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Abstract

This paper extends a recent report on a model to establish population characteristics to include censored data. The theoretical background is
given. The application given in this paper is limited to left-censored datées&thanvalues, but the principles can also be adopted for other
types of censored data. The model gives robust estimates of population characteristics for datasets with complicated underlying distributions
includingless tharvalues of different magnitude atebss tharvalues exceeding the values of numerical data. The extended model is illustrated
with simulated datasets, data from interlaboratory studies and temporal trend data on dissolved cadmium in the Rhine river. The calculations
confirm that inclusion of left-censored values in the computation of population characteristics improves assessment procedures.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction environmental studies and in interlaboratory studtesr].
Assumptions need to be made if thdsss thanvalues are
Censored data, i.e. datasets that include non-numericato be incorporated into the calculation of the population
values, are frequently encountered in different fields of characteristics. Apart from the removal leks thanvalues
science[1-4]. The non-numerical values may be known to from the dataset, a common approach is to substitutketise
be below a certain limit, e.g. left-censored datdess than thanvalues by a constant value like the LOQ itself, half the
values, and/or above an upper limit. Values below a limit LOQ or zero. The most widely accepted and recommended
of quantification (LOQ) are frequently encountered both in  substitution is half the LOQ. However, several studies have
shown that simple substitution methods perform poorly in
_— comparison to other methods in summary statiqées 0].
: goér:ifzzz‘r’g;i zﬁhggf;‘z'éﬁulr illmé“g%‘]}i;f:;‘: +31317484885.  |n order to improve the estimate of the summary statistics,
1 This paper uses LOQ to denote the limit that is reported vibenthan methods .have been d.eve|0ped that. C(Z)mbme the num?rlcal
data are encountered. Values above this limit are referred to as ‘numericalvalues with extrapolation of below-limit values, assuming
data’. a specific probability density function (pdf). The maximum
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likelihood method and log probability plotting are two of the product of OME and OMR. S;» provides a quanti-

examples[11]. In many environmental dataseisss than tative measure how well the two observations agree, taking
values occur along with potential outliers in the right hand the respective pdf’s into account. The overlap integral can
tail of the distribution. Robust estimation techniques have range between 0 (no overlap) and 1 (100% overlap) when the

been developed to deal with such situatifsis observations have identical pdf’s.
Recently, a new model to calculate the population charac-  The model renders in a setmbasisvectors OMF a total of
teristics for experimental data has been repofi&. This n eigenvectors with eigenvalues The eigenvalue,; gives

model does not assume unimodality of the distribution and the probability in the basisset of the corresponding eigen-
provides a robust estimation of population characteristics. In functioni. The highest probability and thus maximum value
this paper, the development of this model is described which for A is equal to the number of datawhich is obtained when
includes left-censored values. Following an outline of the the- all data have exactly the same pdf. In this case, each OMF
ory, the approach is illustrated with calculations on simulated has a coefficient which is equal tg Jn. The eigenvector
datasets, on data from interlaboratory studies and on datawith the highest eigenvaluk is the PMF. The remaining
from water quality monitoring. The model can be adapted in n—1 linear combinations are ranked according to probability
the same manner to include other types of censored data. (i.e. eigenvalue) and are denoted as BMF., PMF,. PMF,
and higher PMF’s may sometimes be additional modes, but
are frequently only clusters of data ordered according to their
2. Theoretical background degree of overlap. Each squared PMF effectively describes a
part of the pdf of the ensemble of data. When the squared
Data arise from a measurement process which, when un-PMFs are summed together over the entire concentration
der control, gives an output that can be described by a specificrange, the pdf of the entire dataset is reconstructed.
probability density function (pdf). A pdf can be attributed to For each PMRZ; the expectation value and variance can
a particular dataset by adding up the pdf’s associated with all be calculated as follows:
the individual independent measurements. The overall pdf
constructed in this manner is the starting point for the model. , _ J/ x¥7dx 2 [xPodx 2
Instead of calculating the mean of the data, the model sets '~ [ w?dx Y [wPdx :
out to establish the most probable value given the overall pdf.
The mathematical procedure borrows the concept of wave- In addition to the mean and standard deviations of each
functions from quantum mechanics. This enables the use ofmode or cluster, the eigenvaluesnable the quantitative as-
powerful matrix algebra. As an analogue to wavefunctions, sessment of the degree of comparability and the character
observation measurement functions (OMP? are defined ~ (unimodal, bimodal) of the dataset. To this end, the program
as the square root of the probability density function which is converts the eigenvalue of the mode or cluster proper into a
attributed to the individual observation in question. The set of percentage of the overall pdf. The percentage therefore quan-
OMFs forms a space, or a basisset, in which so called popu-titatively describes which fraction of the dataset is accounted
lation measurement functions (PM¥sire constructed. The  for by the PMF in question.
construction of the PM®; is a linear combination of OMF'’s, The model is extended for use wilbss thanvalues by
i.e.¥ =Y cijp;. Anormalised, squared PMF is a pdf. applying the appropriate probability density functions. A
In the model, the coefficients; are obtained by seeking  straightforward approach can be taken when no assumptions
for the (unnormalised) PMF which has the highest probability are made regarding the probability density function under-
in the basisset. The probability of PM obtained as the  lying a less thanvalue. In such a case, in a first approxi-
integral [ apl_Z dx. Mathematically we have to establish the mation each concentration between zero and the LOQ has
set of coefficients for which the integrdlw? dx is maximal. ~ an equal probability. We can then use the square root of
The mathematical procedure uses the method of Lagrange? rectangular probability density function as basisfunction.
multipliers and imposes the additional constraint, that the Explicitly, when aless thanvalue is reported, the basis-
sum of the squared coefficients is equal to one. function is equal to,/1/LOQ in the interval between zero
The mathematical elaboration requires a solution to the and LOQ and zero otherwise. These basisfunctions have an
eigenvector—eigenvalue equatiBo= Ac. In this equationS expectation valuer; = [ ¢2xdx = LOQ/2 and a variance
represents the matrix of overlap integrals. For example, the [ (pizxz dx — rﬁl.z = LOQ?/12. When specific knowledge of
matrix elemeng;z is calculated ag 12 dx, i.e. the integral the measurement process and the properties of the measured
objectis available, it would be possible to use other probabil-
- ity density functions. Montville and Voigtman derived pdf’s
2 In this and following papers, the terminology is changed somewhat in for the instrumental limit of detectiorj43]. These pdf’s can
comparison with reference [12]. Laboratory measurement function is re- be used when the model is specifically applied to such data.

placed by observation measurement function, interlaboratory measuremem.l_h implicit mbtion made with the maximum likelihood
function is now denoted as population measurement function. This modifica- € Implicit assumptio aae ema u elinoo

tion s applied as the scope of the model is much broader than interlaboratory M€thod and log probability plotting techniques entails that the
studies. LOQs are cut off from the population formed by the numeri-
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cal values, implying that a concentration just below the LOQ mean 1.09 and standard deviation 0.20. Subsequently, obser-
is more likely rather than near zero. To mimic this assump- vations less than one were treated dsss tharvalue with
tion in a simple way, in this paper a basisfunction has been LOQ = 1. Only datasets with at least one LOQ were included
defined as the square root of a simple triangular pdf. This in the calculations. The means and standard deviations for
triangular pdf has the form (20Q?)x for concentrations  each dataset were calculated with two methods: the Cohen
between zero and LOQ and zero otherwise, with an expec-maximum likelihood method estimatf#t] and the model us-
tation valuem; = f<p,.2xdx =2 x (LOQ/3) and a variance ing a rectangular pdf for the LOQs. The Cohen maximum
[ ¢?x?dx —m? = LOQ?/18. likelihood method was selected since it is regarded as an ap-
Recently, the kernel density approach has been proposed t@ropriate approach to incorporate left-censored data into the
study the features of the populatifi®]. In this method, each  evaluatior{2]. The main restriction in the use of the method
datapoint is assigned a normal distribution with a fixed stan- is that it requires the data to be normally distributed and it can
dard deviation. This standard deviation is obtained using the only accept one value for the left-censored data. The results
h-estimator, which is optimised so as to obtain a meaningful of the calculations are depicted#ing. 1
appearance of the graphical representations of the population. The Cohen maximum likelihood estimator and the model
As with the kernel density approach, our model uses pdfs give comparable results when the numbelest tharvalues
as building blocks. The key difference lies in linking the pdfs is below five. The two methods disagree when the number
to the concept of measurement functions and by using matrix of less tharvalues exceeds five. The Cohen maximum likeli-
algebra to calculate the features of the population as outlinedhood estimator requires the numerical data also at high LOQ
above. The model has an implementation, the normal dis- percentages to estimate the characteristics of the assumed
tribution approximation (NDA), which does not require the underlying distribution and thus to calculate mean and stan-
individual uncertainties of the datapoirff<]. In this imple- dard deviation adjusted for LOQs. The model does notinvoke
mentation each observation is attributed a normal distribu- any assumption about the character of the overall population.
tion with one and the same standard deviation. This standardWhen more than five LOQs are present, the model indicates
deviation is estimated so as to reproduce the population charthat the dataset is bimodal. The first mode consists of the
acteristics of a normal distribution quantitatively. The kernel six or moreless tharvalues which all have the same pdf. In
density method and the normal distribution approximation of principle, the expectation value of this mode is 0.5 (i.e., the
the model produce very similar graphs of the population. The expectation value of the individual basisfunctions). Higher
kernel density approach and our model are complementary,expectation values occur when numerical data with a value
however our model provides additional tools for exploratory close to one are present. Such data have pdfs that overlap with
data analysis (e.g. graphical representation of the overlap mathe pdfs of thdess tharvalues. Because of this overlap, the
trix, seeFig. 2of the paper, and plots of the eigenvectors, see expectation value of the first mode is increased. The second
[12]) as well as the quantitative results in addition. mode consists of the numerical values. In a conventional in-
The model is very flexible and can be applied in vari- terpretation, the model indicates that the numerical data are
ous ways both with respect to the type of probability density outliers when the number ¢éss tharvalues is greater than
functions, e.g. normal distributions, Studenistribution, five. For an interlaboratory study, the interpretation might be
rectangular distributions, and the uncertainty characteristics, that the higher values are attributed to false positives.
e.g. standard deviations reported by laboratories oracommon When the number déss tharvalues equals five, the level
standard deviation. of agreement between the Cohen maximum likelihood esti-
The prograni12] has been extended to incluldss than
values. Integrals between basisfunctions invoking the prod- , ,

uct of the square root of a normal distribution respectively a 3
rectangular or triangular pdf as described above are obtained § 1'2
by numerical integration. Integrals among the rectangular or €
the triangular functions are carried out using the analytical § '
functions. Integrals among basisfunctions based on the nor-g 1
mal pdfs are obtained as previously reported. The program is : 0.9
provided as a free Matlab toolbox upon request. £o0s
I] [
'3 0.7 * l. : Nioss than >5
c &, less than =
Eg 06 . }:: .,;- n * 1<es§'|e:man <5
i . 05 0%%6047 o8 Amu
3. Comparison of methods on simulated datasets
0.4
09 095 1 105 11 115 12 125

The extended model is demonstrated using a simulated
dataset following the approach described by Kuttatharm-
makul et al[2]. A total of 250 datasets consisting of twelve  Fig. 1. Results of two methods to calculate the mean of left-censored data on
observations were generated from a normal distribution with 250 simulated datasets. The lipe x is drawn to facilitate the comparison.

Mean obtained with Cohen Maximum Likelihood Estimator
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Table 1
Calculations on polybrominated flame retardants (data from De Boer and Cofino, 2002)

Matrix and congener All data Only numerical data Numerical data and LORBA
mean of numerical daa

Nobs Expectation S.D. % Nobs  Expectation S.D. % Nobs  Expectation S.d. %

value value value
Eel—BDE 209 12 or8 249 352 4 0078 Q083 346 5 w74 Q082 27.9
Eel—BDE 119 9 w42 Q048 519 4 038 Q023 526 4 038 Q023 52.6
Mussel—BDE 153 11 034 Q034 391 7 w47 Q018 444 9 37 Q019 37.1
Cormorant—BDE 66 8 as 014 442 3 0063 Q018 501 5 39 Q024 375
Porpoise Liver—BDE 209 13 41 812 371 4 750 317 47.2 10 159 177 36.6
Sediment7—BDE 75 6 0036 Q045 400 4 ®6 0132 445 6 036 Q045 40.0

a The NDA mean of the numerical data is the expectation value of PdBEained by applying the normal distribution approximation (NDA) implementation
of the model to the numerical data. The NDA approach does not require the specification of the uncertainties of the lafiti2htories

mator and the model varies significantly. This can be traced cases, inclusion of thkess thanvalues had a small effect.
back to the characteristics of the dataset. Depending on theln Table 1 results are given for some difficult datasets. For
distribution of the numerical data the first mode is made up BDE 119 and 209 in eel and BDE 66 in cormorant the calcula-
by the numerical data, tHess thardata, or by a combination  tions on the full datasets, including ddks tharvalues, give a
of both. In the first case, a good correspondence with the Co-higher expectation value than the calculations on the datasets
hen method is obtained. In the latter two cases, the agreemenfrom which all theless thanvalues have been removed. This
with the Cohen method is less good. pattern is caused bgss thanvalues with high LOQs. This
The calculations indicate that the Cohen maximum likeli- effect is illustrated for BDE 209 in eel with a graphical rep-
hood estimator and the model give comparable results exceptresentation of the overlap matrix givenkig. 2 The numer-
when the number déss tharvalues is high. This difference ical data exhibit a poor comparability (observations 9—12 in
arises as the approaches are based on different principleskFig. 2). In this case, the model gives an expectation value of
The Cohen method assumes a normal distribution for the 0.0784 0.082 for the first mode, representing 34.6% of the
numerical data and corrects for thess thanvalues. Our dataset. This expectation value is determined predominantly
model sets out to calculate the performance characteristics of
the ‘first mode’ of the dataset, regardless whether this mode
is composed of numerical or censored data. The availability
of statistical methods based upon different principles is an
advantage. When the outcomes of the methods differ, the
dataset should be inspected. It should be judged whether the ©
assumptions underlying the statistical methods are met. The 2
nature of the measurement should be taken into account—are 7
measurement problems (e.g. contamination, incomplete g
resolution) possible? The statistical procedures have thus ,
to be complemented by chemical expert judgement. This
judgement will determine whether it is possible to make a
statement about the performance characteristics of the dataset*
atall. 5
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4. Case study |—interlaboratory study on
polybrominated diphenylethers (PBDES)
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The result of a recent interlaboratow study on PBDEs has Fig. 2. Graphical representation of the overlap matrix for BDE 209 in egl.
been re orte(ﬁS]. Datasets in this studv contained a small The_overlap |nte_gra| gan have values between 0 and 1. The bar on the right
P . ; ) y : depicts the relationship between gray scale and the magnitude of the overlap
number of observations with a relatively high number of left-  jntegrai—white represents an overlap of 1, black represents no overlap. The
censored data which varied considerably in magnitude. Theobservations 9-12 are numerical data, the observations 1-@sar¢han
numerical data exhibit a wide scatter and had difficult under- values. The observations are ordered according to their magnitude. The figure
Iying distribution profiles. A selection of the data from this has been divided into three zones defined by Roman numerals I, Il and III.
. | is a 4x 4 matrix of the numerical data, Il is a>88 matrix depicting the
St“dY _are used to II_IUStrate the EXtenC_jEd model. overlaps between thHess tharnvalues and Il depicts the overlaps between
Initially, calculations were made with the full dataset and  the numerical data arleiss thanvalues. The row of data at the bottom of the

then with the dataset without tHess thanvalues. In most figure provides the concentrations reported.
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by the observation 10, which overlaps moderately with both data and several ‘high’ LOQs occur which overlap with them-
the observations 9 and 11 (overlaps respectively 0.16 andselves and/or with numerical outliers. LOQs higher than the
0.34). The expectation value for the entire dataset includ- median of the numerical data probably contain the true con-
ing all less tharvalues is calculated to be 0.28.5, which centration, but provide little information and may perturb the
accounts for 35.2% of the dataset. The 10-fold increase in calculations.

expectation value is due to the rise of a new cluster with  In this paper the calculations have been repeated with a
strongly overlapping data along with the introduction of the constraint on the magnitude of LOQs which can be accepted.
less thanvalues. This cluster includes the LOQs <.32, <.4, The constraint imposed was that only LOQs are included
<.88 and < 1.5 (observations 5, 4, 6, and Fig. 2). Similar which are equal to or less than the expectation value ob-
effects occurs with the introduction of LOQs into the calcu- tained for the set of numerical data with the normal distri-
lations for BDE 119 in eel and BDE 66 in cormorant. This bution approximation of the mod§l2]. The advantage of
observation suggests that the magnitude or the indicative in-this approach is that an unwanted effect on the calculations
formation of a LOQ is important in any assessment. Clearly, arising fromhigh LOQs s prevented. The disadvantage, how-
the indicative information of LOQs which are an order of ever, is that the cut-off point for LOQs introduces a subjective
magnitude or more greater than numerical data is virtually element in the calculations.

zero. An example is the LOQ of <50 for BDE 209 in eel The outcome of these calculations are also indicated in
is which substantially greater than the expectation value of Table 1 For BDE 209 in eel there is only one LOQ that sat-
0.078 based on the reported numerical data. The degree tasfies the criterion for inclusion. This observation, number 1,
which the calculations are affected by the high LOQs de- exhibits a small overlap with the numerical data (observa-
pends on the nature of the dataset. When there is a largetions 9—12Fig. 3), so that the means of the calculations with
number of laboratories reporting numerical data that are in and without this LOQ differ little. However, the inclusion of
good agreement amongst themselves, the presence of a limthe LOQs for BDE 209 in porpoise liver and for BDE 75 in
ited number of high LOQs only has a small effect. Effects sediment seven has a pronounced effect on the outcome of the
become greater when there is a small number of numericalcalculations. In each case it is essential to use the calculated
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Fig. 3. Overview of results and the summed measurement functior3-f@€H and pp-DDT in biological tissue showing the need for inclusion of the
left-censored values. Expectation value and standard deviation of 8&indicated by horizontal bars in the bottom panels. F#CH dataset contains 7
left-censored data (observation numbers 9-15, théapl dataset contains 15 left-censored data (observation numbers 13-27).
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Table 2
Results of calculations on data from Quasimeme interlaboratory scheme
Quasimeme round Determinand  Dataset Nobs Rectangular pdf Triangular pdf
Mean Standard % PMF1  Mean Standard % PMF1
PMF1 PMF1 PMF1 PMF1
QORO070BT HCB All data 35 08 004 649 0.08 003 649
Only numerical data 26 .09 003 686 0.09 003 686
Numerical data and LOQ < limit 27 .09 003 665 0.09 003 665
QORO70BT ppDDE All data 36 131 037 638 131 037 640
Only numerical data 34 .32 036 672 132 036 672
Numerical data and LOQ < limit 36 31 037 638 131 037 640
QORO068BT CB52 All data 31 @3 009 637 0.13 008 632
Only numerical data 27 .04 008 702 0.14 008 702
Numerical data and LOQ < limit 30 .03 008 652 0.13 008 652
QORO068BT CB156 All data 24 .05 004 645 0.06 004 619
Only numerical data 16 .06 004 703 0.06 004 703
Numerical data and LOQ < limit 19 .05 004 638 0.06 004 636
QORO068BT CB180 All data 31 .08 007 693 0.18 007 689
Only numerical data 29 .08 007 735 0.18 007 735
Numerical data and LOQ<lIimit 30 .08 007 711 0.18 007 711
QORO062BT CB28 All data 29 .80 008 638 0.30 008 641
Only numerical data 26 .80 008 672 0.30 008 672
Numerical data and LOQ < limit 27 .80 008 653 0.30 008 655
QORO062BT ppDDT All data 24 014 019 536 0.17 021 482
Only numerical data 13 .06 027 600 0.16 027 600
Numerical data and LOQ < limit 17 .02 023 510 0.13 024 504
QORO062BT B-HCH All data 15 013 018 578 0.16 019 546
Only numerical data 8 .24 025 772 0.24 025 772
Numerical data and LOQ < limit 14 .04 019 572 0.17 020 548
QORO062BT v-HCH All data 23 013 016 668 0.14 016 656
Only numerical data 17 .05 018 779 0.15 018 779
Numerical data and LOQ < limit 21 .m4 017 674 0.14 017 669
QTMO053BT Silver All data 15 18 7.2 514 154 5.7 489
Only numerical data 11 18 27 623 148 27 623
Numerical data and LOQ < limit 12 1a 28 573 147 28 574
QTMO054BT Cadmium All data 40 .85 267 609 6.44 248 592
Only numerical data 35 .80 228 623 6.30 228 623
Numerical data and LOQ < limit 35 .80 228 623 6.30 228 623
QTMO54BT Nickel All data 29 1% 345 637 470 336 616
Only numerical data 22 48 351 692 487 351 692
Numerical data and LOQ < limit 23 13 351 66.2 486 351 66.2
QTMO51BT Cadmium All data 30 88 323 679 5.36 313 650
Only numerical data 21 .81 328 722 481 328 722
Numerical data and LOQ < limit 23 .40 328 659 4.80 328 659
QTMO052BT Chromium All data 29 259 745 657 2596 736 655
Only numerical data 27 262 706 67.7 2621 706 67.7
Numerical data and LOQ < limit 28 258 716 664 2579 712 66.8
QTMO047BT Silver All data 11 M5 558 563 5.83 597 518
Only numerical data 6 .65 781 639 6.05 781 639
Numerical data and LOQ < limit 9 .25 607 531 4.68 621 517
QORO056BT opDDT All data 21 110 096 495 129 093 430
Only numerical data 9 .25 081 643 125 081 643
Numerical data and LOQ < limit 15 .06 083 444 0.89 084 430
QORO056BT ppDDT All data 27 166 300 403 2.36 362 352
Only numerical data 12 .29 457 584 2.59 457 584
Numerical data and LOQ < limit 23 .a5 288 386 171 368 350
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Table 2 Continued
Quasimeme round Determinand  Dataset Nobs Rectangular pdf Triangular pdf
Mean Standard % PMF1  Mean Standard % PMF1
PMF1 PMF1 PMF1 PMF1
QORO057BT CB28 All data 31 84 040 701 0.66 038 678
Only numerical data 24 .87 038 790 0.67 038 790
Numerical data and LOQ < limit 27 .63 038 726 0.64 037 727
QORO057BT CB52 All data 32 .09 059 691 111 057 665
Only numerical data 26 .08 053 762 108 053 762
Numerical data and LOQ < limit 28 .a7 054 712 107 054 712
QORO057BT CB101 All data 32 .27 064 731 218 064 731
Only numerical data 30 .29 062 750 219 062 750
Numerical data and LOQ < limit 31 27 062 734 216 062 737
QORO057BT CB105 All data 29 .B5 027 663 0.56 026 639
Only numerical data 23 .85 024 719 0.55 024 719
Numerical data and LOQ < limit 25 .54 024 677 0.54 024 679

values along with expert judgement on the whole information
base.

Of the fifteen values in the data set fsHCH, seven were
left-censored values. The overview of results clearly shows
the overlap of the left-censored data with most of the nu-
merical values and the interactions of the pdfs of both the
normal distribution and the rectangular distributioRig( 3).

A similar situation occurs with the ppDT. Of the 27 values,
15 are left-censored. The left-censored data interact strongly
with all but about five of the numerical data. These five nu-

QUASIMEMES s aninternational interlaboratory scheme merical data stand out in the dataset by their high values and
supporting the quality assurance of environmental measure-have a negligible interaction with the other data. This is also

5. Case study II: examples from the QUASIMEME
laboratory performance studies of determinands in
marine matrices

ments in the marine environmefd5]. As such this scheme
regularly encounters datasets which contaiss thanval-

reflected in pattern of the overall measurement function for
pp-DDT (Fig. 3.

ues. The results of calculations on a selected number of such These two examples clearly illustrate the importance of

datasets are given ifable 2

being able to include the left-censored values in the overall

The proportion ofess tharvalues in relation to the num-  assessment of laboratory performance studies where natural
ber of numerical data ranges from 5 to 133% for all LOQs unspiked materials are used and the concentrations of the
and from 0 to 75% for the LOQs which satisfy the crite- determinands are close to the LOQs.
rion ‘less than the mean of dataset of numerical data’. In-  In such situations the LOQs may more realistically repre-
spection of the results of the calculatiof®lple 9 confirm sent a closer estimate of the true concentration and should be
that inclusion ofless thanvalues in the calculations has, included in the assessment.
in the majority of cases, only a small effect on the expec-
tation value in spite of the relatively large proportions of
less thanvalues. Exceptions are provided by the datasets 6. Case study lll—temporal trend of dissolved
B-HCH in QOR062BT, silver in QTMO047BT, ¢fDDT in cadmium in the rhine river at Lobith
QORO056BT and opDDT in QOR056BT. These three cases
are small datasets with 80-130% LOQs relative to numerical
data. Inclusion of théess thanvalues gives rise to a signifi-  ter Management is responsible for the monitoring of water
cant lowering of the expectation value. The datagettCH quality inthe river Rhine. The water quality has improved sig-
and pp-DDT are discussed into more detail and presented in nificantly in the past decade. As a result, the numbédess
Fig. 3. Many organochlorines occur at low concentrations, thanvalues has increased as concentrations have decreased
at or below the limit of quantification in lean fish tissue. below the performance characteristics of the methodology
Often in such analyses the numerical data may be a resultemployed. IrFig. 4, the temporal trend of dissolved cadmium
of contamination during sampling or subsequent chemical in Rhine water at Lobith is given for the period between 1988
analysis. and 1998. In the first part of this periddss tharvalues were
hardly observed. In the second half of this decaeles than
values constituted up to 75% of the data in a year. Neglecting
theseless thanvalues gives a false, high assessment of the
dissolved cadmium concentrations, since from about 1996

The Dutch Directorate General for Public Works and Wa-

3 QUASIMEME: quality assurance of information for marine environ-
mental monitoring.
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Fig. 4. Temporal trend of dissolved cadmium in the Rhine river at Lobith between 1988 and 1999. Sampling frequency was 12 times/year in the first 5 years
and 24 timeslyear in the last 5 years. Limit of detection was 0.01 or 0.02 mg/Il. A rectangular pdf was used to include the LOQs into the calculations.

onwards thdess tharvalues dominate the datas&id. 4). to the outcome of the calculations. The indicative information
Therefore inclusion of théess thanvalues becomes critical  of such LOQs may be very limited. This effect can be circum-
to the reporting of this type of monitoring activity and any vented by imposing criteria on the acceptance of the LOQs
subsequent environmental control policies. before inclusion in the calculations, although this approach
also introduces an element of subjectivity. Expert judgement
is required in such cases. The calculations demonstrate that
7. Conclusions the model can handliess thanvalues well while retaining
its features of graphical and quantitative output. For each

In this paper the inference model froih2] is extended mode or cluster of data the model provides the respective
to include left-censored data into the assessment. The modeéxpectation value, standard deviation and percentage of data
associates a measurement function associated with each olrepresented by the mode in the dataset. The graphical out-
servation. A measurement function is obtained as the squareput provides an overview of the key features of the structure
root of the probability density function proper. Left-censored of the data that allows further exploratory analysis and an
data are included in the model by establishing the appropriateinformed evaluation.
pdfs and constructing the corresponding measurement func- The calculations presented in this paper confirm that in-
tions. As suchless thardata and numerical values are treated clusion of left-censored data in the calculations of population
in the same manner. Consequently, there are no limits to thecharacteristics improves an assessment procedure.
magnitudes of the LOQs nor to the number of LOQs in the
dataset.

The results of the model have been compared with those
obtained using the Cohen maximum likelihood estimator for
simulated datasets with single-valued LOQs. The agreement [1] W.M. Daniels, N.A. Higgins, Environmental distributions and the
between the two methods depends on the number of LOQS * * practical utilization of detection limited environment measure-
presentin the dataset. When the number of LOQs is high,the  ment data, National Radiological Protection Board, 2002, ISBN
model may give a principally different outcome. Convention- 0859514846.
ally interpreted, the model may designate the numerical val- [2] S Kuttatharmmakul, D.L. Massart, D. Coomans, J. Smeyers-

. . Verbeke, Anal. Chim. Acta 441 (2001) 215-229.
ues as outliers where many LOQ_s are p_res_ent in the_dataset.[S] A. Singh, J. Nocerino, Chemom. Intell. Lab. Syst. 60 (2002) 69—
On the contrary, the Cohen maximum likelihood estimator 86.
always has to infer the mean and standard deviation of the [4] US Army Engineer Waterways Experiment Station, Guidelines for
dataset from the numerical data, adjusting for the LOQs. Statistical Treatment of Less Than Detection Limit Data in Dredged

The model has been applied to datasets obtained from in- Sediment Evaluations, Environmental Effects of Dredging, Technical
terlaboratory studies and from water quality monitoring. In Notes EEDP-04-23, 1995.

-~ . [5] J. de Boer, W.P. Cofino, Chemosphere 46 (2002) 625-633.
specific cases, the presence of LOQs with values greater than(g] p.c. Glass, C.N. Gray, Ann. Occup. Hyg. 45 (2001) 275-282.
the mean of the numerical data may contribute significantly [7] J.F. England, R.D. Jarrett, J.D. Salas, J. Hydrol. 278 (2003) 172—196.
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