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SUMMARY

A prototype Problem Solving Environment (PSE) is presented for problems in interactive modelling of
multiway data. Multiway data result from measurements as a function of two or more independent
variables. The PSE comprises a parameter estimation loop and a model adjustment loop. The model can
be specified hierarchically using mathematically described building blocks which encapsulate the model
assumptions. A typical case study of three-way data illustrates the need for interactive model adjustment.
Requirements for interactive problem solving are discussed. Copyright c© 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A Problem Solving Environment (PSE) is a computer system that provides all the computational
facilities necessary to solve a target analysis class of problems [1,2]. In this paper a class of problems
will be described which necessitates interactive modelling of multiway data, and a prototype PSE
will be presented. The PSE for this application should be suited for collaborative research, enabling
distributed interactive modelling, where an expert in modelling in one place can collaborate with
a scientist in another place who is an expert in the experimental data and system under study.
Furthermore, compute intensive interactive modelling studies will require parallel systems. Studying
a complex system quantitatively one can distinguish two problems: finding the proper model to
describe the experimental data, and when such a model is available, estimating the parameters of
scientific interest. These two problems are illustrated schematically with the terminology in Figure 1
and key concepts and some pictures in Figure 2 (details of these figures will be discussed below).
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Figure 1. Flow chart of prototype PSE. Using the multiway data and the specified model the parameters are
estimated in the upper loop. The bottom model adjustment loop is traversed many times, which is the main

motivation for the interactivity of the PSE. Further explanation in text.

At the highest level two loops can be distinguished. In the top loop it is depicted how a model can be
used to describe data. This is known as parameter estimation, or model fitting, or regression. In the
bottom loop it is indicated that when there are many candidate models available, they should be tested,
and using scientific knowledge a choice should be made. It is this model adjustment loop for which the
PSE described below is needed.

2. STATEMENT OF A TYPICAL MODELLING PROBLEM

Multiway data result from measurements across multiple dimensions. An example is measurement
of absorption or emission of light as a function of independent variables like time, wavelength and
polarization. The multiway data can usually be well described by a superposition model. In the typical
modelling problem outlined below ∼105 datapoints will be described by ∼103 parameters which have
to be estimated from the data. The model is based upon physics and chemistry, and the estimated
parameters should be meaningful. This provides an important criterion for judging the applicability of
the model. The goal of the experiment is to identify the underlying system and estimate its unknown
physicochemical parameters. For example, the spectroscopic properties of a mixture of components
are a superposition of the spectroscopic properties of the components weighted by their concentration
(see Equation (1)). With absorption this is known as the Beer–Lambert law [3]. Measurement of light
absorption as a function of time t , wavelength λ and angle of polarization φ results in three-way
data. At angle of polarization φ, the noise-free time resolved spectrum ψφ is a superposition of the
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Figure 2. Possible GUI of prototype PSE showing the key concepts and some pictures from a typical case study
with real three-way data. Data (solid lines) at four representative wavelengths (indicated by the vertical label)
are depicted in the upper right-hand panel. Note that the time axis is linear from −5 to +5 ps relative to the
IRF maximum, and logarithmic thereafter. Dashed lines represent the fit, calculated from the model prediction
after traversing the parameter estimation loop. The compartmental scheme (left-hand panel) contains five different
states. The model scheme was adjusted in the model adjustment loop in order to arrive at a satisfactory description,
in particular realistic shapes of the estimated spectral parameters, the SAS (bottom right-hand panel). The linetypes
of the SAS correspond to the linetypes of the boxes in the compartmental scheme. The units of the SAS and of the

data are milliOD. Further explanation in text.

contributions of the different components:

ψφ(t, λ) =
ncomp∑

l=1

cl(t, φ)εl(λ) (1)

where cl(t, φ) and εl(λ) denote, respectively, the concentration and spectrum of component l. Note that
according to Equation (1) a separability of time and wavelength properties is possible. Measurement
of ψ poses the inverse problem: how can the spectroscopic and kinetic (dynamic) properties of the
components be recovered? In a simple case the concentrations can be described by exponential decays
exp(−klt) and the rate constants kl and spectra εl(λ) are the parameters that have to be estimated from
the data.
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Table I. Hierarchical modelling of polarized absorption.

Level of modelling Parametric description of

Linking of experiments Relative scaling, linkage schemes
Contribution of component l, cl(t, φ)εl(λ) Spectrum of component l, εl(λ)
Convolution of IRF and al(t, φ)c

MA
l

(t) resulting in cl(t, φ) IRF, dispersion and excitation conditions
Dependence upon angle of polarization φ Anisotropy decay al(t, φ)
MA concentration cMA

l (t) with δ-input Compartmental scheme with microscopic rates

3. CHOSEN SOLUTION

In practice, various problems can arise: first of all the number of components present in the system is
usually unknown. Secondly, in general, neither the concentration profiles cl(t, φ) nor the spectra εl(λ)
are known. However, in our case, knowledge is available in the form of a parameterized compartmental
model [4] for cl(t, φ), in which the dynamics of cl(t, φ) are described by ordinary differential
equations. Furthermore, the scientist usually has a priori knowledge about which shapes of spectra are
realistic. This amounts to common statements regarding continuity, non-negativity, unimodality, etc.
Implementing such a priori knowledge with the help of constraints on the spectral parameters εl(λ)
is termed a spectral model. When no constraints are used the quality of the fit only depends upon the
number of components used, and not upon the compartmental scheme. However, different schemes
result in different estimated spectral parameters εl(λ) and the scientist must choose a model based
upon the physicochemical plausibility of the parameters (rate constants and spectra). Thus, there are
many candidate compartmental and spectral models available. According to the principle of parsimony
(Ockham’s razor) the preferred model should be as simple as possible. Consequently, the PSE should
allow interactive hierarchical modelling to incorporate scientific knowledge and enable flexible testing
of candidate models and hypotheses. In the model specification part of the PSE an overall model is
constructed from building blocks (see Table I).

Suppose that we want to analyse simultaneously a set ofNφ time-resolved spectraψφ(t, λ)measured
at angle of polarization φ from the system of interest. On the top level of the hierarchy these ψφ are
combined by introducing relevant scaling parameters for measurements done at the same wavelengths.
On the bottom level of the hierarchy a model function is built for experiment ψφ , starting from the
candidate compartmental model. First at magic angle (MA) where there is no polarization angle
dependence, a concentration cMA

l (t) is calculated for component l of the compartmental scheme,
assuming a perturbation by a unit impulse δ(t). A simple example is the exponential decay cMA

l (t) =
exp(−klt), which is fully described by the decay rate parameter kl . On the next level an anisotropy
decay function al(t, φ) is associated with component l in order to model the dependence upon the angle
of polarization φ. A simple example is al(t, φ) = 1 + (3 cos2(φ) − 1)rl , which is fully described by
the anisotropy parameter rl . On the next level, this product function is convolved with the appropriate
instrument response function (IRF), which takes into account the excitation conditions as well as the
detector properties, and which limits the time resolution. This IRF usually depends upon the detection
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wavelength, giving rise to a higher level of IRF description. Now we come to the level just below
the top, where the specified concentration cl(t, φ) is combined with a model for the spectrum of
component l, εl (λ). This spectral model can be fairly simple, no constraints, or more specific,
ranging from constraints (e.g. zero contribution at particular wavelengths) to a detailed analytical
description when a candidate parametric spectral model is available. Linguistic constructs are used
for the specification of constraints and of relations between spectra. For this combination of models
for dynamics and spectra we have introduced the term spectrotemporal model [5]. At all levels of
description parameters are introduced, which can be linked directly between different experiments,
or indirectly by functional relations. Fitting parameters can be free, fixed, or subject to constraints.
Thus many levels of indirection are discernible in the overall model.

A prerequisite for the model specification part of the PSE is that a language natural for the problem
class can be used [6] to specify the building blocks of the model. In our case the natural language is
the mathematical description of the model in Equation (1) and the hierarchy of models in Table I.
Next to the hierarchy of model construction also a hierarchy of data fitting can be distinguished.
Crucial in the nonlinear least squares fitting is the treatment of conditionally linear parameters (εl(λ)
in Equation (1)) by a variable projection algorithm [7,8]. Appropriate weighting must be applied [9],
often giving rise to iterative fitting procedures. Linguistic constructs are used to specify the weighting
of observations. After convergence, exhaustive search methods [10,11] and profiling (constructing
likelihood based confidence intervals [9]) can be applied (each requiring many minimizations) to check
for uniqueness and precision of the parameter estimates. Appropriate graphics output is produced,
to facilitate interactive data analysis by the human in the loop. Figure 1 illustrates the prototype
PSE. Using the multiway data and the specified model the parameters are estimated in the upper
loop. The estimation is based upon minimization of a cost function, e.g. the sum of squares of
the weighted residuals. The residuals are the difference between the multiway data and the model
prediction. Linguistic constructs are used to express both the model and the fitting process. Simulation
can be used to check the model identifiability and estimability of parameters, and of course to test the
software implementation. Finding a good model is an iterative process (the bottom loop), requiring
interaction with the PSE, trying different model assumptions. The output, in particular the estimated
kinetic parameters and a graphical representation of the residuals and of the estimated spectra εl(λ), is
fed back to guide the user and suggest possible model improvements.

4. CASE STUDY THREE-WAY DATA

The purpose of Figure 2 is to illustrate a typical case study with real three-way data, and provide the
reader with some numbers indicating the size of the problem. A pigment–protein complex was studied
by time-resolved polarized difference absorption spectroscopy. The photophysics and photochemistry
of this model system are discussed elsewhere [12,13]. Part of the data are depicted in the upper right-
hand panel, with different absolute magnitudes corresponding to the different angles of polarization.
The quality of the fit can be judged by the small differences between solid and dashed lines. In total,
240 wavelengths were measured at 100 time points and three polarization angles, thus comprising
nearly 105 data points. The compartmental scheme (left-hand panel) contains five different states.
The thick upward arrow represents the excitation from the ground state to an excited state intermediate
(ESI). The thin arrows depict transitions between the states. Each transition is described by a rate
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constant, and each state is characterized by its species associated spectrum (SAS, εl(λ) in Equation (1)).
The estimated SASs are illustrated in the bottom right-hand panel, with different linetypes indicating
the different states. The model is specified by the states and allowed transitions, the IRF, the
anisotropies of the states, requiring in total ∼25 parameters. The SASs comprise 240 parameters for
each of the seven states. The total number of spectral parameters is reduced by spectral equalities and
constraints to ∼103 free parameters. The linetypes of the SAS correspond to the linetypes of the boxes
in the compartmental scheme. Crucial for the shape of the SAS (solid) of the ESI is the decay rate
from the ESI state directly to the ground state. Since this rate cannot be estimated from the fit, it was
adjusted iteratively in order to produce a satisfactory shape. Note that the negative part of the ESI SAS
(solid) resembles the mirror image of the ground state SAS (long dashed). This illustrates that a rate
parameter that does not influence the quality of fit of the data can be determined indirectly from the
resulting SAS.

Typically parameter estimation by nonlinear least squares requires ∼102 s on a workstation (IBM
Power3 II, 375 MHz), when using the variable projection algorithm to eliminate the conditionally linear
parameters (SAS, εl(λ) in Equation (1)). This time is needed for the upper loop in Figure 1. However,
the number of model adjustments, the bottom loop in Figure 1, is routinely about 10, and with difficult
problems it can easily go up to ∼102 or ∼103. This is the main motivation for the interactivity of
the PSE.

5. FUTURE DIRECTIONS

Lacking in the prototype PSE is a graphical user interface (GUI). Figure 2 shows an example of
how a GUI could look. The process of problem solving is visualized, allowing us to zoom in
on all steps. Visualization of data, model, and fit results come naturally. Ideally the GUI should
support collaborative research, enabling distributed interactive modelling, where an expert in modelling
and parameter estimation can analyse the data and the experimental scientist can contribute to the
interactive modelling by discarding unrealistic models and suggesting model improvements. Currently,
the typical compute time of the parameter estimation loop is ∼102 s. To allow for true interactivity
this loop needs to be accelerated ∼102 times using a parallel system. It is a challenge to incorporate
modelling knowledge into the PSE which can provide guidance to the user and help to reduce the
number of model adjustments.
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