Global and target analysis in photobiophysics

Ivo H.M. van Stokkum

Computational Biophysics, Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, E-mail: ivo@nat.vu.nl

http://www.nat.vu.nl/~ivo

WAU, April 13, 2006

State-of-the-art experiments and sophisticated analysis methodology mutually benefit

Aim of Global and target analysis :

to identify and quantitatively model complex (bio)molecular system

Input to the PSE for Global and target analysis :

data from multiple time-resolved spectroscopical experiments, a priori knowledge e.g. about candidate compartmental model structure

Output from the PSE for Global and target analysis:

model structure and estimated physicochemical parameters

PSE used by many collaborating scientists

Case studies: streak camera data from GFP and CP29

Figure of Contents

Modelling and parameter estimation scheme

Superposition model for the observations

$$\begin{split} \Psi_{qt_i\lambda_j} &= \sum_{l=1}^{n_{\text{comp},\lambda_j}} c_{q\lambda_jt_il}(\Theta) \varepsilon_{\lambda_jl} = C_{q\lambda_j}(\Theta) \varepsilon_{\lambda_j} + \xi_{qt_i\lambda_j} \\ &\text{experiment } q, \qquad q = 1, \dots, Q, \\ &\text{time point } t_i, \qquad i = 1, \dots, n_{t,q} \\ &\text{wavelength } \lambda_j, \qquad j = 1, \dots, n_{\lambda,q} \end{split}$$

additive normally distributed noise $\zeta_{qt_i\lambda_j}$

nonlinear least squares model with parameters Θ and $\varepsilon_{\lambda_j l}$, $(l = 1, ..., n_{\text{comp}, \lambda_j})$, $(j = 1, ..., n_{\lambda, \text{tot}})$

Compartmental models

Solution: linear combination of exponential decays convolved with IRF i(t)

	K	j	С	$\Psi = CE^{T}$	spectral relation
parallel, decay associated	$\begin{bmatrix} -k_1 & 0 \\ 0 & -k_2 \end{bmatrix}$	[1 1]	$\begin{bmatrix} \exp(-k_1 t) \\ \exp(-k_2 t) \end{bmatrix} \equiv C_I$	$C_I DAS^T$	
sequential, evolution associated, unbranched unidirectional	$\begin{bmatrix} -k_1 & 0 \\ k_1 & -k_2 \end{bmatrix}$	[1 0]	$C_{II} = C_I R_{II}$	$C_{II}EAS^{T}$	$EAS R_{II}^T = DAS$
general, species associated			$C_{III} = C_I A_{III}$	$C_{III}SAS^{T}$	$SAS A_{III}^T = DAS$

Analysis with wrong, parallel, kinetic scheme results in unrealistic DAS, which indicate rise of long lived component, and suggest $1 \rightarrow 2$

Global analysis of parallel GFP data

Decay Associated

DAS

norm DAS

Evolution Associated

- $1 \rightarrow 3.2 ps$
- $2 \rightarrow 11.6 \, ps$
- $3 \rightarrow 111 \, ps$
- $4 \rightarrow 1.3 ns$
- $5 \rightarrow 2.6 ns$

Target analysis of polarized GFP data

Hierarchical modelling of time-resolved polarized emission spectra

level of modelling	parametric description of	
linking of experiments	relative scaling, linkage schemes	Θ_L
contribution of component $l c_l(t) \varepsilon_l(\lambda)$	spectrum of component l , $\varepsilon_l(\lambda)$	Θ_{ϵ}
convolution $a_l(t)c_l^{\delta}(t) \otimes i(t)$	Instrument Response Function $i(t)$	Θ_I
depolarization	anisotropy $a_l(t)$	Θ_{ϕ}
MA concentration $c_l^{\delta}(t)$ with δ -input	compartmental scheme with microscopic rates	Θ_K

Spectral assumptions, that $\varepsilon_l(\lambda) = 0$ for certain components l in certain λ -ranges, or that some spectra are equal up to a scaling parameter Θ_{ε} , are essential to estimate overlapping spectra and branching ratios. Adjusting and testing such assumptions necessitates a flexible PSE user interface.

•	range	#	#parameters				
wavelength λ	432 – 609 nm	42					
time t	200 ps and 2 ns	951					
polarization	//, ⊥	2					
data points		160000					
compartments		5(+4)					
spectra		2(+4)					
microscopic rate constants		14	14-4=10	Θ_K			
instrument response location,			12	Θ			
width, dispersion, doublegaussian							
anisotropy			3	Θφ			
scaling parameter			3	Θ_L			
spectral parameters (VARPRO)	$2(+4)$ # λ – assumptions		84-14=70(+168)	$\epsilon_l(\lambda)$			
spectral assumptions	A*upto 580nm,I*above 460nm	2	1-1=0	Θε			
Thus 28 truly nonlinear parameters and 70(+168) conditionally linear parameters must be estimated							

Numbers and parameters with GFP polarized emission data

Global and target analysis

In this way multiple experiments (polarization angle, excitation wavelength, temperature, pH, ...) are simultaneously analysed. Their information is integrated, and the parameters θ are estimated more precisely. When the residuals are satisfactory, the target model that is tested can be considered an adequate description of the data.

After fitting the data globally with a sufficient number of exponential decays (lifetimes) different compartmental schemes (target models) are tested.

Adequacy of a model can be judged from the plausibility of the estimated parameters, in particular the spectral shapes.

Acknowledgments

Samples of Green Fluorescent Protein were prepared by Jasper van Thor in the lab of Klaas Hellingwerf (UvA), experiments were done by Bas Gobets in the lab of Rienk van Grondelle (VU). CP29 experiments were done by Bart van Oort at Biophysics WUR.

References

- 1 I.H.M. van Stokkum, B. Gobets, T. Gensch, F. van Mourik, K.J. Hellingwerf, R. van Grondelle, J.T.M. Kennis (2006) (Sub)-picosecond spectral evolution of fluorescence in photoactive proteins studied with a Synchroscan streak camera system. Photochem. Photobiol. 82, in press
- 2 I. H. M. van Stokkum, B. van Oort, F. van Mourik, B. Gobets, and H. van Amerongen (in press ...) (Sub)-Picosecond Spectral Evolution of Fluorescence Studied with a Synchroscan Streak-Camera System and Target Analysis
- 3 I.H.M. van Stokkum, D. S. Larsen, R. van Grondelle (2004) Global and target analysis of time resolved spectra, Biochim. Biophys. Acta 1657, 82-104, and 1657, 262 (Erratum) http://www.nat.vu.nl/~ivo/globaltargetreview.pdf http://www.nat.vu.nl/~ivo/pub/2005/lecturenotes3cycle.pdf