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This paper extends a recent report on a model to establish population characteristics to include censored data. The theoretical b
iven. The application given in this paper is limited to left-censored data, i.e.less thanvalues, but the principles can also be adopted for o

ypes of censored data. The model gives robust estimates of population characteristics for datasets with complicated underlying d
ncludingless thanvalues of different magnitude andless thanvalues exceeding the values of numerical data. The extended model is illu
ith simulated datasets, data from interlaboratory studies and temporal trend data on dissolved cadmium in the Rhine river. The c
onfirm that inclusion of left-censored values in the computation of population characteristics improves assessment procedures.
2004 Elsevier B.V. All rights reserved.
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. Introduction

Censored data, i.e. datasets that include non-numerical
alues, are frequently encountered in different fields of
cience[1–4]. The non-numerical values may be known to
e below a certain limit, e.g. left-censored data asless than
alues, and/or above an upper limit. Values below a limit
f quantification (LOQ1) are frequently encountered both in

∗ Corresponding author. Tel.: +31 317 474304; fax: +31 317 484885.
E-mail address:wim.cofino@wur.nl (W.P. Cofino).

1 This paper uses LOQ to denote the limit that is reported whenless than
ata are encountered. Values above this limit are referred to as ‘numerical
ata’.

environmental studies and in interlaboratory studies[5–7].
Assumptions need to be made if theseless thanvalues are
to be incorporated into the calculation of the popula
characteristics. Apart from the removal ofless thanvalues
from the dataset, a common approach is to substitute thless
thanvalues by a constant value like the LOQ itself, half
LOQ or zero. The most widely accepted and recomme
substitution is half the LOQ. However, several studies h
shown that simple substitution methods perform poorl
comparison to other methods in summary statistics[8–10].
In order to improve the estimate of the summary statis
methods have been developed that combine the num
values with extrapolation of below-limit values, assum
a specific probability density function (pdf). The maxim

003-2670/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
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likelihood method and log probability plotting are two
examples[11]. In many environmental datasetsless than
values occur along with potential outliers in the right hand
tail of the distribution. Robust estimation techniques have
been developed to deal with such situations[3].

Recently, a new model to calculate the population charac-
teristics for experimental data has been reported[12]. This
model does not assume unimodality of the distribution and
provides a robust estimation of population characteristics. In
this paper, the development of this model is described which
includes left-censored values. Following an outline of the the-
ory, the approach is illustrated with calculations on simulated
datasets, on data from interlaboratory studies and on data
from water quality monitoring. The model can be adapted in
the same manner to include other types of censored data.

2. Theoretical background

Data arise from a measurement process which, when un-
der control, gives an output that can be described by a specific
probability density function (pdf). A pdf can be attributed to
a particular dataset by adding up the pdf’s associated with all
the individual independent measurements. The overall pdf
constructed in this manner is the starting point for the model.
I l sets
o l pdf.
T ave-
f se of
p ons,
o
a h is
a et of
O opu-
l e
c s,
i

g
f ility
i e
i the
s .
T range
m the
s

the
e
r , the
m l

at in
c is re-
p ement
f ifica-
t ratory
s

of the product of OMF1 and OMF2. S12 provides a quanti-
tative measure how well the two observations agree, taking
the respective pdf’s into account. The overlap integral can
range between 0 (no overlap) and 1 (100% overlap) when the
observations have identical pdf’s.

The model renders in a set ofnbasisvectors OMF a total of
n eigenvectors with eigenvaluesλ. The eigenvalueλi gives
the probability in the basisset of the corresponding eigen-
function i. The highest probability and thus maximum value
for λ is equal to the number of datan, which is obtained when
all data have exactly the same pdf. In this case, each OMF
has a coefficient which is equal to 1/

√
n. The eigenvector

with the highest eigenvalueλ is the PMF1. The remaining
n−1 linear combinations are ranked according to probability
(i.e. eigenvalue) and are denoted as PMF2, . . ., PMFn. PMF2
and higher PMF’s may sometimes be additional modes, but
are frequently only clusters of data ordered according to their
degree of overlap. Each squared PMF effectively describes a
part of the pdf of the ensemble of data. When the squared
PMFs are summed together over the entire concentration
range, the pdf of the entire dataset is reconstructed.

For each PMFΨ i the expectation value and variance can
be calculated as follows:
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nstead of calculating the mean of the data, the mode
ut to establish the most probable value given the overal
he mathematical procedure borrows the concept of w

unctions from quantum mechanics. This enables the u
owerful matrix algebra. As an analogue to wavefuncti
bservation measurement functions (OMF,ϕi)2 are defined
s the square root of the probability density function whic
ttributed to the individual observation in question. The s
MFs forms a space, or a basisset, in which so called p

ation measurement functions (PMFs2) are constructed. Th
onstruction of the PMFΨi is a linear combination of OMF’
.e.Ψi = ∑

cijϕj. A normalised, squared PMF is a pdf.
In the model, the coefficientscij are obtained by seekin

or the (unnormalised) PMF which has the highest probab
n the basisset. The probability of PMFi is obtained as th
ntegral

∫
Ψ2

i dx. Mathematically we have to establish
et of coefficients for which the integral

∫
Ψ2 dx is maximal

he mathematical procedure uses the method of Lag
ultipliers and imposes the additional constraint, that

um of the squared coefficients is equal to one.
The mathematical elaboration requires a solution to

igenvector–eigenvalue equationSc=λc. In this equation,S
epresents the matrix of overlap integrals. For example
atrix elementS12 is calculated as

∫
ϕ1ϕ2 dx, i.e. the integra

2 In this and following papers, the terminology is changed somewh
omparison with reference [12]. Laboratory measurement function
laced by observation measurement function, interlaboratory measur

unction is now denoted as population measurement function. This mod
ion is applied as the scope of the model is much broader than interlabo
tudies.
Ψi dx Ψi dx

In addition to the mean and standard deviations of
ode or cluster, the eigenvaluesλ enable the quantitative a

essment of the degree of comparability and the char
unimodal, bimodal) of the dataset. To this end, the prog
onverts the eigenvalue of the mode or cluster proper i
ercentage of the overall pdf. The percentage therefore

itatively describes which fraction of the dataset is accou
or by the PMF in question.

The model is extended for use withless thanvalues by
pplying the appropriate probability density functions
traightforward approach can be taken when no assump
re made regarding the probability density function un

ying a less thanvalue. In such a case, in a first appro
ation each concentration between zero and the LOQ
n equal probability. We can then use the square ro
rectangular probability density function as basisfunc
xplicitly, when a less thanvalue is reported, the bas

unction is equal to
√

1/LOQ in the interval between ze
nd LOQ and zero otherwise. These basisfunctions ha
xpectation valuemi = ∫

ϕ2
i x dx = LOQ/2 and a varianc

ϕ2
i x

2 dx − m̄2
i = LOQ2/12. When specific knowledge

he measurement process and the properties of the me
bject is available, it would be possible to use other prob

ty density functions. Montville and Voigtman derived pd
or the instrumental limit of detections[13]. These pdf’s ca
e used when the model is specifically applied to such
he implicit assumption made with the maximum likeliho
ethod and log probability plotting techniques entails tha
OQs are cut off from the population formed by the num
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cal values, implying that a concentration just below the LOQ
is more likely rather than near zero. To mimic this assump-
tion in a simple way, in this paper a basisfunction has been
defined as the square root of a simple triangular pdf. This
triangular pdf has the form (2/LOQ2)x for concentrations
between zero and LOQ and zero otherwise, with an expec-
tation valuemi = ∫

ϕ2
i x dx = 2 × (LOQ/3) and a variance∫

ϕ2
i x

2 dx − m̄2
i = LOQ2/18.

Recently, the kernel density approach has been proposed to
study the features of the population[14]. In this method, each
datapoint is assigned a normal distribution with a fixed stan-
dard deviation. This standard deviation is obtained using the
h-estimator, which is optimised so as to obtain a meaningful
appearance of the graphical representations of the population.

As with the kernel density approach, our model uses pdfs
as building blocks. The key difference lies in linking the pdfs
to the concept of measurement functions and by using matrix
algebra to calculate the features of the population as outlined
above. The model has an implementation, the normal dis-
tribution approximation (NDA), which does not require the
individual uncertainties of the datapoints[12]. In this imple-
mentation each observation is attributed a normal distribu-
tion with one and the same standard deviation. This standard
deviation is estimated so as to reproduce the population char-
acteristics of a normal distribution quantitatively. The kernel
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mean 1.09 and standard deviation 0.20. Subsequently, obser-
vations less than one were treated as aless thanvalue with
LOQ = 1. Only datasets with at least one LOQ were included
in the calculations. The means and standard deviations for
each dataset were calculated with two methods: the Cohen
maximum likelihood method estimator[2] and the model us-
ing a rectangular pdf for the LOQs. The Cohen maximum
likelihood method was selected since it is regarded as an ap-
propriate approach to incorporate left-censored data into the
evaluation[2]. The main restriction in the use of the method
is that it requires the data to be normally distributed and it can
only accept one value for the left-censored data. The results
of the calculations are depicted inFig. 1.

The Cohen maximum likelihood estimator and the model
give comparable results when the number ofless thanvalues
is below five. The two methods disagree when the number
of less thanvalues exceeds five. The Cohen maximum likeli-
hood estimator requires the numerical data also at high LOQ
percentages to estimate the characteristics of the assumed
underlying distribution and thus to calculate mean and stan-
dard deviation adjusted for LOQs. The model does not invoke
any assumption about the character of the overall population.
When more than five LOQs are present, the model indicates
that the dataset is bimodal. The first mode consists of the
six or moreless thanvalues which all have the same pdf. In
p , the
e her
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F ata on
2 n.
ensity method and the normal distribution approximatio
he model produce very similar graphs of the population.
ernel density approach and our model are complemen
owever our model provides additional tools for explora
ata analysis (e.g. graphical representation of the overla

rix, seeFig. 2of the paper, and plots of the eigenvectors,
12]) as well as the quantitative results in addition.

The model is very flexible and can be applied in v
us ways both with respect to the type of probability den

unctions, e.g. normal distributions, Studentst-distribution,
ectangular distributions, and the uncertainty characteri
.g. standard deviations reported by laboratories or a com
tandard deviation.

The program[12] has been extended to includeless than
alues. Integrals between basisfunctions invoking the p
ct of the square root of a normal distribution respective
ectangular or triangular pdf as described above are obt
y numerical integration. Integrals among the rectangul

he triangular functions are carried out using the analy
unctions. Integrals among basisfunctions based on the
al pdfs are obtained as previously reported. The progr
rovided as a free Matlab toolbox upon request.

. Comparison of methods on simulated datasets

The extended model is demonstrated using a simu
ataset following the approach described by Kuttatha
akul et al.[2]. A total of 250 datasets consisting of twe
bservations were generated from a normal distribution
rinciple, the expectation value of this mode is 0.5 (i.e.
xpectation value of the individual basisfunctions). Hig
xpectation values occur when numerical data with a v
lose to one are present. Such data have pdfs that overla
he pdfs of theless thanvalues. Because of this overlap,
xpectation value of the first mode is increased. The se
ode consists of the numerical values. In a conventiona

erpretation, the model indicates that the numerical dat
utliers when the number ofless thanvalues is greater tha
ve. For an interlaboratory study, the interpretation migh
hat the higher values are attributed to false positives.

When the number ofless thanvalues equals five, the lev
f agreement between the Cohen maximum likelihood

ig. 1. Results of two methods to calculate the mean of left-censored d
50 simulated datasets. The liney=x is drawn to facilitate the compariso



34 W.P. Cofino et al. / Analytica Chimica Acta 533 (2005) 31–39

Table 1
Calculations on polybrominated flame retardants (data from De Boer and Cofino, 2002)

Matrix and congener All data Only numerical data Numerical data and LOQs≤ NDA
mean of numerical dataa

Nobs Expectation
value

S.D. % Nobs Expectation
value

S.D. % Nobs Expectation
value

S.d. %

Eel—BDE 209 12 0.78 2.49 35.2 4 0.078 0.083 34.6 5 0.074 0.082 27.9
Eel—BDE 119 9 0.042 0.048 51.9 4 0.038 0.023 52.6 4 0.038 0.023 52.6
Mussel—BDE 153 11 0.034 0.034 39.1 7 0.047 0.018 44.4 9 0.037 0.019 37.1
Cormorant—BDE 66 8 0.15 0.14 44.2 3 0.063 0.018 50.1 5 0.039 0.024 37.5
Porpoise Liver—BDE 209 13 4.71 8.12 37.1 4 7.50 3.17 47.2 10 1.59 1.77 36.6
Sediment7—BDE 75 6 0.036 0.045 40.0 4 0.26 0.132 44.5 6 0.036 0.045 40.0

a The NDA mean of the numerical data is the expectation value of PMF1 obtained by applying the normal distribution approximation (NDA) implementation
of the model to the numerical data. The NDA approach does not require the specification of the uncertainties of the laboratories[12].

mator and the model varies significantly. This can be traced
back to the characteristics of the dataset. Depending on the
distribution of the numerical data the first mode is made up
by the numerical data, theless thandata, or by a combination
of both. In the first case, a good correspondence with the Co-
hen method is obtained. In the latter two cases, the agreement
with the Cohen method is less good.

The calculations indicate that the Cohen maximum likeli-
hood estimator and the model give comparable results except
when the number ofless thanvalues is high. This difference
arises as the approaches are based on different principles.
The Cohen method assumes a normal distribution for the
numerical data and corrects for theless thanvalues. Our
model sets out to calculate the performance characteristics of
the ‘first mode’ of the dataset, regardless whether this mode
is composed of numerical or censored data. The availability
of statistical methods based upon different principles is an
advantage. When the outcomes of the methods differ, the
dataset should be inspected. It should be judged whether the
assumptions underlying the statistical methods are met. The
nature of the measurement should be taken into account—are
measurement problems (e.g. contamination, incomplete
resolution) possible? The statistical procedures have thus
to be complemented by chemical expert judgement. This
judgement will determine whether it is possible to make a
s atase
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cases, inclusion of theless thanvalues had a small effect.
In Table 1, results are given for some difficult datasets. For
BDE 119 and 209 in eel and BDE 66 in cormorant the calcula-
tions on the full datasets, including allless thanvalues, give a
higher expectation value than the calculations on the datasets
from which all theless thanvalues have been removed. This
pattern is caused byless thanvalues with high LOQs. This
effect is illustrated for BDE 209 in eel with a graphical rep-
resentation of the overlap matrix given inFig. 2. The numer-
ical data exhibit a poor comparability (observations 9–12 in
Fig. 2). In this case, the model gives an expectation value of
0.078± 0.082 for the first mode, representing 34.6% of the
dataset. This expectation value is determined predominantly

F eel.
T e right
d verlap
i p. The
o
v figure
h nd III.
I e
overlaps between theless thanvalues and III depicts the overlaps between
the numerical data andless thanvalues. The row of data at the bottom of the
figure provides the concentrations reported.
tatement about the performance characteristics of the d
t all.

. Case study I—interlaboratory study on
olybrominated diphenylethers (PBDEs)

The result of a recent interlaboratory study on PBDEs
een reported[5]. Datasets in this study contained a sm
umber of observations with a relatively high number of
ensored data which varied considerably in magnitude
umerical data exhibit a wide scatter and had difficult un

ying distribution profiles. A selection of the data from t
tudy are used to illustrate the extended model.

Initially, calculations were made with the full dataset
hen with the dataset without theless thanvalues. In mos
t

ig. 2. Graphical representation of the overlap matrix for BDE 209 in
he overlap integral can have values between 0 and 1. The bar on th
epicts the relationship between gray scale and the magnitude of the o

ntegral—white represents an overlap of 1, black represents no overla
bservations 9–12 are numerical data, the observations 1–8 areless than
alues. The observations are ordered according to their magnitude. The
as been divided into three zones defined by Roman numerals I, II a
is a 4× 4 matrix of the numerical data, II is a 8× 8 matrix depicting th



W.P. Cofino et al. / Analytica Chimica Acta 533 (2005) 31–39 35

by the observation 10, which overlaps moderately with both
the observations 9 and 11 (overlaps respectively 0.16 and
0.34). The expectation value for the entire dataset includ-
ing all less thanvalues is calculated to be 0.78± 2.5, which
accounts for 35.2% of the dataset. The 10-fold increase in
expectation value is due to the rise of a new cluster with
strongly overlapping data along with the introduction of the
less thanvalues. This cluster includes the LOQs < .32, < .4,
< .88 and < 1.5 (observations 5, 4, 6, and 3 inFig. 2). Similar
effects occurs with the introduction of LOQs into the calcu-
lations for BDE 119 in eel and BDE 66 in cormorant. This
observation suggests that the magnitude or the indicative in-
formation of a LOQ is important in any assessment. Clearly,
the indicative information of LOQs which are an order of
magnitude or more greater than numerical data is virtually
zero. An example is the LOQ of <50 for BDE 209 in eel
is which substantially greater than the expectation value of
0.078 based on the reported numerical data. The degree to
which the calculations are affected by the high LOQs de-
pends on the nature of the dataset. When there is a large
number of laboratories reporting numerical data that are in
good agreement amongst themselves, the presence of a lim-
ited number of high LOQs only has a small effect. Effects
become greater when there is a small number of numerical

data and several ‘high’ LOQs occur which overlap with them-
selves and/or with numerical outliers. LOQs higher than the
median of the numerical data probably contain the true con-
centration, but provide little information and may perturb the
calculations.

In this paper the calculations have been repeated with a
constraint on the magnitude of LOQs which can be accepted.
The constraint imposed was that only LOQs are included
which are equal to or less than the expectation value ob-
tained for the set of numerical data with the normal distri-
bution approximation of the model[12]. The advantage of
this approach is that an unwanted effect on the calculations
arising from high LOQs is prevented. The disadvantage, how-
ever, is that the cut-off point for LOQs introduces a subjective
element in the calculations.

The outcome of these calculations are also indicated in
Table 1. For BDE 209 in eel there is only one LOQ that sat-
isfies the criterion for inclusion. This observation, number 1,
exhibits a small overlap with the numerical data (observa-
tions 9–12,Fig. 3), so that the means of the calculations with
and without this LOQ differ little. However, the inclusion of
the LOQs for BDE 209 in porpoise liver and for BDE 75 in
sediment seven has a pronounced effect on the outcome of the
calculations. In each case it is essential to use the calculated

F
l
l

ig. 3. Overview of results and the summed measurement functions for�-HCH
eft-censored values. Expectation value and standard deviation of PMFi are indica
eft-censored data (observation numbers 9–15, the pp′-DDT dataset contains 15
and pp′-DDT in biological tissue showing the need for inclusion of the
ted by horizontal bars in the bottom panels. The�-HCH dataset contains 7

left-censored data (observation numbers 13–27).
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Table 2
Results of calculations on data from Quasimeme interlaboratory scheme

Quasimeme round Determinand Dataset Nobs Rectangular pdf Triangular pdf

Mean
PMF1

Standard
PMF1

% PMF1 Mean
PMF1

Standard
PMF1

% PMF1

QOR070BT HCB All data 35 0.08 0.04 64.9 0.08 0.03 64.9
Only numerical data 26 0.09 0.03 68.6 0.09 0.03 68.6
Numerical data and LOQ < limit 27 0.09 0.03 66.5 0.09 0.03 66.5

QOR070BT pp′-DDE All data 36 1.31 0.37 63.8 1.31 0.37 64.0
Only numerical data 34 1.32 0.36 67.2 1.32 0.36 67.2
Numerical data and LOQ < limit 36 1.31 0.37 63.8 1.31 0.37 64.0

QOR068BT CB52 All data 31 0.13 0.09 63.7 0.13 0.08 63.2
Only numerical data 27 0.14 0.08 70.2 0.14 0.08 70.2
Numerical data and LOQ < limit 30 0.13 0.08 65.2 0.13 0.08 65.2

QOR068BT CB156 All data 24 0.05 0.04 64.5 0.06 0.04 61.9
Only numerical data 16 0.06 0.04 70.3 0.06 0.04 70.3
Numerical data and LOQ < limit 19 0.05 0.04 63.8 0.06 0.04 63.6

QOR068BT CB180 All data 31 0.18 0.07 69.3 0.18 0.07 68.9
Only numerical data 29 0.18 0.07 73.5 0.18 0.07 73.5
Numerical data and LOQ<limit 30 0.18 0.07 71.1 0.18 0.07 71.1

QOR062BT CB28 All data 29 0.30 0.08 63.8 0.30 0.08 64.1
Only numerical data 26 0.30 0.08 67.2 0.30 0.08 67.2
Numerical data and LOQ < limit 27 0.30 0.08 65.3 0.30 0.08 65.5

QOR062BT pp′-DDT All data 24 0.14 0.19 53.6 0.17 0.21 48.2
Only numerical data 13 0.16 0.27 60.0 0.16 0.27 60.0
Numerical data and LOQ < limit 17 0.12 0.23 51.0 0.13 0.24 50.4

QOR062BT �-HCH All data 15 0.13 0.18 57.8 0.16 0.19 54.6
Only numerical data 8 0.24 0.25 77.2 0.24 0.25 77.2
Numerical data and LOQ < limit 14 0.14 0.19 57.2 0.17 0.20 54.8

QOR062BT �-HCH All data 23 0.13 0.16 66.8 0.14 0.16 65.6
Only numerical data 17 0.15 0.18 77.9 0.15 0.18 77.9
Numerical data and LOQ < limit 21 0.14 0.17 67.4 0.14 0.17 66.9

QTM053BT Silver All data 15 15.4 7.2 51.4 15.4 5.7 48.9
Only numerical data 11 14.8 2.7 62.3 14.8 2.7 62.3
Numerical data and LOQ < limit 12 14.7 2.8 57.3 14.7 2.8 57.4

QTM054BT Cadmium All data 40 6.35 2.67 60.9 6.44 2.48 59.2
Only numerical data 35 6.30 2.28 62.3 6.30 2.28 62.3
Numerical data and LOQ < limit 35 6.30 2.28 62.3 6.30 2.28 62.3

QTM054BT Nickel All data 29 45.5 34.5 63.7 47.0 33.6 61.6
Only numerical data 22 48.7 35.1 69.2 48.7 35.1 69.2
Numerical data and LOQ < limit 23 48.6 35.1 66.2 48.6 35.1 66.2

QTM051BT Cadmium All data 30 4.98 3.23 67.9 5.36 3.13 65.0
Only numerical data 21 4.81 3.28 72.2 4.81 3.28 72.2
Numerical data and LOQ < limit 23 4.80 3.28 65.9 4.80 3.28 65.9

QTM052BT Chromium All data 29 259.5 74.5 65.7 259.6 73.6 65.5
Only numerical data 27 262.1 70.6 67.7 262.1 70.6 67.7
Numerical data and LOQ < limit 28 258.6 71.6 66.4 257.9 71.2 66.8

QTM047BT Silver All data 11 4.95 5.58 56.3 5.83 5.97 51.8
Only numerical data 6 6.05 7.81 63.9 6.05 7.81 63.9
Numerical data and LOQ < limit 9 4.25 6.07 53.1 4.68 6.21 51.7

QOR056BT op′-DDT All data 21 1.10 0.96 49.5 1.29 0.93 43.0
Only numerical data 9 1.25 0.81 64.3 1.25 0.81 64.3
Numerical data and LOQ < limit 15 0.76 0.83 44.4 0.89 0.84 43.0

QOR056BT pp′-DDT All data 27 1.66 3.00 40.3 2.36 3.62 35.2
Only numerical data 12 2.59 4.57 58.4 2.59 4.57 58.4
Numerical data and LOQ < limit 23 1.05 2.88 38.6 1.71 3.68 35.0
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Table 2 (Continued)

Quasimeme round Determinand Dataset Nobs Rectangular pdf Triangular pdf

Mean
PMF1

Standard
PMF1

% PMF1 Mean
PMF1

Standard
PMF1

% PMF1

QOR057BT CB28 All data 31 0.64 0.40 70.1 0.66 0.38 67.8
Only numerical data 24 0.67 0.38 79.0 0.67 0.38 79.0
Numerical data and LOQ < limit 27 0.63 0.38 72.6 0.64 0.37 72.7

QOR057BT CB52 All data 32 1.09 0.59 69.1 1.11 0.57 66.5
Only numerical data 26 1.08 0.53 76.2 1.08 0.53 76.2
Numerical data and LOQ < limit 28 1.07 0.54 71.2 1.07 0.54 71.2

QOR057BT CB101 All data 32 2.17 0.64 73.1 2.18 0.64 73.1
Only numerical data 30 2.19 0.62 75.0 2.19 0.62 75.0
Numerical data and LOQ < limit 31 2.17 0.62 73.4 2.16 0.62 73.7

QOR057BT CB105 All data 29 0.55 0.27 66.3 0.56 0.26 63.9
Only numerical data 23 0.55 0.24 71.9 0.55 0.24 71.9
Numerical data and LOQ < limit 25 0.54 0.24 67.7 0.54 0.24 67.9

values along with expert judgement on the whole information
base.

5. Case study II: examples from the QUASIMEME
laboratory performance studies of determinands in
marine matrices

QUASIMEME3 is an international interlaboratory scheme
supporting the quality assurance of environmental measure-
ments in the marine environment[15]. As such this scheme
regularly encounters datasets which containless thanval-
ues. The results of calculations on a selected number of such
datasets are given inTable 2.

The proportion ofless thanvalues in relation to the num-
ber of numerical data ranges from 5 to 133% for all LOQs
and from 0 to 75% for the LOQs which satisfy the crite-
rion ‘less than the mean of dataset of numerical data’. In-
spection of the results of the calculations (Table 2) confirm
that inclusion ofless thanvalues in the calculations has,
in the majority of cases, only a small effect on the expec-
tation value in spite of the relatively large proportions of
less thanvalues. Exceptions are provided by the datasets
�-HCH in QOR062BT, silver in QTM047BT, op′-DDT in
QOR056BT and op′-DDT in QOR056BT. These three cases
a rical
d fi-
c
a d in
F ns,
a ue.
O esult
o ical
a

on-
m

Of the fifteen values in the data set for�-HCH, seven were
left-censored values. The overview of results clearly shows
the overlap of the left-censored data with most of the nu-
merical values and the interactions of the pdfs of both the
normal distribution and the rectangular distributions (Fig. 3).
A similar situation occurs with the pp′DDT. Of the 27 values,
15 are left-censored. The left-censored data interact strongly
with all but about five of the numerical data. These five nu-
merical data stand out in the dataset by their high values and
have a negligible interaction with the other data. This is also
reflected in pattern of the overall measurement function for
pp′-DDT (Fig. 3).

These two examples clearly illustrate the importance of
being able to include the left-censored values in the overall
assessment of laboratory performance studies where natural
unspiked materials are used and the concentrations of the
determinands are close to the LOQs.

In such situations the LOQs may more realistically repre-
sent a closer estimate of the true concentration and should be
included in the assessment.

6. Case study III—temporal trend of dissolved
cadmium in the rhine river at Lobith

Wa-
t ater
q sig-
n
t eased
b logy
e um
i 988
a
h
v cting
t f the
d 1996
re small datasets with 80–130% LOQs relative to nume
ata. Inclusion of theless thanvalues gives rise to a signi
ant lowering of the expectation value. The datasets�-HCH
nd pp′-DDT are discussed into more detail and presente
ig. 3. Many organochlorines occur at low concentratio
t or below the limit of quantification in lean fish tiss
ften in such analyses the numerical data may be a r
f contamination during sampling or subsequent chem
nalysis.

3 QUASIMEME: quality assurance of information for marine envir
ental monitoring.
The Dutch Directorate General for Public Works and
er Management is responsible for the monitoring of w
uality in the river Rhine. The water quality has improved
ificantly in the past decade. As a result, the number ofless
hanvalues has increased as concentrations have decr
elow the performance characteristics of the methodo
mployed. InFig. 4, the temporal trend of dissolved cadmi

n Rhine water at Lobith is given for the period between 1
nd 1998. In the first part of this period,less thanvalues were
ardly observed. In the second half of this decade,less than
alues constituted up to 75% of the data in a year. Negle
heseless thanvalues gives a false, high assessment o
issolved cadmium concentrations, since from about
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Fig. 4. Temporal trend of dissolved cadmium in the Rhine river at Lobith between 1988 and 1999. Sampling frequency was 12 times/year in the first 5 years
and 24 times/year in the last 5 years. Limit of detection was 0.01 or 0.02 mg/l. A rectangular pdf was used to include the LOQs into the calculations.

onwards theless thanvalues dominate the dataset (Fig. 4).
Therefore inclusion of theless thanvalues becomes critical
to the reporting of this type of monitoring activity and any
subsequent environmental control policies.

7. Conclusions

In this paper the inference model from[12] is extended
to include left-censored data into the assessment. The model
associates a measurement function associated with each ob-
servation. A measurement function is obtained as the square
root of the probability density function proper. Left-censored
data are included in the model by establishing the appropriate
pdfs and constructing the corresponding measurement func-
tions. As such,less thandata and numerical values are treated
in the same manner. Consequently, there are no limits to the
magnitudes of the LOQs nor to the number of LOQs in the
dataset.

The results of the model have been compared with those
obtained using the Cohen maximum likelihood estimator for
simulated datasets with single-valued LOQs. The agreement
between the two methods depends on the number of LOQs
present in the dataset. When the number of LOQs is high, the
model may give a principally different outcome. Convention-
a l val-
u taset
O ator
a f the
d .

m in-
t . In
s r than
t ntly

to the outcome of the calculations. The indicative information
of such LOQs may be very limited. This effect can be circum-
vented by imposing criteria on the acceptance of the LOQs
before inclusion in the calculations, although this approach
also introduces an element of subjectivity. Expert judgement
is required in such cases. The calculations demonstrate that
the model can handleless thanvalues well while retaining
its features of graphical and quantitative output. For each
mode or cluster of data the model provides the respective
expectation value, standard deviation and percentage of data
represented by the mode in the dataset. The graphical out-
put provides an overview of the key features of the structure
of the data that allows further exploratory analysis and an
informed evaluation.

The calculations presented in this paper confirm that in-
clusion of left-censored data in the calculations of population
characteristics improves an assessment procedure.
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