always more photons to the left of the bin than to the right, and the average
lifetime is thereby underestimated. The bias disappears when the number of
channels is increased (for example, for data containing 1024 channels and the
same SNR and lifetime values, it is insignificant). For the third pair of lifetimes
studied, with τ2 = .2 ns and τ2 = .5 ns, it is impossible to determine satisfactory
estimates even for data with SNR 15. The very short lifetimes are represented
by only a few channels, so that there is not sufficient information.

We found that for the lifetime values examined, for cases in which the con-
tribution of one component was lower than 20% and the SNR was 8, lifetime
estimates were not satisfactorily estimable. For SNR 15, lifetimes were not sat-
isfactorily estimable for cases in which the contribution of one component was
less than 10%.

This part of the simulation study was also repeated using an IRF measured
on a FLIM set-up (as opposed to using a simulated IRF with a Gaussian dis-
tribution) to check that noise present in the IRF does not significantly decrease
the accuracy of lifetime and amplitude estimates. The obtained lifetime and
amplitude estimates were very similar to those reported for the Gaussian IRF

Group τ1 τ2
1 1.14 3.72
2 .6 2.5
3 .2 5

Table 6.1: Parameter values in nanoseconds used in simulation of bi-exponential
images. Instances of each group were simulated with contributions from the
component with the longer lifetime τ2 as 10%, 20%, 30%, 40%, 50%, 60%, 70%,
80% and 90% of the total intensity.
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Figure 6.3: Boxplots of lifetime estimates for each of two components given
datasets simulated with lifetimes described in the first two rows of Table 6.1.
Each boxplot is comprised of lifetime estimates estimated from fitting 9 different
images, simulated with different relative amplitudes between the lifetimes. Life-
times used in simulation are marked as dotted lines. The grey boxes represent
results obtained on images in which the decay was represented by 256 channels,
whereas the black boxes represent results obtained on images in which the decay
was represented by 64 channels. (a) shows results on images simulated with the
lifetimes given in row 1 of Table 6.1 and (b) shows results on images simulated
with the lifetimes given in row 2 of Table 6.1.

case, validating that the parameter estimation methodology is robust to an ex-
perimentally realistic amount of noise in the IRF.

We consider this part of the simulation study to demonstrate some limits
of the resolvability of bi-exponential lifetimes on images inspired by measured
data, and that for cases of practical interest TIMP lifetime estimates returned
by TIMP are satisfactory.
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value used in simulation SNR 25 SNR 8
τ1 .6 .57 .58
τ2 2.5 2.49 2.38

Table 6.2: Lifetime values in nanoseconds used in simulation and estimated
lifetimes for simulated images with smoothly varying contributions from two
components.

6.5.2 A simulation study in the estimation of relative am-
plitudes of bi-exponential decays

A simulation study was made on instances of the image shown in Figure 6.4.
The decay curve associated with each pixel is bi-exponential, with the two com-
ponents having lifetimes of 0.6 and 2.5 ns respectively. The amplitude of the
contribution a1 from the first component varies from 0 to 1 across each column
of the image, while the contribution a2 from the second component varies from
1 to 0. Fitting a bi-exponential model to such images allows examination of
whether the software is able to accurately estimate the two amplitude param-
eters a1 and a2 associated with each pixel. This part of the simulation study
is inspired by a similar study by Pelet et al. (2000). The size of each analyzed
image was 64× 64 pixels (4096 pixels). The decay of the intensity at each pixel
was represented by 256 times equidistant in the interval 0-12.5 ns (this is the 48
ps/channel case described in Section 6.5.1). Images were simulated with both
SNR 8 and SNR 25.

Table 6.2 shows that the lifetime estimates well-approximate the values used
in simulation of the images in both the SNR 25 and the SNR 8 case. The
deviations from the values of the amplitudes al used in simulation are small
and unbiased, as shown in Figure 6.6 (c) graphically. Furthermore the lifetime

Figure 6.4: A 64 × 64 pixel simulated image at one timepoint, in which the
relative contribution of the first component increases linearly from 0 to 1 and
the contribution of the second component decreases linearly from 1 to 0 along
each column of the image. Each simulated dataset is comprised of 256 such
images, representing the 256 times (channels) simulated.
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estimates collated in Table 6.2 are also satisfactory. We conclude that this part
of the simulation study demonstrates the ability of TIMP to return satisfactory
estimates of the amplitude parameters al determining the relative contribution
of components.

6.6 Case study on measured CFP data

We were interested in investigating the capabilities of TIMP for FLIM image
analysis of measured data. In cell biology studies FRET-FLIM is often used
to demonstrate molecular interactions in vivo. For this purpose the fluorescent
proteins cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP)
are the most widely used as donor-acceptor FRET pairs (Grailhe et al., 2006).
However, the fluorescent decay of CFP is bi-exponential, making quantitative
analysis of an interacting FRET population challenging (Russinova et al., 2004;
Peter et al., 2005).

Time-correlated single photon counting experiments with a very high SNR
(unattainable in FLIM experiments) described in Borst et al. (2005) established
the lifetimes of CFP in a solution. We performed an experiment to collect FLIM
images of the same sample in a micro-capillary, using the experimental set-up
described in Borst et al. (2003). Note that FLIM images of proteins in solution
are not usually measured (the study of protein conformational dynamics in situ
being the goal of most FLIM experiments), but that this experiment offers
an opportunity to validate the ability of the software to estimate the lifetimes
associated with the fluorescence decay of this important donor.

The SNR of the FLIM experiment was approximately 9. The time resolution
was 48 ps/channel (over 256 channels). The fluorescence intensity image and
region selected for analysis are shown in Figure 6.7.

To convey how the package is used to analyze a FLIM image, we describe

(a) (b) (c)

Figure 6.5: Colors above represent the average lifetime estimated with Equa-
tion 6.7. (a) Simulated image with τ1 = .6 ns, τ2 = 2.5 ns and a linearly varying
contribution from two components over time. (b) Estimates of the average life-
time determined with Equation 6.7 for an instance of the image in (a) with SNR
= 25. Estimated lifetimes are τ1 = .57 ns, τ2 = 2.49 ns. (c) Estimates of the
average lifetime determined with Equation 6.7 for an instance of the image in
(a) with SNR = 8. Estimated lifetimes are τ1 = .58 ns, τ2 = 2.38 ns.



124 CHAPTER 6. SEPARABLE NONLINEAR MODELS FOR FLIM DATA

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

(a) (b)

-0.1 0 0.1 0.2
0

200

400

600

800

1000

1200

1400

(c)

Figure 6.6: A 64 × 64 image was simulated in which the relative contribution
of two exponentially decaying components was made to vary linearly along each
column as shown in Figure 6.2 (a). TIMP was then used to fit a model for the
simulated data, resulting in 64 estimated relative amplitudes that correspond
to rows of Figure 6.2 (a) for each of the 64 distinct relative amplitude values
used in simulation, under data having both SNR 25 and SNR 8. In the present
figure, (a) and (b) show the relative amplitude values used in simulating the
data as a line; dashed lines represent the distribution over 64 estimates, i.e.,
rows in the images in Figure 6.2 (a) and (b). In (c) histograms of deviations
from the values used in simulation for (solid line) SNR = 25 (dashed line) SNR
= 8 estimates are shown. These deviations are unbiased and small.

all commands used to perform this part of the study.

6.6.1 Reading FLIM data into TIMP and preprocessing

The package is loaded.

R> library("TIMP")

Data is read into R using the readData function of TIMP.

R> cfp_data <- readData("cfp-13um-256ch-1000s_all.txt")
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(a) (b)

Figure 6.7: (a) Intensity image of a measured image of CFP in solution, where
color represents the number of photons detected in a given pixel (b) Intensity
image with pixels selected for analysis in blue.

Preprocessing is then performed to select certain times for analysis using the
TIMP function preProcess.

R> cfp_data_sel <- preProcess(serT, sel_time=c(33,230))

A measured IRF is then read in and the same time points as selected in the
data are chosen.

R> mea_IRF <- scan("xtetoh_256_060822-bg_int.txt")[33:230]

6.6.2 Initial model for CFP in solution: Mono-exponential
decay

The first model applied is based on a mono-exponential decay. The starting
value for the decay rate given as 0.3, and is constrained positivity. The model
is specified using the TIMP function initModel.

R> mono_cfp_model <- initModel(mod_type = "kin",
+ kinpar=c(0.3), convalg = 1, parmu = list(0.01),
+ measured_irf = mea_IRF, fixed = list(parmu=c(1)),
+ seqmod=FALSE, positivepar = c("kinpar"))

6.6.3 Fitting and validation of initial mono-exponential
model

The TIMP function fitModel is used to fit the mono-exponential model.

R> mono_result <- fitModel(list(cfp_data_sel),
+ list(mono_cfp_model),
+ opt=kinopt(iter=0, linrange = 20,
+ makeps ="cfp_mono", residplot = TRUE,
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Figure 6.8: An image plot of the residuals under the mono-exponential model fit
shows structure in time before 3.5 ns. The first left singular vector resulting from
an SVD of the residuals also shows this structure. The first right singular vector
of an SVD of the residuals mapped to the associated pixels on the intensity
image shows the residuals are relatively homogeneous in space. The RMS error
associated with this fit is 5.2.

+ notraces = TRUE, xlabel = "time (ns)",
+ ylabel = "pixel number", FLIM=TRUE))

The plot of the residuals returned is shown in Figure 6.8. The image plot of
the residuals in the upper left hand corner show that there is a pattern of misfit
around time 3.5 ns. This pattern of misfit is also indicated in the large upward
trend of the left singular vector of the residuals shown in the upper right plot of
Figure 6.8, which peaks at 3.5 ns. The root mean square (RMS) error associated
with the fit is 5.2. We conclude that a mono-exponential decay model for CFP
is not sufficient.



6.6. CASE STUDY ON MEASURED CFP DATA 127

Figure 6.9: An image plot of the residuals under the bi-exponential model
fit shows less structure in time as compared to the same plot for the mono-
exponential fit in Figure 6.8. The first left singular vector resulting from an
SVD of the residuals also shows less structure. The first right singular vector
of an SVD of the residuals mapped to the associated pixels on the intensity
image shows that the residuals remain homogeneous in space. The RMS error
associated with this fit is 4.9, less than for the mono-exponential model fit.

6.6.4 Refined model for CFP in solution: Bi-exponential
decay

Based on the inadequacy of the fit of the mono-exponential model as evidenced
by analysis of the residuals, the initModel function was used to specify a bi-
exponential model for the measured CFP image.

R> bi_cfp_model <- initModel(mod_type = "kin",
+ kinpar=c(1, 0.3), convalg = 1, parmu = list(0.01),
+ fixed = list(parmu=c(1)), measured_irf = mea_IRF,
+ seqmod=FALSE, positivepar=c("kinpar"),
+ title="CFP bi-exponential decay")
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6.6.5 Fitting and validation of initial bi-exponential model

a1 τ1 a2 τ2 < τ >
TIMP estimate .373 .95 .627 3.48 2.54

established value .335 1.14 .665 3.72 2.86

Table 6.3: Parameters estimates obtained using TIMP on a measured CFP
dataset analyzed with a bi-exponential model, and values in the literature for
a dataset collected under similar experimental conditions analyzed using the
same bi-exponential model. Note that variability in the experimental set-up,
laser power and sample preparation limit the degree to which the results are
directly comparable.
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Figure 6.10: (a) Distributions of the average lifetimes per location estimated
with Equation 6.7. Normalized amplitudes for component 1 (b) and component
2 (c) as a color on the associated image.
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Figure 6.11: Histograms of amplitudes of components (A,B) and normalized
amplitude of component 2 calculated with Equation 6.6 (C)

R> bi_result <- fitModel(list(cfp_data_sel), list(bi_cfp_model),
+ opt=kinopt(iter=20, linrange = 20,
+ makeps ="cfp_bi",
+ notraces = TRUE, residplot = TRUE,
+ xlabel = "time (ns)",
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+ ylabel = "pixel number", FLIM=TRUE))

An image plot of the residuals under the bi-exponential model fit shows
less structure around time 3.5 ns as compared to the same plot for the mono-
exponential fit in Figure 6.8. The first left singular vector resulting from an
SVD of the residuals also shows less structure around 3.5 ns. Note that we are
not concerned about the structure in the SVD around 0 ns because misfit at
this time results from the large contribution of the IRF and the peak in the
amplitude of components at the start of their decay at this timepoint. The first
right singular vector of an SVD of the residuals mapped to the associated pixels
on the intensity image shows that the residuals remain homogeneous in space.
Furthermore, the RMS square error has decreased to 4.9 from the RMS error of
5.2 under the fit of the mono-exponential model.

The lifetime estimates under the bi-exponential model agree well with values
published in Borst et al. (2005) for analysis of a dataset collected under similar
experimental conditions, as tabulated in Table 6.3. Figure 6.10 (a) shows that
the estimate for the average lifetime per pixel over the course of the decay (as
determined with Equation 6.7) has no spatial structure, as is expected since
the measured image represents a homogeneous solution. Figure 6.10 (b) and
(c) show that the normalized amplitudes of the components are also spatially
homogeneous, also as expected from the homogeneity of the solution.

6.7 Conclusions

A feasibility study has been made to investigate the use of the TIMP package
of R for the analysis of FLIM data. In the course of the study new options for
the fitting and validation of FLIM images with the package were developed.

In a simulation study the package was shown to return satisfactory estimates
of both lifetime and amplitude parameters, the latter of which are estimated as
conditionally linear parameters. On a real dataset it was possible to resolve
the contributions of two components known to exist in terms of lifetime and
amplitude estimates known from the literature, which further confirms the ap-
plicability of the partitioned variable projection fitting algorithm that TIMP
implements to modeling FLIM images.

Future work will apply TIMP to the analysis of further experimentally col-
lected FLIM data. Energy transfer between components will be modeled using
the compartmental modeling options for TIMP described in Chapter 5 of this
monograph. Implementation of a graphical user interface (GUI) to facilitate
interactive model validation is also planned, along with a study to benchmark
and optimize the package for speed on problems in FLIM analysis. Furthermore,
an analogue of variable projection for the case of Poisson noise is of interest to
develop and implement.
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Chapter 7

Global analysis of multiple
gas chromatography mass
spectrometry (GC/MS)
data sets1

7.1 Introduction

Global analysis methods are widely used in time-resolved spectroscopy to resolve
components and to estimate the physico-chemical parameters that describe the
system of interest. For review see van Stokkum et al. (2004); van Stokkum
(2005). In this feasibility study it is investigated whether this methodology
can also be applied in hyphenated methods, in particular gas chromatography
mass spectrometry (GC/MS). GC/MS is a popular technique in metabolomics,
where many samples have to be analyzed and compared with respect to the
identity and abundance of metabolites (Tikunov et al., 2005; Ryan and Ro-
bards, 2006; Last et al., 2007). A simultaneous analysis of the many data
sets is mandatory to extract the most information, and a statistical model is
needed to deal with systematic and random errors. In Chapter 8, the results will
be compared with alternative non-parametric methods like Multivariate Curve
Resolution-Alternating Least Squares (MCR-ALS) (Tauler et al., 1995; Tauler,
1995; de Juan and Tauler, 2003), which is a self-modeling method (Garrido
et al., 2008).

Global analysis methodology is based upon a parametrized model of the
observed data, including random (and possibly also systematic) errors. The
model usefulness is judged by the quality of the fit and by the biophysicochem-
ical interpretability of the estimated parameters (parameters that describe the

1A version of this chapter will appear as van Stokkum, Mullen, and Mihaleva (2008a) in
Chemometrics and Intelligent Laboratory Systems.
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elution profile and mass spectra of components). Advantages of the method are
most evident with multiple data sets and overlapping elution profiles. Differ-
ences between data sets are described by alignment parameters and by relative
amplitude parameters. The estimated mass spectrum is identical between ex-
periments. Critical is the assumed shape of the elution profile, for which we took
an exponentially modified Gaussian (EMG). The quality of the fit is judged by
the magnitude of the residuals and their structure and by the precision of the
estimated parameters. Outliers and saturation effects can be dealt with system-
atically.

In Section 7.2, the global analysis method is detailed. In Section 7.3 the
results from four case studies using already published data (Jonsson et al., 2005;
Tikunov et al., 2005) are presented and discussed. Also the adequacy of the
EMG shape is evaluated. Section 7.4 contains conclusions.

7.2 Methods

The aim of global analysis is to obtain a model-based description of the full
data set in terms of a model containing a small number of precisely estimated
parameters.

7.2.1 Modeling an elution profile

The elution profile is described by an exponentially modified Gaussian (EMG)
function which is the convolution of a Gaussian instrument response function
with parameters λ and ∆ for, respectively, location and full width at half max-
imum, FWHM, with an exponential decay with rate k as

c(t, λ,∆, k) =
exp(−kt)

2
exp(k(λ+ k

∆̃2

2
))


1 + erf

»
t− (λ+ k∆̃2)√

2∆̃

–ff
(7.1)

where ∆̃ = ∆/(2
√

2 log(2)) and t is time.
With a positive decay rate k the elution profile exhibits a tail. To describe

fronting, a negative decay rate k can be used. Then the time argument (t− λ)
must be reversed yielding

cfronting(t, λ,∆, k) =
exp(−kt)

2
exp(k(−λ+ k

∆̃2

2
))


1 + erf

»
λ− t− k∆̃2

√
2∆̃

–ff
(7.2)

The EMG function is the most common peak shape in chromatography (Marco
and Bombi, 2001).

7.2.2 Global analysis

The basis of global analysis is the superposition principle, which states that
the measured data ψ(t, µ) (where µ means the mass-to-charge axis) result from
a superposition of the mass spectrum Sl(µ) of the components present in the
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system of interest weighted by their concentration cl(t)

ψ(t, µ) =
ncomp∑
l=1

cl(t)Sl(µ) (7.3)

where ncomp is the number of components. The cl(t) of each component is
described by an EMG function with parameters kl, λl,∆l. Thus the model
reads

ψ(t, µ) =
ncomp∑
l=1

cl(t, λl,∆l, kl)Sl(µ) (7.4)

Above the stochastic element of the model is neglected; throughout we assume
that it is comprised of additive Gaussian white noise.

For an additional experiment p we assume that the shape parameters kl
and ∆l are independent of experiment, and introduce alignment parameters λp
(assumed to be identical for all components), and amplitude parameters al,p,
yielding a model parametrized as

ψp(t, µ) =
ncomp∑
l=1

c(tl, λl + λp,∆l, kl)al,pSl(µ) (7.5)

When the shape varies with experiment, or when the alignment varies between
components because of interaction, additional parameters can easily be intro-
duced.

7.2.3 Parameter estimation

For each component the cl(t) is described by an EMG function with three param-
eters kl, λl and ∆l. Each additional experiment p requires one time shift parame-
ter λp for alignment, and ncomp amplitude parameters a = [a1,p, a2,p, . . . , ancomp,p]
representing the amplitude of each component, so that we end up with (2 +
nexp)ncomp + nexp − 1 intrinsically nonlinear parameters for nexp experiments.
The mass spectra S contain ncompnµ parameters, where nµ is the number of
masses represented by the data, so that the number of parameters represented
by S is typically on the order of 103. These parameters, however, are condi-
tionally linear, and can be eliminated analytically from the problem using the
variable projection method reviewed by Golub and Pereyra (2003). Note that in
this way the model fitting process proceeds much more efficiently. Since negative
values of S cannot be interpreted, these parameters are constrained to nonnega-
tive values. The incorporation of nonnegativity constraints on the conditionally
linear parameters S within global analysis is described by Sima and Van Huffel
(2007) and Chapter 4 of this monograph, and is implemented using a nonneg-
ative least squares (NNLS) algorithm by Lawson and Hanson (1974, 1995). A
background contribution may be assumed to be constant in the time window
analyzed (and has only a mass spectrum, but no parameters). More complex
formulations of the background contribution are possible by introduction of a
slope parameter or some other more flexible parametric description.
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7.2.4 Residual analysis

The residual matrix is analyzed using a singular value decomposition (SVD):

ψres(t, µ) = ψ(t, µ)− ψfit(t, µ) =
m∑
i=1

ui(t)siwTi (µ) (7.6)

where ui and wi are the left and right singular vectors, si are the sorted singular
values, and m is the minimum of the number of rows and columns of the data
matrix. When multiple experiments are simultaneously analyzed the residual
matrices are concatenated. Extra measures are needed to identify residuals that
are caused by detector saturation, and to identify outliers.

A residual caused by detector saturation is defined by ψres(t, µ) > α1ψfit(t, µ)
and ψ(t, µ) > α2, where α1 and α2 are values that depend upon the experiment.
This definition depends upon ψfit and thus must be determined iteratively.

To identify outliers all residuals at a particular mass-to-charge (m/z) value
of experiment p are sorted, and the Lower and Upper Fourth are determined,
and the Fourth Spread. Then the Lower Limit (LL) and Upper Limit (UL) are
defined as

LL = Lower Fourth− α · Fourth Spread (7.7)
UL = Upper Fourth + α · Fourth Spread (7.8)

The data points associated with residuals outside these Lower and Upper Limits
are identified as outliers (Tukey, 1977). Experimentally we found that a typical
value of α useful in the context of GC/MS data is 5. A low weight is applied to
huge signals that can saturate the detector e.g. the trimethylsilyl (TMS) peak
at m/z 73. Likewise, low weights are applied to outliers and residuals caused by
detector saturation (estimated by the above procedures). High weights can be
applied to characteristic masses provided the signal-to-noise ratio is sufficient.
Instrument nonlinearity is currently neglected, but in principle it could be in-
cluded in the model function. The global analysis method developed here was
applied to two large sets of data, namely tomato data sets described in Tikunov
et al. (2005) consisting of 37 different tomato fruit varieties, and standard mix-
ture data described in Jonsson et al. (2005) comprising samples with up to 101
different chemical compounds. No preprocessing was applied to the data, except
for a baseline correction when needed.

7.2.5 Refinement

After a global analysis a further refinement is possible. The estimated mass
spectra can be used in a weighted NNLS fit for each time point of each dataset
p to estimate the amplitudes of the concentrations, so that ct in ψWpt = SW ct
has solution

ct = NNLS(SW , ψWpt ) (7.9)

where the superscript W is used to indicate that weights are applied, and ψWpt
is a column vector of all masses at time t of experiment p. SW is the weighted
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matrix of estimated mass spectra. The refinement provides an opportunity to
check the assumed peak shape and peak resolution.

7.2.6 Identification

The estimated mass spectra were searched against the NIST05 library (Aus-
loos et al., 1999) extended with the Golm mass spectral library (Kopka et al.,
2005) of derivatized compounds. For each spectrum 10 hits were retrieved. The
matching factors reported by the MS Search 2.0 program (Ausloos et al., 1999)
are between 0 (no match) and 1000 (perfect match). Two different values for
the matching factors, MF and RMF, are reported. In the calculation of MF the
experimental spectrum is used as a template, whereas for RMF the template is
the library spectrum. Comparable MF and RMF values indicate that there are
no additional and/or missing values in either of the spectra. To increase the
reliability of the identification we have included the retention index (RI) in the
evaluation of the library hits. However, RI data are available for only a small
fraction of the compounds in the NIST05 library. Therefore we have used a re-
cently developed quantitative structure-retention index model (Mihaleva et al.,
2008) for the estimation of RI based upon the structure of the compounds.

7.3 Results and Discussion

We successfully performed over 100 case studies on selected time windows us-
ing different amounts of datasets, from which we present here four illustrative
examples. The first and second case study presented in Section 7.3.1 are re-
ferred to as Tomato I and Tomato II, respectively, while the first and second
case study described in Section 7.3.2 are referred to as Mixture I and Mixture
II, respectively.

7.3.1 Tomato data

The case studies here demonstrate the ability of global analysis to resolve two
overlapping components and resolve correct mass spectra in the case of satu-
ration effects (case study Tomato I) and the ability to resolve six overlapping
peaks (case study Tomato II).

In case study Tomato I, we use six tomato samples (e.g., datasets) and focus
on a small part of the chromatogram where two components clearly overlap.
At m/z values of 70 and 71 the peak location is below RI 787 and above RI
788, respectively, indicating that these are characteristic masses, whereas at an
m/z value of 67 both components contribute almost equally. These six data
sets (shown at selected m/z values in Figure 7.1) were simultaneously analyzed,
resulting in the mass spectra of Figure 7.4. Both mass spectra were successfully
identified as elaborated in Table 7.1. The mass spectra at RI 786.6 was identified
as 3(Z)-Hexenal. The first five hits retrieved from the library had very similar
MF and RMF values but their RI’s differed. Using both the matching factors
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Figure 7.1: Tomato I. Representative traces (aligned with estimated shift pa-
rameters) below saturation threshold at m/z values of 67, 70 and 71. Colors
indicate the six different data sets, solid lines are data and dashed lines indicate
fit.

Figure 7.2: Tomato I. Representative traces (aligned with estimated shift pa-
rameters) above saturation threshold at m/z values of 41, 56 and 69. Colors
indicate the six different data sets, solid lines are data and dashed lines indicate
fit. Symbols indicate saturation data points. The two tails of the peak are
connected by straight lines.

and RI, 3(Z)-Hexenal was selected as the best hit. The component at RI 788.5
was identified as Hexanal. There was a much larger difference between the MF
values of Hexanal and the rest of the hits. Also, the predicted RI was close to
that estimated in the experiment. These two compounds have been previously
identified in tomato samples (Tikunov et al., 2005; Petro-Turza, 1987)

The estimated FWHM parameters are 1.6 and 1.7 RI units, and the locations
of these two peaks are somewhat more than one FWHM apart. The estimated
decay rate parameters are both about 0.8/RI, indicating appreciable tailing.
These components could not be reliably resolved by analysis of individual data
sets using e.g. the Automated Mass Spectral Deconvolution and Identification
System (AMDIS) program (Stein, 1999). The estimated elution profiles are
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Figure 7.3: Tomato I. Estimated elution profiles with colors indicating the two
components (corresponding to those in Figure 7.4), and linetypes indicating
the different experiments. The contribution of each component to each data
set is the product of each elution profile times the associated normalized mass
spectrum times the scaling factor 10259207.

Figure 7.4: Tomato I. Normalized mass spectra with location λ of peak maxi-
mum indicated in the upper right corner.

depicted in Figure 7.3. Note that the amount of component present in the data
sets varies appreciably, as indicated by the different linetypes.

Examples of saturation are depicted in Figure 7.2. Note that at these masses
most of the peak is clipped, and it is essential to reconstruct the original shape
using the unclipped tails of the elution profile. In this way a reliable estimate
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of the mass spectrum can also be made at these critical masses. It turns out
that this is essential for adequate identification of the compounds present in the
samples. From a further in depth analysis of the residuals (visible as systematic
misfit at e.g. the µ value of 41) we infer that a small instrument nonlinearity
may be present. In this way, these two overlapping components have been
successfully analyzed in 37 different tomato varieties simultaneously.

In the case study Tomato II we present an in-depth analysis of a much
smaller peak around RI 1042 in six tomato samples.

Note the large differences in the shapes of the elution profiles in Figure
7.5, and also the differences in the amplitudes of the datasets, as indicated
by the different colors. E.g., at m/z values of 58 and 99 the cyan and red
are largest, peaking near RI 1043, whereas at 57 green and blue dominate,
peaking somewhat earlier, and at 105 blue and black dominate. To describe
these differences six components were needed to fit the data, whose mass spectra
are shown in Figure 7.7. In this region Tikunov et al. (2005) have identified the
components at RI 1039.4 and 1042.8 as Benzyl alcohol and 2-Isobuthylthiazole.
These compounds were found as the best hits also in our analysis (see Table
7.1). The component at RI 1042.0 was identified as 5-Methyl-2(5H)-furanone,
a compound recently found to be present in small amounts in tomato (Buttery
and Takeoka, 2004). The best hit for the component at RI 1041.2 was that of
a chlorinated acid. Both the MF and RMF values were very low which makes
the identification doubtful. Also, only a few chlorinated compounds have been
identified in tomato (Petro-Turza, 1987). Unsaturated alcohol (3,5-Octadien-2-
ol) and ketone (5-Methyl-3-Hepten-2-one) had very similar MF and RMF values
with the mass spectra at RI 1040.6. The RI’s were also close to the experimental

Figure 7.5: Tomato II. Representative traces (aligned with estimated shift
parameters) at m/z values between 57 and 109. Colors indicate the different
data sets, solid lines are data and dashed lines indicate fit.
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Figure 7.6: Tomato II. Estimated elution profiles with colors (corresponding
to those in Figure 7.7) indicating the six components, and linetypes indicating
the different experiments. The contribution of each component to each data
set is the product of each elution profile times the associated normalized mass
spectrum times the scaling factor of 519121. In order to improve visibility of
the small concentrations, we have used a square root scaling of the maxima.
Thus e.g. the black concentration maximum at about 0.1 corresponds to a true
maximum of about 0.01.

Figure 7.7: Tomato II. Normalized mass spectra with location λ of peak max-
imum indicated in the upper right corner.
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name RI MF RMF RIlit RIpred
3(Z)-Hexenal 786.6 842 843 799 813
Hexanal 788.5 901 902 784 827
Benzyl Alcohol 1039.4 898 902 1026 1006
3,5-Octadien-2-ol 1040.6 723 738 – 1095
5-Methyl-3-hepten-2-one 1040.6 716 758 – 966
Chloro-2-hydroxy-propanoic acid 1041.1 613 643 – 1081
5-Ethyl-2(5H)-Furanone 1042.0 844 865 952 1004
2-Isobutylthiazole 1042.8 841 861 1013 1122
1-ethyl-4-methyl-Benzene 1043.3 598 711 952 1009

Table 7.1: Identifications for Tomato I and II case studies described in Section
7.3.1.

value. These two compounds have not been identified in tomato but other
unsaturated alcohol and ketones are known to be present. There was a large
difference between the MF and RMF values for the hits of the mass spectrum at
RI 1043.3. This is an indication that the extracted mass spectrum is not pure
probably due to the small contribution of the component. The hit list for this
component contained compounds with very different RI’s. The best hit based
on RI was for 1-Ethyl-4-methyl-benzene, a compound known to be present in
tomato (Petro-Turza, 1987).

The estimated elution profiles of the components are depicted in Figure
7.6. The estimated FWHM parameters are again around 1.6 RI units, thus the
locations of these six components are within a range of 2.5 FWHM.

Note that the contributions of the fifth and sixth component (indicated by
cyan, and black) are very small, as evident from Figure 7.6. Nevertheless they
can be reliably estimated from these six tomato varieties.

7.3.2 Standard mixture data

Two benefits of global analysis will be illustrated in turn with case studies Mix-
ture I and Mixture II on standard mixture data from Jonsson et al. (2005).
The data were previously analyzed in Jonsson et al. (2005) with a self-modeling
method, hierarchical MCR-ALS. The example in Mixture I shows the ability of
global analysis to resolve components with small amplitude relative to a large
peak nearby. The ability of global analysis to resolve highly overlapping com-
ponents is illustrated by the example in Mixture II. Both examples will proceed
using only a small amount of data (6 or 3 data sets), whereas Jonsson et al.
(2005) used a large amount of designed data (62 data sets) that are analyzed
simultaneously. The data are designed in that the concentration of some com-
ponents is made to vary between datasets. Four representative traces from six
standard mixture datasets are depicted in Figure 8. Note that the peak at
m/z = 327 is about 200 times smaller than the maximum of the next peak at
m/z values of 73 and 219. Furthermore the presence of the baseline aggravates



7.3. RESULTS AND DISCUSSION 141

Figure 7.8: Mixture I. Representative traces (aligned with estimated shift
parameters) at m/z values between 73 and 327. Colors indicate the six different
data sets, solid lines are data and dashed lines indicate fit.

Figure 7.9: Mixture II. Representative traces (aligned with estimated shift pa-
rameters) at m/z values of 218, 308 and 324. Colors indicate the three different
data sets, solid lines are data and dashed lines indicate fit.

this resolution problem.
The red mass spectrum in Figure 7.11 was identified as trans-caffeic acid-

3TMS (MF 949, RMF 949), and the green baseline spectrum shows TMS related
peaks near 73 and 147. The blue and black mass spectra could not yet be
identified. Although hits with relatively good matching factors were retrieved,
the library RI’s for these compounds did not match the experimental RI. The
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global analysis algorithm with nonnegativity constraints on the mass spectra
results in estimates for the black mass spectrum that are zero at masses below
217. Apparently it was not possible to estimate its small amplitude (relative to
the huge caffeic acid peak) near e.g. m/z = 73. The estimated elution profiles
of the components depicted in Figure 7.10 highlight the small black component
contribution.

Figure 7.10: Mixture I. Estimated elution profiles with colors (corresponding
to those in Figure 7.11) indicating the four components, and linetypes indicating
the different experiments. The contribution of each component to each data
set is the product of each elution profile times the associated normalized mass
spectrum times the scaling factor of 243828. In order to improve visibility of
the small concentrations, we have used a square root scaling of the maxima.
Thus e.g. the black concentration maximum at about 0.05 corresponds to a
true maximum of about 0.0025.

Figure 7.11: Mixture I. Normalized mass spectra with location λ of peak
maximum indicated in the upper right corner. Zero is the baseline spectrum.
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name RI MF RMF RIlit
L-tyrosine 1938.9 795 882 1939
galacturonic acid 1938.9 755 816 1940
coniferylalcohol 1940.6 911 931 1944
trans-p-coumaric acid 1941.2 887 900 1947
galacturonic acid 1942.8 841 874 1961
trans-caffeic acid (3TMS) 2133.1 949 949 2141

Table 7.2: Identifications for case studies Mixture I and Mixture II described in
Section 7.3.2.

The analysis for the Mixture I case study concerns the region from RI 2110-
2134. Likewise we analyzed all bands in the region from Retention Index 1902-
2433 in small time windows, using only 3 or 6 of the datasets simultaneously.
Compared to the hierarchical MCR-ALS methodology described in Jonsson et al.
(2005), global analysis resolves many more small components using only a very
limited amount of data. The Mixture II case study concerns a particularly diffi-
cult overlap region from Retention Index 1938-1945. Five different components
are present, with two pairs almost completely overlapping. In the three differ-
ent data sets the amounts of these overlapping components were different by
experimental design, thus allowing to resolve them (analogous to the natural
component variability with tomato varieties).

Note the large differences in the shapes of the elution profiles at the three
characteristic masses in Figure 7.9, and also the differences in the amplitudes of
the datasets, as indicated by the different colors. The estimated mass spectra
shown in Figure 7.13 were successfully identified, and the matching factors are
shown in Table 7.2. Strikingly, just outside of this region two more mass spectra
were identified as galacturonic acid at RI 1930 (MF 808 / RMF 829) and RI 1953
(MF 862 / RMF 875). Jonsson et al. (2005) only reported two galacturonic acid
peaks at RI 1940.2 and 1956.5. The difference between our RI 1953 and their
RI 1956.5 can be well explained by absolute alignment uncertainty. They also
report trans-p-coumaric acid at 1943.5 and coniferylalcohol at 1942.8, which is
also about 3 RI units higher. Alignments of 3 RI units between their samples
are common. We currently have no explanation for the two extra putative
galacturonic acid peaks at RI 1930 and RI 1942.8. The estimated elution profiles
of the components depicted in Figure 7.12 demonstrate again the importance of
amplitude variability for the resolution of overlapping components. Note also
that the solid red elution profile is delayed relative to the dotted and dashed
one.

7.3.3 Refinement of results

To further check the adequacy of the assumed EMG peak shape, we estimated
concentration profiles according to the refinement described in Section 7.2.5.
The profiles in Figure 7.14 are very similar to the EMG shapes in Figures 7.3,
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Figure 7.12: Mixture II. Estimated elution profiles with colors (corresponding
to those in Figure 7.13) indicating the five components, and linetypes indicating
the different experiments. The contribution of each component to each data
set is the product of each elution profile times the associated normalized mass
spectrum times the scaling factor of 538383.

Figure 7.13: Mixture II. Normalized mass spectra with location λ of peak
maximum indicated in the upper right corner.

7.6, 7.10, and 7.12. The improvement in the weighted root mean square error of
the fit was 36% and 15% in case studies Tomato I and II, and 29% and 58% in
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case studies Mixture I and II. The green elution profiles of Mixture II deviate
most from an EMG peak shape.

Figure 7.14: Elution profiles estimated for the four case studies considered in
Sections 7.3.1 and 7.3.2 after the refinement described in Section 7.2.5, with the
scaling conventions as in Figures 7.3, 7.6, 7.10, and 7.12.

7.4 Conclusions

Benefits of global analysis are: (1) direct quantitative estimation of parameters
of interest, and (2) the quality of the fit can be judged from residual analysis.
The parameters of interest are the mass spectra of the components, and their
elution profiles, in particular the Retention Index that can be calculated from
the location parameter. The precision of these parameters can be estimated as
well. If the singular vectors of the residual matrix show only little structure,
this indicates that the data have been fitted up to the noise level, and thus all
information has been extracted. If they do show structure, this can indicate that
the assumed EMG shape is not fully adequate, or it can indicate that an extra
component is needed to fit the data. These benefits apply when analyzing single
or multiple datasets. However, with simultaneous global analysis of multiple
datasets there are more benefits. Overlapping components can more easily be
resolved when they are present in different amounts, which occurs naturally
when comparing biological samples. The estimated parameters (in particular
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the mass spectra) are more robust against systematic measurement errors. The
nuisance parameters (most importantly for alignment) can be directly estimated
as well. The model allows the imposition of common shapes for elution profiles
across data sets, and common retention time differences between components
across data sets.

Outliers and saturation effects can be dealt with systematically.
Compared to hierarchical Multivariate Curve Resolution (a self modeling

method described in e.g., Jonsson et al. (2005)) it appears that global analysis
resolves many more small components using only a very limited amount of
data. The strengths and limitations of global analysis as a component resolution
methodology will be compared to those of MCR-ALS by means of simulation in
Chapter 8.

Acknowledgments

Yury Tikunov and Harrie Verhoeven of Plant Research International kindly pro-
vided the tomato data discussed in Section 7.3.1. Thomas Moritz, Pär Jonsson
and Krister Lundgren from Ume̊a Plant Science Center generously provided the
standard mixture data described in Section 7.3.2. Francel Verstappen, Egon
Willighagen, Arjen Lommen, Hans van Beek, Thomas Binsl, Yury Tikunov and
Harrie Verhoeven are thanked for helpful discussions. An author of the version
of this chapter submitted for publication, Velitchka V. Mihaleva, was supported
by the Netherlands Bioinformatics Centre (NBIC).



Chapter 8

Resolution of co-eluting
components in mass
spectrometry data via
multivariate curve
resolution alternating least
squares and global analysis
1

8.1 Introduction

The component resolution problem for a m×n matrix of data D1 can be stated
as the problem of estimating the matrices C1 and S from D1 in

D1 = C1S
T (8.1)

such that the matrix C1 is m×ncomp, and each column represents the evolution
of a component of D1 in the variable with which the rows of D1 are resolved,
and such that the matrix S is n× ncomp, and each column represents the com-
ponent of D1 in the variable with which the columns of D1 are resolved. For
chemistry applications the components often correspond to the different chemi-
cal compounds in the sample underlying the measurements, and the problem is
sometimes referred to as deconvolution.

1A version of this chapter will appear as van Stokkum, Mullen, and Mihaleva (2008a) in
Chemometrics and Intelligent Laboratory Systems.

147



148 CHAPTER 8. SIMULATION STUDIES IN MODELING GC/MS DATA

It is often of interest to perform component resolution of many related data
matrices D1, . . . , DK simultaneously, where the datasets are related in that they
represent components with the same properties in the variable with which the
columns of Di are resolved, giving rise to the equation

D1

D2

...
DK

 =


C1

C2

...
CK

ST (8.2)

By analogues of the Beer-Lambert law, the linear relation contained in Equations
8.1 and 8.2 well-describes many varieties of two-way data arising in spectroscopy
and spectrometry experiments. The stochastic element of the model is neglected
in Equations 8.1 and 8.2, but is often assumed to be comprised of additive
Gaussian white noise, as we will assume throughout.

Algorithms to solve the component resolution problems as formulated above
may be roughly categorized as those that use constraints but no parametric
model, and those that employ a parametric (that is, functional) description for
some aspect of the data. The former category of algorithms are often termed self-
modeling curve resolution (SMCR) techniques, and have been recently reviewed
(Jiang et al., 2004). An important self-modeling curve resolution technique that
we will concentrate on here is multivariate curve resolution alternating least
squares (Tauler et al., 1995; Tauler, 1995; de Juan and Tauler, 2003), which has
a long and successful history of application to a variety of analytical problems
(Garrido et al., 2008).

The class of algorithms that employ a parametric model for some aspect of
the data includes global analysis algorithms that describe each component of Ci
in terms of a nonlinear function, and treat the entries of S as conditionally linear
parameters that are not described functionally. Global analysis methods have
been widely applied to component resolution problems in spectroscopy (Golub
and LeVeque, 1979; Nagle, 1991b; van Stokkum et al., 2004) and microscopy
(Pelet et al., 2000; Verveer et al., 2000) applications, where the optimized pa-
rameters of the functional description of Ci are interpreted physically, allow-
ing insight into the dynamical processes underlying the data. Applications of
global analysis are described more fully in Chapters 5 and 6 of this monograph.
Methods that are hybrid in the sense that they use MCR-ALS to iteratively
improve estimates for C1, . . . , CK and S, but refine the MCR-ALS estimates for
C1, . . . , CK by fitting them with a parametric model each time C1, . . . , CK is
updated have also been investigated (de Juan et al., 2001, 2000).

In this study, we will consider MCR-ALS and global analysis for component
resolution problems in mass spectrometry data. Whereas MCR-ALS has a well-
developed history of successful application in this domain (Jonsson et al., 2005;
Peré-Trepat et al., 2007; Mas et al., 2007; Peré-Trepat et al., 2005), software
tools for the application of global analysis methods to mass spectrometry data
are described here for the first time. Chapter 7 describes via several case studies
a proof-of-concept of the utility of global analysis for component resolution
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Figure 8.1: The plots on the left depict slices of a chromatogram in which
overlapping elution profiles are represented, shown in the plots on the right.
The elution profiles in the top plots are overlapping, but not completely so,
allowing a variety of algorithms to be applied for component resolution. The
plots on the bottom involve completely overlapping components, and only by
simultaneously analyzing datasets in which the amplitudes of the components
vary is resolution possible, with either MCR-ALS or global analysis.

problems arising in gas chromatography mass spectrometry data.
Mass spectrometry data associated with a particular sample is often stored

as a matrix Di resolved with respect to time and mass-to-charge ratio (m/z),
so that each data point is a count of the number of molecular fragments hav-
ing a given m/z measured at a given time. Then Ci represents elution profiles
of components in time and S represents mass spectra. The aim of component
resolution in the context of mass spectrometry datasets D1, . . . , DK is to deter-
mine the mass spectra of components and, possibly, obtain the retention times
of components, which is the time at which an elution profile is maximal. Esti-
mated mass spectra and retention times are matched against mass spectra and
retention times of known compounds stored in a library (Stein and Scott, 1994),
allowing the compounds represented by the estimated spectra to be identified.
The relative concentration of a particular component k in the samples repre-
sented by datasets Di and Dj may be estimated by the quotient between the
area of the estimated elution profiles of the component, that is, by Ci[, k]/Cj [, k].

In the case that the elution profiles of two or more components are overlap-
ping, the components are said to be co-eluting, as in Figure 8.1. If the profiles
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overlap exactly and have the same shape, as in the bottom panel of Figure
8.1, only by analyzing several datasets simultaneously in which the amplitude
of the profiles varies are the components possible to resolve. Much attention
has been paid to the resolution problem in the case of co-eluting components
(Tauler, 1995; Peré-Trepat et al., 2005). MCR-ALS is currently considered to
be the unique method capable of resolving components in the case of completely
overlapping elution profiles (Jonsson et al., 2005). We present global analysis as
an alternative component resolution methodology for the case that compounds
are completely co-eluting, and make available open source implementations of
MRC-ALS and global analysis in the form of packages for the R language and
environment (R Development Core Team, 2008), so that others may reproduce
the examples discussed here and possibly extend the methodology.

The remainder of this study is organized as follows: Sections 8.2 and 8.3
introduce MCR-ALS and global analysis, respectively. Section 8.4.1 shows the
performance of the methods in terms of the matching factor of estimated mass
spectra in a simulation study inspired by gas chromatography mass spectrometry
(GC/MS) data discussed in Chapter 7. Section 8.6 contains conclusions.

8.2 Multivariate curve resolution alternating least
squares (MCR-ALS)

While MCR-ALS has been presented many times in the literature, we present
it here again in order to make the rest of discussion of the methodology more
concrete. Since it is known in advance that negative values in an elution profile
or mass spectra are not physically interpretable, we present the basic algorithm
with non-negativity constraints on both C1, . . . , CK and S.

Algorithm 1 MCR-ALS(C1, . . . , CK , S,D1, . . . , DK)

1: DAll := rbind(D1, . . . , DK)
2: for i = 1, 2, . . . , until stopping criteria are met do
3: if i is even then
4: S := getS(C1, . . . , CK , S,DAll)
5: else
6: C1, . . . , CK := getC(C1, . . . , CK , S,D1, . . . , DK)
7: end if
8: end for
9: return C1, . . . , CK , S

Algorithm 1 alternates calls to Algorithms 2 and 3, optimizing C1, . . . , CK
and S according to non-negative least squares criteria while considering either
S or C1, . . . , CK as fixed. The stopping criterion is usually based on the change
in the residual difference between two iterations falling beneath some thresh-
old. Note that ‘rbind’ refers to binding matrices together along their rows, and
‘nrow’ and ‘ncol’ refer to the number of rows and columns in a given matrix,
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respectively. ‘NNLS’ refers to a non-negative least squares algorithm such as
that of Lawson and Hanson (1974, 1995), a FORTRAN implementation of which
is freely available via the Netlib repository (Browne et al., 1994) and in the R
package nnls (Mullen and van Stokkum, 2007a).

Algorithm 2 getS(C1, . . . , CK , S,DAll)

1: CAll := rbind(C1, . . . , CK)
2: for i = 1, 2, . . . ,ncol(DAll) do
3: S[i, ] := NNLS(CAll, DAll[, i])
4: end for
5: return S

Algorithm 3 getC(C1, . . . , CK , S,D1, . . . , DK)

1: for j = 1, 2, . . . ,K do
2: for i = 1, 2, . . . ,nrow(Dj) do
3: Cj [i, ] := NNLS(ST , Dj [i, ])
4: end for
5: end for
6: return C1, . . . , CK

In practice, Algorithm 1 is often modified to include other constraints on
C1, . . . , CK and S, the most important of which are described in Section 8.2.1.
Before MCR-ALS based on Algorithm 1 can be applied, it is necessary to decide
what constraints to include, what number of components (i.e., columns of Cj
and S) to use, and what the starting estimates for either C1, . . . , CK or S should
be. These prerequisites are described in turn.

8.2.1 Constraints for use in MCR-ALS

While MCR-ALS works in the absence of a parametric model, it allows the
application of constraints to the elution profiles and mass spectra. Commonly
applied constraints include non-negativity of the elution profiles and mass spec-
tra (Bro and Jong, 1997; Benthem and Keenan, 2004), unimodality of elution
profiles (Bro and Sidiropoulos, 1998), selectivity or equality constraints that ac-
count for intervals of data or datasets where a component is known to have zero
amplitude or known amplitude (Tauler et al., 1995), and normalization or clo-
sure constraints that help avoid problems associated with intensity ambiguities
(Tauler, 2001).

Unimodality constraints may be desirable in the case that the estimated
elution profiles returned by Algorithm 1 have a bi-or-multi-modal shape that
is believed to be unlikely given knowledge of the experimental set-up. For the
application of unimodality constraints a simple modification of Algorithm 1
suffices; before returning an elution profile, the unimodal vector that is closest to
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the estimated elution profile in a least squares sense is determined and returned.
The unimodal vector to be returned may be efficiently determined via a method
based on isotonic regression (Turner and Wollan, 1997) and implemented in the
R package Iso (Turner, 2005).

In the case that it is known that a component is not present in a given
dataset, a selectivity constraint may fix its elution profile to zero (likewise, if
the component has a known elution profile, the profile may be fixed at the
known shape). A heuristic that has been successfully applied to the analysis
of GC/MS datasets checks if the retention time of an elution profile is within
some threshold value of the median retention time for that component over all
datasets. If not, the elution profile is set to zero (that is, its contribution is
removed) in the deviating dataset (Jonsson et al., 2005).

Normalization and closure constraints, which are discussed in more detail
elsewhere (Tauler, 2001), may be of use to deal with the problem of intensity
ambiguity. For any scalar m and elution profile ci and mass spectrum sTi ,
cim(1/m)sTi = cis

T
i , meaning that increasing the estimate of ci by a factor of m

gives a model that fits the data equally well, as long as the mass spectrum sTi is
multiplied by a factor of 1/m. The normalization constraint is typically applied
to the spectra, and may constrain ‖sTi ‖2 = 1, or constrain the maximum of sTi
to be one. A closure constraint is usually implemented on the rows C1, . . . , CK ,
and constrains the sum of the elements of each row of matrix Cj to be equal
to a known constant, as for instance is desirable for reaction-based systems,
where the elution profiles obey a mass balance equation. Typically application
of either normalization or closure is desirable, but not both types of constraint
simultaneously.

8.2.2 Data selection and pre-processing

In the case that the mass spectrometry data contain on the order of 1-10 compo-
nents, it is possible to treat all data at once. Otherwise, for the case of complex
samples containing hundreds or thousands of different components, the reso-
lution problem is approached by dividing the datasets into time intervals, so
that data D1, . . . , DK represent time windows of the full data that contain on
the order of 1-10 components. Typically the time-windows are demarcated by
points of low intensity, so that each set of data matrices D1, . . . , DK contains
the entire elution profile of the represented components (Jonsson et al., 2005).

In addition to time-window selection, baseline subtraction, alignment of
datasets by peak matching and data smoothing are commonly performed prior
to application of MCR-ALS. These pre-processing techniques are something of
an art in themselves, and the optimal set of techniques is highly dependent on
the particular experimental conditions (Jonsson et al., 2005).

8.2.3 Number of components

While many heuristics exist in the literature for the determination of the number
of components present in a dataset Di, methods based on principal component
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analysis (PCA) (Wold et al., 1987) or a singular value decomposition seem most
popular (Golub and van Loan, 1996), and are based on the assumption that any
components to be resolved contribute more to the data than the noise term. For
application to spectroscopy data, a heuristic has been suggested that performs
MCR-ALS with an increasing number of components until the greatest number
of components is found such that the retention times of the estimated elution
profiles are in the same order in each dataset (Jonsson et al., 2005). If it is
known in advance that there is a baseline term in the data, it may be modeled
with an extra component not subject to unimodality constraints (Peré-Trepat
et al., 2005).

8.2.4 Starting estimates

Most heuristics for obtaining starting values derive estimates for C1, . . . , CK
as opposed to S. Popular methods to obtain starting values for C1, . . . , CK
involve the use of evolving factor analysis (Maeder, 1987) and the SIMPLISMA
algorithm (Jonsson et al., 2005; Windig and Guilment, 1991). Algorithm 1 is
sensitive to starting values in that both the final estimates for C1, . . . , CK and
S and the number of iterations required to meet stopping criteria depend on the
initial values of C1, . . . , CK or S.

8.3 Parametric model-based global analysis

The recovery of C1, . . . , CK and S from D1, . . . , DK can be approached via
global analysis methods based on a parametric model, as is described in Chap-
ter 7. In the mass spectrometry context, a parametric model is applied to the
description of the elution profiles C1, . . . , CK , so that each elution profile in
each dataset is described by a peak function such as the exponentially modi-
fied Gaussian (EMG). The process of model fitting optimizes the parameters
describing the elution profiles and treats the mass spectra as conditionally lin-
ear on their estimates. Usually the criterion optimized is the sum of squared
differences between the model evaluated at the parameter estimates and the
data. In this case the model fitting problem is an instance of separable non-
linear least squares, which is possible to address with the variable projection
algorithm (Golub and Pereyra, 2003). In mass spectrometry applications the
data represent counts and can be expected to behave as a Poisson distributed
stochastic process. Since the number of counts is usually large, minimization
of the actual log-likelihood function would offer very little improvement over
optimization of the sum of squared deviations (Maus et al., 2001). Negative
values of mass spectra have no physical interpretation so that it is desirable to
constrain their estimates to non-negative values, which is possible to accomplish
via the modification of the variable projection algorithm that adds constraints
to the conditionally linear parameters, as described in Chapter 4.
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8.3.1 Functions for the description of elution profiles

Many functions are possible to apply to the description of chromatographic
peaks (Marco and Bombi, 2001). The exponentially modified Gaussian (EMG)
function is the most popular in practice and can be used to describe a variety
of peak shapes with a relatively small number of parameters. It employs four
parameters, location λ, a full width at half-maximum (FWHM) ∆, rate k and
amplitude a to determine each elution profile c over a vector of times t as

c(t, λ,∆, k, a) = a
exp(−kt)

2
exp(k(λ+ k

∆̃2

2
))


1 + erf

»
t− (λ+ k∆̃2)√

2∆̃

–ff
(8.3)

where ∆̃ = ∆/(2
√

2 log(2)).
It is usually desirable to keep the total number of parameters describing the

elution profiles as low as possible, which renders the model better determined
and faster to optimize. This may often be accomplished by assuming that the
shape of the elution profile corresponding to a given component is the same
in C1, . . . , CK , but has an amplitude parameter that varies per-dataset. To
address the problem of intensity ambiguity, one of the amplitude parameters
is fixed for each component. The amplitude of each component is fixed in one
dataset, so that the other amplitudes describing the component are relative to
the fixed value and the model is well-determined. Provided all components are
present in the D1, it is often convenient to fix the amplitude parameters of all
components in this dataset to 1, while allowing all amplitude parameters in
datasets D2, . . . , DK to remain free.

8.3.2 Data selection and pre-processing

As in MCR-ALS (Jonsson et al., 2005), for global analysis the data is cut into
time windows so that D1, . . . , DK represent on the order of 1-10 components, as
described in Section 8.2.2. Instead of correcting for a baseline in the data, which
can be problematic in the case that its contribution is changing in time, global
analysis allows the possibility of modeling the baseline term as a component,
assigned its own mass spectrum. It is also possible to allow the parameter
describing the location of each elution profile to vary per-dataset, meaning that
pre-alignment is not a prerequisite for data analysis.

8.3.3 Number of components

The estimation of the number of components proceeds along the same lines as
for MCR-ALS, as described in Section 8.2.3. A baseline in the data may be
described as a time-invariant component.

8.3.4 Starting estimates

Starting estimates for global analysis may be estimated by obtaining starting
estimates as for MCR-ALS as described in Section 8.2.4, and then fitting the
desired functional description of the elution profiles to these estimates. The
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decision regarding which parameters to make common between elution profiles
in different datasets is at present made by hand, though automation would be
desirable. For numerical reasons, the starting values should not result in peaks
associated with precisely the same parameter values (shifting the location of one
peak slightly resolves any problems).

8.4 Comparison of the methods

MCR-ALS proceeds by iteratively solving constrained least squares problems,
whereas global analysis requires the solution of a nonlinear optimization problem
that usually takes the form of a separable nonlinear regression. For typical
problems, MCR-ALS will be much faster than global analysis (requiring on
the order of seconds as opposed to minutes). Furthermore, MCR-ALS requires
significantly less hand-work in determining the model form.

Global analysis describes the data using a small number of free parameters
as compared to MCR-ALS. For example, for the analysis of two datasets where
each dataset represents two components having elution profiles described by
an EMG with the same shapes but different amplitudes per-dataset, only 8
intrinsically nonlinear parameters parameters completely determine the model.
In contrast, the number of free parameters in each iteration of MCR-ALS is
equal to the number of entries in C1, . . . , CK or S. Whether the large number of
free parameters employed by MCR-ALS is an advantage or a liability depends
on the specifics of the component resolution problem. For datasets in which
the elution profiles are difficult to describe in terms of a model with a small
number of parameters, MCR-ALS may provide a significantly better fit, due
to its flexibility. However, as we will show in the remainder of this section,
the relatively large number of parameters used by MCR-ALS may preclude the
resolution of components in certain situations.

It is well-established that MCR-ALS is a useful and powerful component
resolution tool. Therefore we will not concentrate on examples in which MCR-
ALS is successful, which are abundant in the literature, but rather on those
problems in which it performs poorly in terms of the matching factor of the
estimated mass spectra as compared to global analysis. Many properties of the
data affect the performance of both algorithms, such as the presence or absence
of shape differences in the elution profiles, overlap/distance in time between
locations of the elution profiles, amplitude differences of components between
datasets, relative abundances of components, similarity of the underlying mass
spectra, signal-to-noise ratio of the data, starting values, and number of datasets
available for simultaneous analysis. The present study necessarily examines only
a subset of the problem instances possible to encounter as these properties vary,
though indicates some strengths and weaknesses of the algorithms that may be
extrapolated to many other cases.
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component 1 component 2
location 5754 5755
FWHM 7 7
rate 1 1

Table 8.1: Tabulated are the parameters for the two EMGs used to describe the
elution profiles in both datasets. The elution profiles have amplitudes 1 and 2,
respectively, in dataset 1, and amplitudes 1.5 and 2 respectively, in dataset 2.
The resulting EMGs are shown graphically in Figure 8.2.

8.4.1 A basic example

We consider an example in which the data consists of two simulated GC/MS
datasets that each represent two co-eluting components, shown in Figure 8.2,
with associated mass spectra shown in the top row of Figure 8.4. This simulated
data (shown in Figure 6.2) is inspired by the Mixture I case study described in
Chapter 7.3.2. The parameters for the EMGs used to simulate the elution
profiles are given in Table 8.1. The datasets represent integer time points 5720-
5800 and integer masses 50-449.

In order to introduce a stochastic element into the data (that is, noise) we let
a deterministic data point represent the parameter λ of a Poisson distribution.
The Poisson distribution has density

p(x) = λx exp(−λ)/x! (8.4)

for x = 0, 1, 2, . . .. The mean and variance are E(X) = V ar(X) = λ. The
signal-to-noise ratio (SNR) of a matrix of data with Poisson distributed noise
is defined to be the square root of the maximum deterministic data point. To
obtain data with SNR 1000 (which is encountered in GC/MS experiments) we
scale the deterministic simulated dataset to contain 106 counts in the maximum
data point, and then consider each data point to represent the λ in a Poisson
process via the R function rpois.

In order to judge how well an estimated mass spectrum s resembles the mass
spectrum u used in simulating the data, the normalized dot product matching
factor function

cos(u, s) =
u · s
‖u‖ ‖s‖ (8.5)

is useful (Stein and Scott, 1994; Alfassi, 2004). The normalized dot product
matching factor of the spectra shown in the top row of Figure 8.4 is almost 0,
as the spectra are very dissimilar. If the abundance ratio of components p and
q is defined as

ab(p, q) =
sum(Cj [, p]S[, p]T )
sum(Cj [, q]S[, q]T )

(8.6)

where Cj [, p] and Cj [, q] are the elution profiles p and q over all times, S[, p] and
S[, q] are the mass spectra p and q over all masses, and the sum function takes
the sum of all matrix elements. In this way Equation 8.6 represents the number
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Figure 8.2: The elution profiles represented in the two simulated datasets. In
dataset 1 (left) the profiles have slightly different amplitude compared to the
profiles in dataset 2 (right). Both components are represented by EMG func-
tions, with the location parameter of the first component (dark grey) 1 time
unit before that of the second component (light grey). Parameter values used
to generate these profiles over the vector of integer times 5720-5800 are given in
Table 8.1.

of counts contributed to the data by the component p divided by the number of
counts contributed by component q. Under this definition the abundance ratio
of component 1 to component 2 is ≈ 2.1 in dataset 1 and ≈ 3.1 in dataset 2;
the difference in abundance ratios between datasets is due to the difference in
the amplitude of the first elution profile.

In applying MCR-ALS to resolving components in the simulated data, we ap-
ply constraints for non-negativity of C1, . . . , CK and S, unimodality of C1, . . . , CK ,
and normalization of each mass spectrum such that the maximum value is one.
For global analysis, the mass spectra and amplitudes of the elution profiles are
constrained to non-negative values. The starting values for both MCR-ALS and
global analysis are taken to be the elution profiles used in simulation, but with
location parameters shifted to 5757 and 5753. The stopping criterion used for
MCR-ALS is reduction of the residual difference by no more than .001 between
iterations or completion of 100 iterations. The stopping criteria for global anal-
ysis were the defaults used by the Levenberg-Marquardt nonlinear regression
algorithm implemented in the R package minpack.lm, or completion of 50 iter-
ations. In all problems considered in this study, allowing the algorithms to run
for more iterations results in further reductions in the sum of squared errors
but does not change the matching factor of the estimated mass spectra with the
mass spectra used in simulation by more than ≈ 5%.

Figure 8.4 shows that for this problem, MCR-ALS does not resolve the spec-
tral signature of both components, whereas global analysis estimates the mass
spectra well. The normalized dot product matching factor of the estimated
spectra and the spectra used in simulation over 100 noise realizations of the
problem were calculated. Global analysis results in matching factors for both
components that are always > .99, whereas MCR-ALS does not well-resolve
both spectra. By examination of many stochastic realizations of the data, it is
clear that the results of both algorithms are stable with respect to this level of
noise. We turn to a more thorough simulation study to further investigate the
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Figure 8.3: An overview of the simulated data. Only dataset 1 is shown. The
signal-to-noise ratio in both datasets is 1000.

resolution power of the techniques.

8.4.2 Varying distance between components

The example put forth in Section 8.4.1 can be studied as the location of com-
ponent 1 with respect to the location of component 2 is made to vary. We
simulate pairs of datasets with different distances between the locations of the
components, as collated in Table 8.2 and shown graphically in Figure 8.5. All
other experimental parameters are as described previously in Section 8.4.1.

For each pair of datasets, 25 different stochastic realizations are generated.
The left plots in Figure 8.6 show the average matching factor of the mass spec-
tra estimated by MCR-ALS and global analysis with the mass spectra used in
simulation over 25 stochastic realizations of each pair of datasets. As the dis-
tance between the components increases, MCR-ALS is better able to solve the
problem, but does not resolve components when the distance between the loca-
tions of the components is small. Global analysis is able to estimate both mass
spectra well in all cases. When the distance between the components is reduced
to zero, both global analysis and MCR-ALS do not resolve the underlying mass
spectra. Both methods also fail in the case that only one of the two datasets is
analyzed.
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1 31 61 91 151 211 271 331 391 1 31 61 91 151 211 271 331 391

1 24 51 78 109 144 179 214 249 284 319 354 389 1 24 51 78 109 144 179 214 249 284 319 354 389

1 31 61 91 151 211 271 331 391 1 31 61 91 151 211 271 331 391

Figure 8.4: The spectra on the top row are those used in simulating the data.
The second row contains representative spectra estimated by global analysis.
The third row contains representative spectra estimated by MCR-ALS, in which
the spectra are not well resolved.

dataset pair 1 2 3 4 5 6 7 8 9 10 11
location separation 0.01 .05 .1 .25 .5 1 2 3 4 5 6

Table 8.2: Eleven pairs of datasets are simulated for the studies in Sections 8.4.2
and 8.4.3, each of which represents elution profiles over integer times 5720-5800
with different distances between the location of the components. The resulting
EMGs are shown graphically in Figure 8.5.



160 CHAPTER 8. SIMULATION STUDIES IN MODELING GC/MS DATA

Figure 8.5: Elution profiles
used in simulating the pairs of
datasets used in Sections 8.4.2
and 8.4.3; each row represents a
pair of datasets with a different
location of the first component.
Each elution profile is repre-
sented by an EMG having the
parameter values given in Table
8.1, except for the location of
the first component, which is
less than the location of the
second component by the values
given in Table 8.2.
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8.4.3 Mass spectra with increased matching factor

We have performed the same simulation study as in Section 8.4.2 but using
mass spectra with a larger matching factor (.31 as opposed to 0), again taken
from a case study described in Chapter 7, which are shown in Figure 8.7. We
again simulate pairs of datasets with varying locations of the first component,
as collated in Table 8.2 and shown graphically in Figure 8.5. The right plots
in Figure 8.6 show the average matching factor of the mass spectra estimated
by MCR-ALS and global analysis with the mass spectra used in simulation,
again as averages over 25 stochastic realizations of each pair of datasets. As
in Section 8.4.2, global analysis is better able to estimate the underlying mass
spectra when the separation between the location of the components is small.

8.4.4 Varying SNR

Returning to the study in Section 8.4.2, we choose a distance between the compo-
nents for which both global analysis and MCR-ALS estimated the mass spectra
of both components well, namely the problem instance with elution profiles sep-
arated by 6 time units described in Section 8.4.2, and a distance for which global
analysis succeeds in estimating the mass spectra well, but MCR-ALS does not,
namely the problem instance with the elution profiles separated by 1 time unit
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Figure 8.6: The normalized dot product matching factor of the estimated spec-
tra and the spectra used in simulation for global analysis (top) and MCR-ALS
(bottom). Results for component 1 are shown as black diamonds, and for com-
ponent 2 as grey circles. As the separation of the components is increased, the
component resolution problem is rendered progressively easier. The left plots
are for the data in Section 8.4.2, whereas the right plots are for the data in
Section 8.4.3. MCR-ALS well-resolves the spectra only at a separation of 6.

described in Section 8.4.2.
We simulated these problem instances for SNR 500, 200, 100 and 25, to

examine the robustness of the results to noise, examining the performance of
the algorithm in terms of the matching factor of the estimated spectra with
the mass spectra used in simulating the data. For all these SNRs, for both
problems, the algorithms performed qualitatively the same as under SNR 1000,
with differences of less than < 5% in the resulting average matching factors of
the estimated spectra compared to the values used in simulation over 25 noise
realizations for each SNR considered. Hence the results described in previous
sections are stable with respect to the noise level of the data.

8.4.5 Sensitivity to starting values and stopping criteria

For the problem considered in Section 8.4.1, using starting values for the elution
profiles that are slightly shifted (e.g., by three time units) from the values used to
simulate the elution profiles, MCR-ALS continues to reduce the sum of squared
errors for many iterations (> 10000) provided the stopping criterion is altered to
allow continuation even if the differences in the residuals between iterations are
very small. Eventually MCR-ALS reaches the same minimum in sum of squared
errors it finds in only a few iterations when given perfect starting values for
the elution profiles. However, the estimated spectra do not well-represent the
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Figure 8.7: Mass spectra associated with the two components underlying the
data in Section 8.4.3. The normalized dot product matching factor of the spectra
is .31.

spectra used in simulation, and are associated with a matching factor of > .9.
There are therefore a range of values for the elution profiles and mass spectra
that result in the same sum of squared errors under MCR-ALS. That is, there
are bands of feasible solutions, not a unique description of the elution profiles
and mass spectra that result in the best model fit. This is due to the relatively
large number of parameters used for the description of the elution profiles under
MCR-ALS, and is an issue that has been studied in detail elsewhere (Tauler,
2001; Garrido et al., 2005). Figure 8.8 shows that shifting the starting values for
the elution profiles from the values used in simulation for the problem described
in Section 8.4.1 results in varying estimates for the mass spectra under MCR-
ALS. This is in contrast to the estimates for the mass spectra returned by global
analysis, which always well approximate the mass spectra used in simulation.

8.4.6 Sensitivity to abundance ratio of components

By increasing the magnitude of the first mass spectrum relative to the magnitude
of the second mass spectrum used in simulating the data, it is possible to vary the
number of counts contributed to the data by each of the two components, so that
the abundance ratio defined in Equation 8.6 varies. For the problem described
in Section 8.4.2 where the distance between the location of the components is
6 time units, and both MCR-ALS and global analysis estimate the components
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Figure 8.8: The normalized dot product matching factor of the estimated spectra
and the spectra used in simulation for global analysis (top) and MCR-ALS
(bottom) as the starting value for the location of the elution profiles is shifted
in time units from the values used in simulation. Results for component 1
are shown as black diamonds, and for component 2 as grey circles. MCR-ALS
converges to mass spectra estimates that are different from the actual underlying
mass spectra when the starting values are less than perfect. The results shown
are average matching factors over 10 stochastic realizations of the data.

well, we examined how the performance varies in terms of the estimated mass
spectra as the abundance ratio of component 1 to component 2 is made to vary.
We also examined this same problem but using the spectra shown in Figure
8.7. The breakdown of the resolution power of the techniques was qualitatively
similar as the abundance of component 1 to component 2 increases, as shown
in Figure 8.9.

8.5 Implementation and future work

The MCR-ALS and global analysis algorithms discussed here are publicly avail-
able under the terms of the GNU General Public License in the form of the
R packages ALS (Mullen and van Stokkum, 2008a) and TIMP (described in
Chapter 5), respectively, from the Comprehensive R Archive Network (CRAN)
(R Development Core Team, 2008). The package includes scripts to repeat the
results in this paper.
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Figure 8.9: The normalized dot product matching factor of the estimated spectra
and the spectra used in simulation for global analysis (top plots) and MCR-ALS
(bottom plots) as the abundance of the first component relative to the second
is made to increase. Matching factors shown are averages over 25 stochastic
realizations of the data. The left and right plots are for data with the underlying
mass spectra shown in the top row of Figure 8.4 and in Figure 8.7, respectively.

While global analysis is a powerful component resolution tool, much addi-
tional work is necessary to render it a suitable tool for high-throughput appli-
cations. Of particular importance are the development of heuristics for model
specification.

Other tools for component resolution of mass spectrometry data such as the
“Automated Mass Spectral Deconvolution and Identification System” (AMDIS)
by the National Institute of Standards and Technology (Stein, 1999) have the
great advantage of being much more fully automatic, and are integrated with
libraries of mass spectra so as to best facilitate the end goal of compound iden-
tification. However they are not able to deal with the problem of completely
overlapping components or multiple datasets. The ideal software would com-
bine the best features of all available methodologies. Then when one of the
faster methods based on peak-finding in the chromatogram or MCR-ALS fail
to resolve components, global analysis could be applied. This would require the
formulation of heuristics to decide when application of global analysis is likely to
offer improved estimates of the underlying spectra. Possible heuristics could be
based on rank analysis of the data, or prior knowledge indicating the expected
number of co-eluting components present.
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8.6 Conclusions

This study has described the global analysis and MCR-ALS methodologies for
component resolution in mass spectrometry data. The methods have been ex-
plored in simulation studies in which the elution profiles used to generate the
data are completely overlapping. Problem instances have been presented in
which global analysis is able to estimate the mass spectra of all components
well, whereas MCR-ALS fails to do so. Such problem instances arise when elu-
tion profiles are completely overlapping, making the component resolution task
difficult. Application of global analysis to experimental data in which compo-
nent resolution is significantly complicated by other issues such as instrument
saturation, outliers and baseline drift is considered in Chapter 7, where indi-
cations are found that global analysis is better able than MCR-ALS to resolve
small components given these complications.

While the global analysis methodology is a powerful component resolution
method, especially for data representing co-eluting compounds, it requires more
run-time, and at present is less automated than other techniques based on
peak-finding and MCR-ALS. Possible improvements in accuracy offered by the
method must therefore be carefully weighed against losses in efficiency. Further
study and development of the method for mass spectrometry applications is
warranted.
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Chapter 9

Summary

The studies described in this monograph are concerned with separable nonlinear
models that have the form of a linear combination of nonlinear functions with
a stochastic component comprised of additive Gaussian white noise. The free
parameters of such models are possible to estimate using the variable projection
algorithm due to Golub and Pereyra. Variable projection is introduced in Chap-
ter 2 with special emphasis on applications to modeling matrix data. Separable
nonlinear models for data arising in time-resolved spectroscopy, microscopy and
mass spectrometry experiments are also introduced in Chapter 2. These appli-
cation domains have motivated many of the investigations in this monograph.
In them, and in other application areas in physics and chemistry, the use of a
unified separable nonlinear model to describe all measurements collected over
multiple independent variables, possibly over the course of many experiments,
is a powerful tool for extracting information on a system of interest. The use of
separable nonlinear models in this way is often referred to as global analysis.

Chapter 3 describes the properties of variable projection variants and the
NIPALS algorithm for alternating least squares for treatment of the problem
of fitting a sum of exponential functions under least squares criteria. A new
derivation of the Fisher information matrix under the full Golub-Pereyra vari-
able projection algorithm allows a numerical comparison of parameter precision
under variable projection variants. It is found that the analytical Kaufman
approximation to the full variable projection functional is appropriate for a
sum-of-exponentials fitting problem that is typical of problems that arise often
in time-resolved spectroscopy. It was also shown for this problem that the linear
approximation standard error estimates for parameters under variable projec-
tion algorithms are an acceptable approximation for likelihood-based standard
error estimates.

Chapter 4 describes the modification of the variable projection algorithm to
accommodate constraints on the linear coefficients in a sum of nonlinear func-
tions. Such constraints are often desirable if only certain values of these linear
parameters are physically interpretable. For instance, non-negativity constraints
are often desirable on linear parameters that represent fluorescence spectra or
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mass spectra, since negative values of such parameters are not interpretable.
For the case that non-negativity constraints are applied to the linear parame-
ters, we show that active constraints result in an increase in precision of the
intrinsically nonlinear parameter estimates relative to estimates obtained with
classical variable projection.

Chapter 5 presents a framework for fitting separable nonlinear models in
physics and chemistry applications in the form of the package TIMP for the
R language and environment for computational statistics. The package facili-
tates flexible specification of models, efficient optimization of free parameters,
and validation of the fit. The design allows the definition of new model types
with minimal effort. Implementation in R facilitates easy integration with other
statistical routines and allows the package to be used on all major operating
systems. Both R and TIMP are freely available in source code form under the
terms of the GNU General Public License.

The use of separable nonlinear models to describe fluorescence lifetime imag-
ing microscopy (FLIM) data is investigated in Chapter 6, with emphasis on
testing the utility of the package TIMP to estimate free model parameters. It
is found via simulation studies and a control experiment that the methodology
is indeed of great promise for modeling FLIM data. Applications to mapping
protein-protein interactions are described in brief in Chapter 2 and further stud-
ies using separable nonlinear models for this purpose are currently in progress.

Chapters 7 and 8 describe the use of separable nonlinear models for compo-
nent resolution problems in time-resolved mass spectrometry data. This global
analysis methodology is an alternative to the nonparametric (self-modeling)
component resolution techniques that are usually applied in the problem do-
main. The proof-of-concept application of global analysis to the solution of com-
ponent resolution problems in gas chromatography mass spectrometry (GC/MS)
data is described in Chapter 7. Then by way of simulation studies, it is shown in
Chapter 8 that global analysis is better able than a widely applied self-modeling
method to estimate the underlying mass spectra from GC/MS data in certain
cases in which the elution profiles are very overlapping.

9.1 Future work

Chapter 2.6 sketches some ideas for further development of algorithms for sepa-
rable nonlinear optimization problems. These topics are currently under inves-
tigation.

Many extensions of the package TIMP are currently in progress or of interest.
Options for modeling reaction kinetics as described by kinetic theory models are
in development in collaboration with David Nicolaides. As discussed in Chapter
2.3, separable nonlinear models have proved useful for the analysis of Nuclear
Magnetic Resonance (NMR) spectroscopy data, and extensions of TIMP for
modeling this data are under investigation. Furthermore, options to model
data arising in ultra-fast pump-dump-probe spectroscopy experiments are in
development.
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In collaboration with Joris Snellenburg and Sergey Laptenok, a java-based
graphical user interface (GUI) to TIMP has been developed, TIMPGUI. This
provides possibilities for interactive exploration of data and model fit, and is in
preparation for public release.

9.2 Samenvatting: Scheidbare niet-lineaire
modellen: theorie, implementatie en
toepassingen in natuur– en scheikunde

De studies beschreven in dit proefschrift hebben betrekking op scheidbare niet-
lineaire modellen die de vorm hebben van een lineaire combinatie van niet-
lineaire functies plus een stochastische component samengesteld uit Gaussische
witte ruis. In deze modellen kunnen twee soorten parameters onderscheiden
worden: intrinsiek niet-lineaire, en conditioneel lineaire. De laatste vormen
vaak een grote groep en kunnen automatisch geschat worden met behulp van
het variabele projectie algoritme gëıntroduceerd door Golub and Pereyra (1972).
Variabele projectie wordt beschreven in Hoofdstuk 2 met nadruk op het gebruik
voor matrix data. Ook de scheidbare niet-lineaire modellen voor data die bij
tijdsopgeloste spectroscopie, microscopie en massaspectrometrie experimenten
voorkomen wordt in dit hoofdstuk beschreven. Deze toepassingsgebieden zijn de
belangrijkste motivatie voor het onderzoek in dit proefschrift. In deze gebieden
is het gebruik van een gemeenschappelijk model voor alle metingen verzameld
over meerdere onafhankelijke variabelen, mogelijk zelfs een veelheid aan
experimenten, een krachtige methode voor het extraheren van informatie over
het te bestuderen systeem. Het gebruik van scheidbare niet-lineaire modellen
op deze manier wordt vaak globale analyse genoemd.

Hoofdstuk 3 beschrijft de eigenschappen van variabele projectie varianten
en het NIPALS algoritme voor “alternating least squares” om het fit-probleem
voor een som van exponentiële functies onder een kleinste kwadraten conditie te
behandelen. Een nieuwe afleiding van de Fisher informatie matrix binnen het
Golub-Pereyra variabele projectie algoritme staat een numerieke vergelijking
toe van parameter precisie bij verschillende variabele projectie varianten. Er
is geconstateerd dat de analytische Kaufman benadering van de volle variabele
projectie functionaal geschikt is voor het som-van-exponenten fit probleem dat
typisch is voor problemen die voorkomen bij tijdsopgeloste spectroscopie. Ook is
voor dit probleem aangetoond dat de lineaire benadering voor de standaardfout
in de parameters onder variabele projectie algoritmen een acceptabele benadering
is voor de standaard fout schatting.

Hoofdstuk 4 beschrijft de aanpassing van het variabele projectie algoritme
om eisen op te leggen aan de lineaire coëfficienten in een som van niet-lineaire
functies. Zulke eisen zijn vaak nodig als slechts enkele waarden van de lineaire
parameters fysisch interpreteerbaar zijn. Bijvoorbeeld van lineaire parameters
die fluorescentiespectra of massaspectra beschrijven, wordt geëist dat ze niet
negatief zijn, aangezien negatieve waarden voor deze parameters niet
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interpreteerbaar zijn. In het geval dat deze eisen worden toegepast, wordt
er aangetoond dat de actieve eisen resulteren in een toename van de precisie
van de intrinsieke niet-lineaire parameterschatting, vergeleken met de schatting
verkregen met klassieke variabele projectie.

Hoofdstuk 5 presenteert een kader voor het fitten van scheidbare niet-lineaire
modellen in de fysische en chemische toepassingen in de vorm van een pakket
TIMP voor de R programmeertaal en omgeving voor computationele statistiek.
Het pakket bevat flexibele specificatie van modellen, efficiënte optimalisatie
van de vrije parameters, en een validatie van de fit. Het ontwerp geeft de
mogelijkheid om gemakkelijk nieuwe modeltypen te definiëren. Implementatie
in R bevordert eenvoudige integratie van andere statistische routines en zorgt
dat het op alle veelgebruikte besturingssystemen kan draaien. De broncode van
R en TIMP is gratis verkrijgbaar onder de voorwaarden van de GNU General
Public License.

Het gebruik van TIMP voor het schatten van vrije parameters van scheidbare
niet-lineaire modellen om fluorescence lifetime imaging microscopy (FLIM) te
beschrijven wordt onderzocht in Hoofdstuk 6. Met behulp van simulatie en
een controle experiment is aangetoond dat deze methode van grote waarde is
voor het modelleren van FLIM data. Toepassingen om eiwit-eiwit interacties te
beschrijven worden kort beschreven in hoofdstuk 2. Verder zijn er momenteel
studies gaande om scheidbare niet-lineaire modellen voor dit soort interacties te
gebruiken.

Hoofdstuk 7 en 8 beschrijven het gebruik van scheidbare niet-lineaire modellen
voor het oplossen van componenten uit tijdsopgeloste massaspectrometrie data.
Deze globale analyse methode is een alternatief voor de niet-parametrische
(zelf-modellerende) technieken, die in dit probleemdomein gebruikelijk zijn. De
“proof-of-concept”toepassing van globale analyse voor het oplossen van component
elutieprofielen in gaschromatografie–massaspectrometrie data wordt beschreven
in Hoofdstuk 7. Vervolgens wordt door simulatie studies in Hoofdstuk 8 aangetoond
dat globale analyse beter werkt dan de algemeen toegepaste zelf-modellerings
methode om de onderliggende massa spectra van data te schatten in gevallen
waarbij de elutieprofielen erg overlappen.
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