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Abstract We report a time-resolved fluorescence spectroscopy
characterization of photosystem I (PSI) particles prepared from
Arabidopsis lines with knock-out mutations against the periphe-
ral antenna proteins of Lhca1 or Lhca4. The first mutant retains
Lhca2 and Lhca3 while the second retains one other light-
harvesting protein of photosystem I (Lhca) protein, probably
Lhca5. The results indicate that Lhca2/3 and Lhca1/4 each pro-
vides about equally effective energy transfer routes to the PSI core
complex, and that Lhca5 provides a less effective energy transfer
route. We suggest that the specific location of each Lhca protein
within the PSI–LHCI supercomplex is more important than the
presence of so-called red chlorophylls in the Lhca proteins.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

In oxygenic photosynthetic organisms, photosystem I (PSI)

oxidizes plastocyanin and reduces NADP+. This reaction is

driven by light, collected by chlorophylls and carotenoids.

These pigments are located in two distinct antenna complexes,

the PSI core complex and the peripheral light-harvesting com-

plex I (LHCI). The PSI core binds about 100 Chl a and more

than 20 b-carotene molecules, while LHCI binds about 70 Chl

a + bmolecules and 12 xanthophylls [1]. The function of LHCI

is to increase the absorption cross-section of PSI and to deliver

excitation energy for the PSI core complex, in which photo-

chemical charge separation takes place. Green plant LHCI

normally consists of four different proteins Lhca1–4 [2] that

each have been shown to be present with one copy per PSI

[3]. Another protein (Lhca5) is present in substoichiometric
Abbreviations: DAS, decay-associated spectra; WT, wild type; Lhca,
light-harvesting protein of photosystem I; PSI, photosystem I; LHCI,
light-harvesting complex I
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amounts [4], but this amount is increased under high-light con-

ditions and in plant lines where Lhca1 and Lhca4 have been

genetically depleted [4,5]. In vitro reconstitution of Lhca5

yielded a typical light-harvesting protein [6], but a significant

functional contribution of Lhca5 to light harvesting has not

yet been proven.

A number of studies have been reported on the trapping of

excitation energy in PSI systems with or without peripheral

antennae [7–9]. Most studies conclude that at room tempera-

ture the trapping time from the core antenna is between 18

and 50 ps, depending on the content and energy levels of the

Chls that absorb at longer wavelengths than the primary elec-

tron donor [10]. Müller et al. [11] concluded that this observa-

tion can be explained by a reversible charge separation

reaction. In PSI of green plants and algae, one or two addi-

tional trapping lifetime(s) of about 70 ps and/or 130 ps have

been observed [12–15]. The additional lifetimes in LHCI-

containing systems originate from a slow equilibration be-

tween LHCI and the PSI core complex [14], which probably

arises from distinct structural compartments with several

�gap� pigments in between [3] and the presence of red pigments

in LHCI. In PSI–IsiA supercomplexes from iron-stressed cya-

nobacteria, where the red pigments locate in the core complex,

only one trapping lifetime of about 40 ps was observed [16,17],

which suggests ultra-fast equilibration phase between PSI core

and IsiA complex, implying good connectivity between the PSI

core and IsiA pigments.

Recently, we have reported biochemical and steady-state

spectroscopic properties of isolated PSI–LHCI particles ob-

tained from Arabidopsis lines lacking a specific light-harvesting

protein of photosystem I (Lhca) protein [5]. Here, we report a

detailed analysis by time-resolved fluorescence spectroscopy of

the particles obtained from knock-out mutants of the Lhca1

and Lhca4 genes. In the particles from the first mutant, the re-

sults provide information on energy transfer characteristics of

Lhca2 and Lhca3, whereas in those from the second mutant

the results give details on an Lhca protein without red chloro-

phylls, most likely Lhca5.
2. Materials and methods

PSI–LHCI particles were isolated from Arabidopsis thaliana plant
lines depleted in the expression of distinct Lhca protein subtypes as de-
scribed in Klimmek et al. [5]. The samples were diluted with a buffer
containing 20 mM Bis–Tris (pH 6.5), 20 mM NaCl, and 0.06%
blished by Elsevier B.V. All rights reserved.
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b-DM to an OD680 of about 0.1. Samples for low temperature steady-
state measurements contained 66% (v/v) glycerol and were placed in a
helium-bath cryostat (Utreks, Ukraine), which was then cooled down
to 5 K. Samples for time-resolved measurements contained 10 mM so-
dium ascorbate and 10 lM phenazine metasulphate (PMS) and were
placed into a 2 mm thick spinning cell with a diameter of 10 cm and
a rotation speed of 25 Hz.
The steady-state fluorescence emission spectra were measured with a

1/2 m imaging spectrograph and a CCD camera (Chromex Chromcam
I) with a spectral resolution of about 0.5 nm. For broadband excita-
tion, a tungsten halogen lamp (Oriel) was used with a band-pass filter
transmitting at 420 nm (bandwidth of 20 nm). The obtained emission
spectra were corrected for the wavelength-dependent sensitivity of
the detection system.
The time-resolved measurements were performed with a Streak cam-

era setup. In short, excitation pulses of 400 nm (�100 fs) with vertical
polarization were generated using a titanium:sapphire laser (Coherent,
VITESSE) with regenerative amplifier (Coherent, REGA) and a dou-
ble pass optical parametric amplifier (Coherent, OPA) and a Berek
compensator. The repetition rate was 150 kHz with pulse energy of
0.6 nJ in the sample, which resulted in less than 25% excited protein
complexes per pulse. The fluorescence was detected at right angle with
respect to the excitation beam through a polarizer at magic angle using
a Chromex 250IS spectrograph and a Hamamatsu C5680 synchroscan
streak camera. The streak images were recorded with a cooled Ham-
amatsu C4880 CCD camera. The exposure times per image were
15 and 10 min for 200 ps and 1 ns time bases, respectively. The de-
tected streak images were analyzed globally and the decay-associated
spectra (DAS) were estimated [18]. The instrument response function
was modeled as a Gaussian with FWHM of about 3 and 8 ps for the
200 ps and 1 ns time bases, respectively.
3. Results

The PSI–LHCI particle preparations used in this study have

been previously subjected to a comprehensive characterization

of the Lhca protein and pigment contents, functional antenna

size, and steady-state spectroscopic features [5]. In that study,

we showed that the overall LHCI composition is affected in

particles prepared from Lhca-depleted lines, most likely due

to interactions between the Lhca proteins in the PSI–LHCI

complex. In the case of Lhca1 suppression (denoted below as

DLhca1), PSI–LHCI particles not only lack about 90% of

Lhca1 but also Lhca4, resulting in Lhca2 and Lhca3 as main

LHCI proteins in that sample (Table 1). The antenna size in

the DLhca1 samples was found to be 17% smaller when com-

pared to the wild type (WT) [5]. In the case of the Lhca4

knock-out mutation (denoted below as DLhca4), basically all

Lhca1–4 proteins are missing, and only very small traces of

Lhca2 and Lhca3 could be detected (Table 1). In both lines

elevated amounts of Lhca5 were observed. Lhca5 seems to
Table 1
Functional LHCI antenna sizes (%) and Lhca protein content in PSI–
LHCI preparations of WT and Lhca1/Lhca4-depleted (DLhca1,
DLhca4) plants used in this study according to Klimmek et al. [5];
n.d., not detectable

wt DLhca1 DLhca4

antenna (%) 100.0 83.0 67.6
Lhca1 1.0 0.1 n.d.
Lhca2 1.0 0.8 <0.1
Lhca3 1.0 1 <0.1
Lhca4 1.0 0.1 n.d.
Lhca5a x 2x 3x
LHCII contentb 0.07–0.08 0.07–0.08 0.125

aThe number of Lhca5/PSI is not known for the wt.
bAs LHCII trimers per PSI-core.
be the most abundant Lhca protein in the DLhca4 sample

and based on HPLC analysis and antenna size determinations

we suggested that the DLhca4 samples contain one Lhca pro-

tein per PSI core complex [5]. However, no corresponding pro-

tein bands could be identified by silver or coomassie staining

and efforts to isolate significant amounts of native Lhca5 from

PSI–LHCI preparations from the DLhca4 line have not yet

been successful (Schmid and Klimmek, unpublished).

Fig. 1 demonstrates the effect of the Lhca mutations on the

4 K emission spectra of the PSI–LHCI particles. Green plant

PSI–LHCI exhibits a red emission maximum at about

735 nm [19], caused by the red-most pigments in Lhca3 and

Lhca4 [20]. In DLhca1, the red emission maximum locates at

about 732 nm, which is slightly red-shifted from the emission

maximum of reconstituted Lhca3 (at about 724 nm) [20]. In

DLhca4, the red emission maximum locates at about 720 nm,

which is the emission maximum of the PSI-core antenna at

low temperatures [21], in line with the almost complete absence

of all conventional Lhca proteins, especially Lhca3 and Lhca4

(Table 1). The shoulder at 750 nm in DLhca1 can be attributed

to a vibrational band of the main emission at 685 nm, while the

bands near 670 and 680 nm in all samples may be attributed to

unconnected chlorophylls and Lhca proteins, respectively.

By comparing time-resolved fluorescence spectra from WT

and Lhca-mutated samples the effect of particular Lhca pro-

teins on the excitation kinetics can be studied. In the case of

WT, about 70% of the 400 nm excitation light is absorbed by

the PSI core and about 30% by LHCI if the linker pigments

between the PSI core and LHCI are considered as PSI core

pigments. In the case of DLhca1 and DLhca4, these ratios

are about 80/20 and 93/7, respectively. The estimated DAS

of each studied complex are shown in Fig. 2. The time con-

stants and trapping proportions are listed in Table 2. The

WT data are very similar to those observed previously with

PSI–LHCI samples from WT Arabidopsis plants [13,14], which

were fitted with five [13] or four [14] (sub)ps and two ns

components. In [14], we explained that the (sub)ps decay of

PSI–LHCI particles can be described sufficiently by four com-

ponents. The five component fit, which results in a final life-

time of PSI–LHCI particles to be around 120 ps with about
Fig. 1. Steady-state emission of WT (dotted), DLhca1 (dashed), and
DLhca4 (solid) mutant at 4 K after 420 nm excitation.



Fig. 2. Decay-associated spectra of globally analyzed time-resolved
fluorescence data of WT (A) and DLhca1 (B), and DLhca4 (C) mutant
at room temperature after 400 nm excitation.
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20% decay amplitude [13], takes slightly better into account the

inhomogeneity, both in terms of antenna size and energy of the

red pigment of the particles [14]. The subpicosecond compo-

nent represents the transfer of excitation energy from higher

excited states (Soret-states) to the Qy-state [14]. The second

component (6–9 ps) represents energy equilibration between
bulk and red chlorophylls of PSI–LHCI, as well as some

trapping (Fig. 2A, Table 2), most likely from the bulk pig-

ments located close to the reaction centre. The size and shape

of this spectrum is similar in the PSI particles from the WT and

both mutants. The third spectrum has in all investigated parti-

cles a lifetime of about 21 ps and an all-positive and similar

shape, which indicates trapping of excitations at all wave-

lengths. Its contribution to the overall decay of the system in-

creases from about 37% in WT to 70% in DLhca4 (Table 2).

This phase was assigned to trapping from PSI core pigments

[14] and the fact that the relative amplitude of this phase in-

creases with smaller LHCI antenna size is consistent with this

idea.

The fourth component has a lifetime of about 80–130 ps, but

a rather different spectral shape and amplitude in the three

investigated particles. This component has been assigned to

trapping from the LHCI [12,14]. The relative trapping propor-

tions of this phase decrease from about 44% in WT to about

26% in DLhca1 and about 10% in DLhca4, consistent with a

contribution of lower amounts of each Lhca protein in the mu-

tants (Table 1). Fig. 3 shows the LHCI trapping spectrum of

all three studied particles normalized to their maxima of the

emission at around 685 nm. We note that the DAS are not

the physical emission spectra of the species (Species Associated

Spectra, SAS), but actually linear combinations thereof [18,22]

and therefore DAS are not necessarily always comparable. In

this case, however, we can compare directly the final trapping

spectra obtained from global analysis, because the next two

long lifetimes (1 and 7 ns) are unconnected to the final trap-

ping state (Fig. 2). The spectrum of DLhca1 (dashed line in

Fig. 3) is slightly blue-shifted compared to that of the WT

(dotted line in Fig. 3), consistent with the absence and presence

of red-most Chl-containing Lhca4 and Lhca3 complexes,

respectively. The spectrum of DLhca4 (solid line in Fig. 3) does

not contain a significant contribution around 730 nm, which

suggests that 95% of the remaining Lhca protein in this com-

plex does not bind a red chlorophyll.

In all samples, two components with lifetimes of about 1 and

7 ns were needed for a sufficient fit (Fig. 2). These components

can be assigned to uncoupled pigments or LHCI proteins, and

it is likely that these components give rise to the emission

bands at 670 and 680 nm in Fig. 1.
4. Discussion

Previous research has indicated that there are significant

differences in the energy transfer kinetics in PSI–LHCI super-

complexes from green plants and PSI–IsiA supercomplexes

from iron-stressed cyanobacteria. In the latter complexes, most

of the trapping of excitation energy takes place with one time

constant, which is almost twice as long as in the PSI core com-

plex without peripheral antenna [16,17] and which has the char-

acteristics of a system in which the excitation energy is fully

equilibrated between core and peripheral antenna before it is

trapped by charge separation. In PSI–LHCI complexes from

green plants, however, two main trapping components are gen-

erally observed [12–15], of which the fastest one arises from

excitations that are absorbed in the core antenna and have a

higher probability to get trapped by charge separation in the

reaction centre than to �escape� to the peripheral antenna,

whereas the slowest one arises from excitations that are slowly



Table 2
Lifetimes and trapping proportions (integrated areas under each DAS spectrum proportional to the total area of DAS, shown in percentage, %) of
WT and mutants of PSI–LHCI particles estimated from the global analysis of the time-resolved fluorescence data

Sample WT DLhca1 DLhca4

s Atot/APSI (%) s Atot/APSI (%) s Atot/APSI (%)

Soret-Qy-transition
a <1 ps – <1 ps – <1 ps –

Trap 1 6 ps 14/16 6 ps 20/23 9 ps 14/16
Trap 2 21 ps 35/38 24 ps 43/49 23 ps 61/73
Trap 3 78 ps 42/46 90 ps 25/28 127 ps 9/11

U. LHCI 1.2 ns 5 1.6 ns 7 2.2 ns 8
U. Chl a 6.6 ns 4 7.2 ns 5 7.1 ns 8

The description of the components (the left-most column) has the following link with the description in the text (see also [14]). Trap 1: the EET-
component, which obtains a small amount of trapping, mainly from the core �bulk� pigments, Trap 2: a trapping component from the PSI core and
the linker pigments, Trap 3: trapping from the pigments in LHCI, U. LHCI: unconnected LHCI-proteins, U. Chl a: unconnected Chl a pigments.
aBelow the limit of the time-resolution of the apparatus (�3 ps).
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equilibrated between the peripheral antenna and the PSI core

complex while trapping of excitation occurs.

The DLhca1 particles investigated in this work are largely

devoid of Lhca1 and Lhca4, but retain most of Lhca2 and

Lhca3. These particles have an almost two-times lower Lhca

content than WT particles. The experiments described here

show that the slow phase has an about two times smaller

amplitude in the DLhca1 particles than in the WT, but has

about the same kinetics. These results are consistent with par-

allel routes for energy transfer from Lhca1/4 and Lhca2/3 to

PSI, each with similar spectrum and kinetics. If there is effi-

cient energy transfer between Lhca1/4 and Lhca2/3 (which is

expected because of the presence of linker chlorophylls be-

tween Lhca4 and Lhca2 [3]), then there are in principle three

possibilities, i.e., energy transfer from LHCI to PSI proceeds

predominantly via Lhca2/3, or predominantly via Lhca1/4,

or about equally via both. The first possibility predicts a faster

energy transfer if Lhca1/4 is absent, the second a slower, the

third about equal kinetics (the faster kinetics of the first possi-

bility arise from the higher probability that an excitation

arrives at the linker chlorophyll needed for energy transfer to
Fig. 3. The final trapping component of PSI–LHCI particles of WT
(dotted) and DLhca1 (dashed), and DLhca4 (solid) mutant after global
analysis of the time-resolved fluorescence data at room temperature
after 400 nm excitation. The decay lifetimes of the components are 78,
90, and 127 ps for WT, DLhca1, and DLhca4 samples, respectively.
PSI [23]). The experiments also show that the kinetics and

spectrum of the fast trapping phase(s) is (are) almost equal

in DLhca1 and WT, in agreement with its attribution to trap-

ping from the core antenna.

The DLhca4 particles investigated in this work retain about

one Lhca protein, which is the main origin of the 127 ps trap-

ping phase in globally analyzed time-resolved fluorescence

data. The results described here indicate that 95% of the

remaining Lhca complexes do not bind red chlorophylls

(Fig. 3), so it cannot be Lhca3. Lhca4 is naturally absent, as

it is genetically knocked out 100% in this line. It is unlikely that

this protein is Lhca2, because the very small amounts of re-

tained Lhca2 and Lhca3 seem to be similar [5]. It is also unli-

kely that the retained protein is Lhca1, because it was not

detected in the immunoblots of the PSI particles from the

DLhca4 mutant, and because the contents of Lhca1 and Lhca4

usually correlate. The retained protein can not be LHCII

either, because its content in the PSI–LHCI preparation is

too low (one LHCII per 8–15 PSI-particles in the sample [5])

to give such a rise of emission in our global analysis. In addi-

tion, the low-temperature emission and absorption spectra of

the DLhca4 particles are not consistent with significant

amounts of LHCII [5]. We cannot completely rule out that

there is no Lhca protein bound to PSI in this mutant and that

the additional lifetime in the DLhca4 particles arise from gap

pigments that remained bound, but in defected configuration,

to the PSI core complex during purification. However, if an

additional Lhca protein is present, the most tentative candi-

date is Lhca5, which is present in elevated amounts in the

DLhca4 PSI particles and which was shown not to bind red

chlorophylls [6]. So, although the biochemical characterization

of this protein has not been successful, it has clear spectro-

scopic signatures of the Lhca5 protein.

From the observation of the 127 ps decay phase in the

DLhca4 sample in this study, we conclude that the protein, pre-

sumably Lhca5, is coupled to the PSI core and delivers excita-

tion energy to P700. However, this lifetime is longer than the

corresponding lifetime in WT particles with a full Lhca con-

tent, despite the absence of red chlorophylls in Lhca5. Red

chlorophylls generally retard the energy transfer, because they

lower the probability that the excited state resides on the chlo-

rophylls from which excitations are transferred to the reaction

centre (see also [10]). This suggests that the functional coupling

between Lhca5 and the PSI core is not as good as in the case of

Lhca1–4. Whether Lhca5 is located at a position with a less
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efficient energy transfer route to the PSI core, or it has another

type of orientation than Lhca1–4, or the gap pigments between

Lhca5 and the PSI core are blue-shifted compared to the bulk

chlorophylls, so that excitations under their way to the PSI

core have to pass a high-energy barrier remains to be answered

in future studies.
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