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Abstract

In biological/bioenergetics research the response of a complex system to an externally applied perturbation is often studied. Spectroscopic

measurements at multiple wavelengths are used to monitor the kinetics. These time-resolved spectra are considered as an example of

multiway data. In this paper, the methodology for global and target analysis of time-resolved spectra is reviewed. To fully extract the

information from the overwhelming amount of data, a model-based analysis is mandatory. This analysis is based upon assumptions regarding

the measurement process and upon a physicochemical model for the complex system. This model is composed of building blocks

representing scientific knowledge and assumptions. Building blocks are the instrument response function (IRF), the components of the

system connected in a kinetic scheme, and anisotropy properties of the components. The combination of a model for the kinetics and for the

spectra of the components results in a more powerful spectrotemporal model. The model parameters, like rate constants and spectra, can be

estimated from the data, thus providing a concise description of the complex system dynamics. This spectrotemporal modeling approach is

illustrated with an elaborate case study of the ultrafast dynamics of the photoactive yellow protein.

D 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Time-resolved spectroscopy is a widely used tool in

photophysics, photochemistry and photobiology to investi-

gate the dynamic properties of complex systems [1,2].

Examples of such systems are chromophore–protein com-

plexes essential for photosynthesis and photodetection,

which are important model systems in bioenergetics. Many

chromophoreprotein complexes traverse a photocycle, e.g.

the proton pump bacteriorhodopsin (BR) [3,4] and the

photodetector photoactive yellow protein (PYP) [5,6]. A

key question in these chromophore–protein complexes is

how the chromophore dynamics are modified by the protein

[7,8]. This question can be adressed by time-resolved

spectroscopy in combination with global and target analy-

sis. Here global refers to a simultaneous analysis of all

measurements, whereas target refers to the applicability of a

particular target model. Phenomena occurring on a variety

of time scales ranging from femtoseconds to seconds can be

studied. The input to the system usually consists of a short

pulse of high energy which is absorbed and triggers a series

of reactions. These reactions are often accompanied by

changes in the UV, visible or IR spectroscopic properties

of the system which can be measured. The output of the

system is thus a collection of measurements of a spectro-

scopic property, like absorption or emission, as a function

of time and wavelength, which is called a time-resolved

spectrum.

A time-resolved spectrum is the most well-known exam-

ple of two-way data. These data are a collection of measure-

ments in two dimensions (ways). The first dimension is the

independent experimental spectral variable: wavelength k or

wave number r̄, or magnetic field strength B, etc. The
second dimension is an independent experimental variable

to monitor spectral change: time t after excitation, temper-

ature T, polarization dependence, acidity pH or pD, excita-

tion wavelength, or quencher concentration [Q]. Adding a

third dimension results in three-way data, of which the

combination of time and wavelength with temperature or

with quencher concentration are the most well known. In

this paper we concentrate on time-resolved spectra, howev-

er, many of the methods are also applicable for other types

of multiway data [9,10].

To unravel the processes underlying the observable

spectroscopic changes, which result in overwhelming

amounts of data, a model-based analysis of the measure-

ments is mandatory. From an analysis perspective two

problems can be distinguished: (a) when a parameterized

model of the observations is available, the parameters have

to be estimated in a statistically sound way; (b) when only a

class of models is known, in addition also the ‘‘best’’ model

needs to be determined.

Previously several methodological reviews have been

written on global and target analysis by Beechem and co-

workers [11–13], Ameloot et al. [14], Holzwarth [15] and

Dioumaev [16]. These reviews demonstrate the importance

of simultaneous (global) analysis of multiple decay traces.

The combination of global analysis with testing of a photo-

physical or photochemical model is often called target

analysis [11,15]. Reviews discussing global analysis in

combination with experimental techniques are Refs.

[1,17]. In addition, the BR photocycle has been a model

system also for global and target analysis [18–22]. Recently

five-way data (wavelength, time, temperature, polarization

dependence, acidity) from this photocycle were subjected to

a comprehensive target analysis [23]. In this paper, an
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overview of the global and target analysis methodology will

be given, emphasizing the need for modelling of both

kinetics and spectra.

The word model is used here in two different ways. On

the one hand, a model for the observations is formulated in

mathematical-statistical terms. Thereby the measurements

are described stochastically, since taking into account the

noise properties is essential for precise parameter estimation

[24,25]. On the other hand, the experimentalist is studying a

complex system, generating a huge amount of observations.

The goal of the experiment is to arrive at a simplified

description of the system and estimate the essential physi-

cochemical parameters with the help of a parameterized

model. Most often such a model consists of a kinetic scheme

containing transitions between states, which is also called a

compartmental model. In this case the word model is used as

a simplified description, and not in the above statistical

sense. In Section 2 the assumptions regarding both the

measurement process and the physicochemical model for

the complex system which together lead to a model for the

observations are discussed. The most important equations

for global and target analysis are presented, and explained.

The subsections of Section 2 describe aspects of particular

building blocks for the final physicochemical model. These

building blocks are tailored for the experiments to be

modelled. Thus, a dynamic experiment usually requires a

kinetic model, most often a compartmental model (Section

2.4.3). Taking into account the measurement conditions

requires introduction of the instrument response function

(IRF, Section 2.1.1). Extra building blocks are needed to

describe, e.g. temperature dependence (Section 2.4.3.5) or

anisotropy properties (Section 2.7.5). Still this is only a

description of the temporal aspects of the data. Spectral

model assumptions have to be added on top of this. This

combination of kinetic and spectral model assumptions,

discussed in Section 2.7, is most promising for the unrav-

elling of complex systems. It enables estimation of crucial

parameters like branching ratios, which can only be esti-

mated because of the spectral model assumptions. Through-

out Section 2 examples are described to illustrate the

methods. The most relevant aspects of the parameter esti-

mation are summarized in Section 3. In Section 4 an in-

depth case study of ultrafast dynamics in PYP will be

presented.
2. Model for the observations

2.1. Measurement process

A time-resolved spectrum is a collection of measure-

ments done at different (distinct) times and wavelengths.

Three measurement sequences can be distinguished:

(a) Measurements can be done simultaneously at a great

number of wavelengths and at a certain time delay with
respect to the exciting pulse. This is called a time gated

spectrum. A collection of such time gated spectra at

different time delays constitutes a time-resolved spec-

trum. With pump-probe spectroscopy, a time gated

spectrum is susceptible to baseline fluctuations.

(b) Alternatively, at a particular wavelength a decay trace is

measured as a function of time with respect to the

exciting pulse. Again a collection of such decay traces

measured at different wavelengths constitutes a time-

resolved spectrum.

(c) Detection of decay traces at a great number of

wavelengths simultaneously, providing high resolution

in both dimensions, is possible with a (synchroscan)

streak camera in combination with a spectrograph

[26,27].

The three types of measurements require different

preprocessing (e.g., baseline correction) and differ in their

noise statistics. The resolution of the measurements is

determined by a number of instrumental characteristics

and by the stochastics of the measurements. Time resolu-

tion is limited by both the width of the exciting laser pulse

and the width of the detector response. Wavelength reso-

lution is determined by the characteristics of the spectro-

graph used. Below we discuss in some detail aspects of the

measurement process.

2.1.1. The instrument response function

Usually the system is excited by a short laser pulse of a

certain energy. The convolution of the shape of this exciting

pulse and the detector response is called the IRF. The IRF

limits the fastest response observable in the experiment.

With pumpprobe spectroscopy the IRF is given by the

convolution of pump and probe pulses. Ideally the IRF

width should be shorter than the shortest time scale under

study. This is impossible when studying ultrafast phenom-

ena. On a (sub)picosecond time scale, the shape of the IRF

as well as its timing precision become important.

Ideally the IRF should be measured once and for all with

infinite precision, to avoid complications in the further

analysis. In practice the problem can be tackled in different

ways, depending upon the experimental technique. With

fluorescence measurements there are three options: (a) The

instrument response can be measured at the excitation

wavelength (which is different from the emission wave-

length) allowing for a wavelength-dependent time-shift

parameter which needs to be estimated [28]. (b) The

instrument response can be measured indirectly by adding

a reference compound whose kinetic properties are known

(reference convolution method, [29,30]). (c) A parameter-

ized description of the instrument response can be included

in the model function, leading to the necessity to estimate

these extra parameters (Section 2.4.2).

A further complication with dispersed (sub)picosecond

measurements is the dependence of the IRF upon the detec-

tion wavelength. This wavelength-dependent group velocity
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delay (dispersion) can be described by a polynomial function

for the IRF location parameter, of which the parameters must

be estimated (from the data, or from a separate measurement,

e.g. of the cross-phase modulation [31]).

2.1.2. Stochastics

The stochastics of spectroscopic measurements originate

from photon properties. Single photon timing fluorescence

measurements constitute a counting process which is Pois-

son distributed, where the variance is equal to the mean and

all observations are independent. In contrast, the stochastic

properties of the other types of measurements are much

more uncertain. The observations are assumed to contain

additive normally distributed noise. In general these obser-

vations are also assumed to be statistically independent,

which seems justified because the measurements are done

sequentially. There is one exception: with time gated spectra

a whole spectrum is observed simultaneously, and in prin-

ciple the responses measured at different wavelengths could

be statistically dependent with (unknown) covariance matrix

A (independent of time) [32]. With independent measure-

ments there are several possible cases for the usually

unknown variance r2 which may in principle depend upon

time t and wavelength k: (a) constant variance r2(t, k) = r2

which is the most common assumption; (b) wavelength-

dependent variance r2(t, k) = r2(k) which is appropriate

with difference absorption measurements. In general, r2(k)
needs to be estimated as well. This procedure is called

iteratively reweighted least squares [33]. (c) In addition to

wavelength dependence, there may be time dependence

r2(t, k), because the time interval of the measurement, and

thus the signal to noise ratio, may increase with time [34].

(d) For large numbers of counts the abovementioned Pois-

son distributed single photon timing measurements are

usually well approximated by a normal distribution with

the variance equal to the mean.

2.2. Model assumptions

2.2.1. Homogeneity

A classical problem in describing reaction dynamics is

(in)homogeneity [35,36]. The common assumption is that

the properties of the system studied are homogeneous,

which means that a discrete set of parameters describes

the whole system. The observed dynamics of the ensemble

can be ascribed to the dynamics of each individual member

of that ensemble. In some cases there are indications that

subpopulations are present [34,37] and it is assumed that

such a system can be represented by a weighted average of

homogeneous subsystems. When many subsystems are

present, this can be described by a model with distributed

parameters. A frequent discussion is the possibility to

distinguish between models with discrete parameters and

models with distributed parameters [39,40]. Biophysical

knowledge of, e.g. a distribution of protein conformations,

necessitates the use of models with distributed parameters.
However, nearly all models used in practice lump parame-

ters into a discrete set. An extra complication is that the two

types of model can only be distinguished experimentally

with very high signal to noise ratios, or when measurements

are done over many orders of time, or as a function of

temperature, or as a function of excitation wavelength.

Unless noted otherwise, we will assume that we are

dealing with a homogeneous system which can be modelled

with discrete parameters.

2.2.2. Separability

The spectroscopic properties of a mixture of components

are a superposition of the spectroscopic properties of the

components weighted by their concentration. With absorp-

tion this is known as the Beer–Lambert law. Thus, the

noise-free, time-resolved spectrum w(t, k) is a superposition
of the contributions of the ncomp different components:

wðt; kÞ ¼
Xncomp

l¼1

clðtÞelðkÞ ð1Þ

where cl (t) and el (k) denote, respectively, the concentration
and spectrum of component l. Typical values for the number

of components which can be studied with time-resolved

spectroscopy are 1V ncompV 10, whereas both the number of

different wavelengths and the number of different time

instants can vary from ncomp to thousands.

Note that according to Eq. (1), a separability of time and

wavelength properties is possible. However, with ultrafast

measurements there is a caveat: the properties of the

detector system are in general wavelength-dependent on a

(sub)picosecond time scale (Section 2.1.1), thus with wave-

length-dependent parameters h (k) the model for the con-

centration reads cl (t, h(k)). Regarding Eq. (1), we note that

the quantity which will be estimated is the product el which
in itself is insufficient for the determination of the absolute

values of cl and el. Thus, when we have, e.g. a kinetic model

and no additional information, we can only identify the

parameters which determine the shapes of cl and el. With a

detailed kinetic model, sometimes the relative concentra-

tions of the components can be estimated, and thus also the

relative amplitudes of their spectra. We will return to this

indeterminacy in Section 2.6.2.

2.3. Inverse problem

Measurement of w poses the inverse problem: how the

spectroscopic and kinetic (dynamic) properties of the

components can be recovered from the data. In practice

various problems can arise: first, the number of compo-

nents present in the system may be unknown. Second, in

general neither the concentration profiles cl(t) nor the

spectra el(k) are known. However, the experimentalist

usually has a priori knowledge about which shapes of

concentration profiles or spectra are realistic. This amounts

to common statements regarding continuity, nonnegativity,
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unimodality, etc. A large amount of research is based upon

such physical constraints in the self-modeling of two-way

data [41,42]. Self-modeling was applied to the BR photo-

cycle [43–45].

In many cases more knowledge is available in the form

of a parameterized model for cl(t), termed a kinetic model

(Section 2.4), or for el(k), termed a spectral model

(Section 2.5). Still, there may be several candidate kinetic

models available, and dependencies in a kinetic model

may render parameters unidentifiable. In the following

two sections we present often well-known models in

detail. In Section 2.6 a fundamental identiability problem

is discussed. Finally in Section 2.7 the more powerful

spectrotemporal models are introduced, which provide a

solution to this problem.

2.4. Kinetic models

A first distinction to be made is the order of the

kinetics. In case the concentrations are described by linear

differential equations we are dealing with first order

kinetics. The solution of a system of linear differential

equations is given by a sum of exponential decays con-

volved with the IRF (Section 2.1.1). When the differential

equations contain product of concentrations terms we are

dealing with second order kinetics [46,47]. In the follow-

ing, we will restrict ourselves to first order kinetics, but

many aspects of these methods are also applicable with

more complex kinetics.

2.4.1. Global analysis

Without a priori knowledge about a detailed kinetic

model, the first step is to fit the data with a sufficient

number of exponential decays and their amplitudes [48],

which constitute the Decay Associated Spectra (DAS)

[11,12,49–51]. Note that this number can be larger than

the number of spectrally different components present.

Subsequently, the DAS can be fitted with a spectral

model [32]. DAS are most common with fluorescence

or absorption spectroscopy. With difference absorption

spectroscopy the amplitudes associated with exponential

decays are termed Decay Associated Difference Spectra

(DADS) [15]. When the IRF width is negligible the

model reads cl (t) = exp(� klt) with decay rate parameter

kl. Otherwise, as explained in Section 2.1.1, with ultrafast

measurements the exponential decay has to be convolved

with the IRF.

2.4.2. Convolution of exponential decay with IRF

Often the IRF i(t) can be well described by a Gaussian

with two parameters for the location (mean) l and the full

width at half maximum (FWHM) D:

iðtÞ ¼ 1

D̃
ffiffiffiffiffiffi
2p

p expð�logð2Þð2ðt � lÞ=DÞ2Þ ð2Þ
where D̃ ¼ D=ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
logð2Þ

p
Þ . The convolution of this IRF

with an exponential decay results in an analytical expression

which facilitates the estimation of the IRF parameters l and

D (which is often necessary):

cðt; k; l;DÞ ¼ expð�ktÞPiðtÞ

¼ 1

2
expð�ktÞexp k l þ kD̃2

2

� �� �
1þ erf

t � ðl þ kD̃2Þffiffiffi
2

p
D̃

� �� �

ð3Þ

where the P indicates convolution. A complication arises

with fluorescence measurements by a synchroscan streak

camera [26] (Section 2.1c) because of additional contribu-

tions to Eq. (3) due to long-lived components [52].

With inhomogeneous kinetics (Section 2.2.1), a decay

trace can be fitted with a parameterized distribution, for

instance a Gaussian on the (natural) log (k) scale with

location k0 and width r [40]:Z l

�l
expð�ðlogðkÞ � logðk0ÞÞ2=ð2r2ÞÞ

� ðexpð�ktÞPiðtÞÞdlogðkÞ ð4Þ

Alternatively, a nonparametric distribution of lifetimes

(or decay rates) can be estimated. Fits of single traces with

distributions of lifetimes [38] have been reviewed in [39],

whereas lifetime density maps of time-resolved spectra have

been presented in [53,54]. Subsequent target analysis can be

performed on the kinetics obtained from the lifetime density

maps [54]. A wavelength-dependent delay parameter l is

often used with single photon timing data to account for the

wavelength dependence of the instrument response:

cðt; k; lÞ ¼
Z t

0

expð�ksÞiðt � s� lÞds ð5Þ

where now i(t) represents the measured IRF. Note that the

stochastic character of the measured IRF is neglected. A

convolution algorithm for Eq. (5) is described in Ref. [55].

2.4.3. Compartmental models

When a priori knowledge about a detailed kinetic model

is available, a linear time-invariant compartmental model

[56,57] can be used. Because in contrast to global analysis, a

specific kinetic model is tested, this is often termed target

analysis [11,15,58,59]. The target here is to describe the real

concentrations of the components. Note that the global

analysis is equivalent to a number of noninteracting, paral-

lelly decaying compartments. An important question is

whether all unknown kinetic parameters can be estimated

from the data. To answer this, a first step is of course

detection of structural (un) identifiability [15,60], which is

caused by incomplete information on the system. When

different compartmental schemes result in the same model

output, the system is structurally unidentifiable. But even a
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structurally identifiable model may be numerically uniden-

tifiable [57].

Transitions between compartments are described by

microscopic rate constants which constitute the off diagonal

elements of the transfer matrix K. The diagonal elements of

K contain the total decay rates of each compartment. The

concentrations of each compartment are described by a

vector c(t)=[c1(t). . .cncomp
(t)]T. Thus, a linear compartmental

model with ncomp compartments is described by a differen-

tial equation for these concentrations:

d

dt
cðtÞ ¼ KcðtÞ þ jðtÞ ð6Þ

where the input to the system is described by a vector

j(t) = i(t) [1 x2 . . . xncomp
]T, with i(t) the IRF (Section 2.1.1)

and xl representing a possible extra input to compartment

l. Eq. (6) can be solved analytically, which is important

for both insight into the problem and for computational

speed.

We assume that all eigenvalues of the transfer matrix K

are different, and that c(�l) = 0. The solution of Eq. (6) is

then given by c(t) = eKtPj(t) where P indicates convolution.

For a diagonal K-matrix (K = diag(� k1,. . .,� kn )) with

comp

Fig. 1. Global analysis of simulated data from a two-compartment model with kine

panel D, F) decays in 1 ns, thereby forming the second component (indicated by

squares and triangles). (B) Time gated spectra at 0.4 ns (squares) and 1.6 ns (trian

(left inset). (D, F) c(t) and estimated SAS using the correct sequential scheme.
all inputs xl equal to 1, the concentration matrix C consists

of elements [CI]pq = cq
I(tp, kq) = exp(� kqtp)Pi(t). The sub-

or superscript I indicates that this is Model I comprising

independently decaying compartments, also called parallel

model.

For the evaluation of the exponential of a non-diagonal K

matrix, we use the eigenvector-eigenvalue decomposition

K =UKU� 1. With K = diag(� k1,. . .,� kncomp
) we have

eKt =UeKt U� 1 and

eKtP jðtÞ ¼ Udiag U�1 1 x2 . . . xncomp

	 
T� �
� e�k1tPiðtÞ . . . e�kncomp tPiðtÞ
	 
T

uAT
IIC

T
I ð7Þ

Thus, the solution of the general compartmental model is

a linear combination of the cl
I and thus a transformation of

CI (derived from the eigenvalues of the transfer matrix K)

for which we can write

CII ¼ CIAII ð8Þ

with AII
T=Udiag(U� 1[1 x2 . . . xncomp

]T).

Note that a compartmental model is closely related to the

state space representation in mathematical systems theory,
tic scheme 1! 2 (right inset). The first component (indicated by squares in

triangles, life time 4 ns). (A) Decay traces at 400 and 500 nm (indicated by

gles). (C, E) c(t) and estimated DAS using the incorrect parallel scheme 1j2
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with the vector of concentrations of compartments being the

state vector [61].

2.4.3.1. Simulation of a simple two-compartment model.

To illustrate the previous section, a simple two-compartment

model has been simulated, using realistic parameters [32]. In

this model the first compartment, representing component 1,

is excited. Component 1 irreversibly decays with rate k1
thereby forming component 2 with fractional yield U12.

Component 2, which is represented by the second compart-

ment, decays with rate k2, which is smaller than k1. This

kinetic scheme is depicted in the right inset of Fig. 1, and

the concentrations are shown in Fig. 1D. For this scheme the

transfer matrix K is of lower triangular form:

KII ¼
�k1 0

U12 k1 � k2

2
4

3
5 ð9Þ

The subscript II indicates that this is Model II, which is

abbreviated 1! 2. Recall that Model I, which was defined

in Section 2.4.3, consists of independently decaying com-

partments (which is abbreviated 1j2), and is depicted in the

left inset of Fig. 1.

We now have for the matrix AII of Eq. (8):

AII ¼
1 �a

0 a

2
4

3
5 A�1

II ¼
1 1

0 a�1

2
4

3
5 ð10Þ

with a =U12k1/(k1� k2). A time-resolved (fluorescence or

absorption) spectrum w (t, k) is simulated by a superposition

of the concentrations of the components multiplied by their

differing spectra (Fig. 1F) according to Eq. (1) (to improve

readability we suppress here the time and wavelength

dependence of ci (t), ei (k), respectively)

w ¼ cII1 e
II
1 þ cII2 eII2 ð11Þ

Typical traces and spectra are depicted in Fig. 1A and

B. Now these simulated data can be fitted in two different

ways, using Model I or II. When using Model II, with the

correct kinetic scheme 1! 2, and with k1>k2, the esti-

mated amplitudes associated with the concentrations cl
II

are called Species Associated Spectra (SAS) [11,49,51].

The estimated SAS in Fig. 1F are indistinguishable from

the simulated component spectra el
II. By contrast, when

these data are analysed using the incorrect kinetic scheme

Model I with two independent decays cl
I, the Decay

Associated Spectra (DAS) el
I depicted in Fig. 1E are

estimated. Using Eqs. (8) and (10), we find c1
II = c1

I, e1
II =

e1
I +e2

I , c2
II = a(c2

I� c1
I) and e2

II = e2
I /a, which means that the

differences between the two models are that the concen-

tration of the formed component is proportional to the

difference between the two decays, whereas the spectrum

of the precursor is the sum of the two DAS (cf. Fig. 1E
and F). The other way around, the DAS of the precursor

is a linear combination of the SAS, e1
I = e1

II� ae2
II( = e1

II� e2
I,

cf. Fig. 1E and F), thus it can contain negative amplitudes

when the kinetics obey model II and the SAS overlap.

Observation of negative amplitudes in a DAS indicates the

presence of an (excited state) reaction [11], like in model II.

This Model II has been successfully applied with bridged

electron donor–acceptor systems where after excitation the

charge-transfer state exhibits conformational dynamics,

which can be observed by a red shift of the emission

spectrum [32,62].

2.4.3.2. The unbranched, unidirectional model. Apart from

the global analysis with independent decays (1j2j. . .jncomp),

the simplest kinetic scheme is the unbranched, unidirectional

model (1! 2! . . .! ncomp). These models are also termed

parallel and sequential, and correspond to the generalization

of the models I and II of the previous section. In the sequential

model back-reactions are ignored on the assumption that the

energy losses are large enough that the reverse reaction rates

are negligible. Note the assumption that there are no losses in

the chain 1! 2! . . .! ncomp. The compartmental model

can be solved to yield [18]:

clðtÞ ¼
Xl
j¼1

bjlexpð�kjtÞPiðtÞ ð12Þ

where kj is the decay rate of compartment j and the amplitudes

bjl of the (convolved) exponential decays are defined by

b11 = 1 and for jV l:

bjl ¼
Yl�1

m¼1

km=
Yl
n¼1

npjðkn � kjÞ ð13Þ

In particular, for j < l, bj,l = bj,l � 1kl � 1/(kl� kj). Of

course, hybrids of the generalized models I and II, contain-

ing a mixture of parallelly and sequentially decaying com-

partments, can also easily be solved.

2.4.3.3. Multiexponential decays. Multiexponential decay

of a component can originate from inhomogeneity (Section

2.2.1) or from equilibria. With equilibria, the number of

compartments involved determines the degree of multi-

exponentiality. Take as an extreme case a model with just

one emitting component P which is reversibly coupled to a

number of other non-emissive states hmpP XQ XR. When

this three-compartmental system is excited, the decay of P

shows a three-exponential decay. Since P is the only

fluorescing component, its concentration profile is directly

observed which offers possibilities for determining (rela-

tions between) the other rate constants in this intricately

coupled system. Note that in this example only one com-

ponent is observed, but three compartments are needed to

describe its kinetics. The alternative kinetic scheme,

Q XP XR, where the emissive state P is connected to

non-emissive states Q and R, also results in three-exponen-

tial decay of P. Thus, when only P-emission is observed, the

system is structurally unidentifiable. An example is the case
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of the bacterial photosynthetic reaction centre, for which the

emission from the excited primary donor P* is assumed to

be in equilibrium with non-emitting relaxed radical pair

states [63]. Such radical pair states are directly observed in

transient absorption. In an elaborate target analysis of

transient absorption from photosystem I reaction centres

[54] many different kinetic schemes were considered. The

final scheme describing the energy transfer and charge

separation kinetics also contained an equilibrium between

the excited primary donor and a radical pair. In turn, the

primary donor is in equilibrium with two energy transfer-

ring antenna pigment pools. In this way, equilibria describe

the four exponential decay of the two antenna pools,

primary donor and radical pair state. These equilibria

quantitatively describe the free energy differences in this

complex system.

2.4.3.4. ‘‘Invisible’’ compartments. A compartment can be

spectrally invisible, e.g. because the species represented by

the compartment does not emit or absorb light. In difference

absorption spectroscopy, compartments may possess indis-

tinguishable spectral properties (giving rise to spectrally

silent transitions [64]). Or there may exist linear relations

between spectra of the compartments. Then the number of

spectrally and temporally different components whose prop-

erties can be estimated will be less than the number of

compartments. The C-matrix of these components can be

obtained by postmultiplication in Eq. (8) of CI by a

modified AII. Alternatively, this can be described by a

spectrotemporal model using spectral equalities or con-

straints (see Section 2.7.2).

2.4.3.5. Measurements at different temperatures. The tem-

perature dependence of microscopic rate constants can be

described with a model containing thermodynamic param-

eters. Measurements at more different temperatures than the

amount of unknown thermodynamic parameters will pro-

vide extra information. This offers an opportunity to identify

and estimate both forward and backward microscopic rate

constants [19,20], thus enabling estimation of free energy

differences. In order to fit such measurements globally, a

target analysis using a detailed compartmental model is

mandatory. The temperature dependence of a microscopic

rate constant k can be described in three different ways: by

an Eyring relationship [19,23,35]

lnðK#Þ ¼ DS#

R
� DH#

RT
ð14Þ

where K#=(kh)/(kBT) is the activation equilibrium con-

stant and DS#, DH# are the entropy, and enthalpy

changes of activation. kB, h, R are the Boltzmann, Planck

and gas constants, respectively. Alternatively, an Arrhe-

nius relationship

k ¼ k0e
�EA=RT ð15Þ
has been used, e.g. in modelling the BR photocycle [20].

To explain the anomalous temperature dependence of the

recovery rate in the photoactive yellow protein photo-

cycle, Van Brederode et al. [65] introduced a heat

capacity change of activation parameter DCp
#:

ln ðK#Þ ¼ D S#ðT0Þ
R

� DH#ðT0Þ
RT

�
DC#

p

R

� 1� T0

T
þ ln

T0

T

� �� �
ð16Þ

where T0 is a reference temperature.

2.5. Spectral models

When the spectral resolution of two-way spectral data is

high, and an appropriate spectral model is available, analysis

with a spectral model can be appropriate. In particular, when

the time resolution is low, or when systematic errors like time

jitter of time gated spectra (Section 2.1a) are present, global

analysis using a spectral model is appropriate [62].

Spectral models are more phenomenological than kinetic

models. In general, they require more parameters than a

kinetic model. With difference absorption spectroscopy, the

ground state spectrum can be included in the spectral model.

Analogous to global analysis with single exponential decays,

two-way spectral data can be analysed globally. Without a

priori knowledge about detailed component spectra, the first

step is to fit the data with a sufficient number of band shapes

and their amplitudes, the band amplitude curves (BAC). With

time-resolved spectra, subsequently the BAC can be fitted

with a kinetic model [62].With steady-state spectra measured

as a function of temperature, subsequently the BAC can be

fitted with a thermodynamic model [66]. When there are

linear dependencies in the BACs, and the number of bands

used is larger than the number of spectrally and temporally

different components, a combination of (some of the) band

shapes may lead to component spectra. This is analogous to

the target analysis with compartmental models. Now the

targets are the spectra of the real components.

2.5.1. Spectral shapes

The absorption spectrum for a homogeneously broad-

ened (no inhomogeneity) transition can be well described

by a Lorentzian band shape, whilst for an inhomoge-

neously broadened system (which is the case in most

proteins and glasses), the corresponding spectrum is well

described by a Gaussian [36,67]. Often times, the mea-

sured spectrum (both absorption and fluorescence) of an

ensemble of chromophores can be deconvolved into a

superposition of such bands, with specified spectral band

shapes (e.g. Gaussian, Lorentzian, Voigt, skewed Gauss-

ian, Pearson, . . .). Thus, the shape of a spectrum of a

component is assumed to be a superposition of such

standard band shapes. Here we present model functions

for the (skewed) Gaussian shape. The shape of a charge
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transfer fluorescence emission spectrum is often well

described by a Gaussian in the energy domain [68]:

f (m̄) /m̄3 = fmaxexp (� ln2[2(m̄ � m̄max) /Dm̄ ]2) where m̄ = k� 1

denotes the wave number and (m̄ ) is the converted

fluorescence emission spectrum: f (m̄) = k2e(k) [69]. Even

better fits are achieved when an extra skewness parameter

is introduced [70,71]. Thus, we arrive at the model

function [32]

eðv̄Þ ¼ v̄5fmaxexpð�ln2½lnð1þ 2bðv̄� v̄maxÞ=Dv̄Þ=b�2Þ
ð17Þ

Note that with skewness parameter b = 0 the exponent in

Eq. (17) reduces to a Gaussian (since lim
b!0

ðlnð1þbxÞÞ=b¼ x).

The maximum of Eq. (17) in the wavelength domain is

given by the numerical solution of the nonlinear equation

((d)/(dm̄))e(m̄)/dm̄ = 0. The Full Width at Half Maximum is

given by Dm̄1/2 =Dm̄sinh(b)/b.
Analogously the shape of a charge transfer absorption

spectrum is often well described by a Gaussian in the energy

domain [68]: f (m̄)/m̄= emaxexp(� ln2[2(m̄� m̄max)/Dm̄]2). When

the vibronic coupling, quantified as a Huang–Rhys factor,

between the chromophore and its vibrations is smaller than

the magnitude of phonon–chromophore coupling, the result-

ing absorption spectrum can be well described as a Gaussian

[72]. Even when the two are comparable, the introduction of

a skewness degree of freedom to the Gaussian can satisfac-

torily account for increased vibronic coupling. This leads to

the model function:

eðv̄Þ ¼ v̄emaxexpð�ln2½lnð1þ 2bðv̄� v̄maxÞ=Dv̄Þ=b�2Þ ð18Þ
In modelling an absorption difference spectrum the

ground state spectrum e0 is subtracted from a linear combi-

nation of em̄ as in Eq. (18):

eðv̄; ðv̄max; Dv̄; bÞ1; . . . ; ðv̄max;Dv̄; bÞM ; a1; . . . ; aM Þ

¼
XM
m¼1

amv̄expð�ln2½lnð1þ 2bmðv̄� v̄max;mÞ

=Dv̄mÞ=bm�2Þ � e0

ð19Þ

Note that analogous to the convolution with the mea-

sured instrument response, Eq. (5), the stochastic character

of this measured ground state spectrum is neglected.

2.6. Model for the observations in matrix notation

In many cases the data can be collected in a matrix C of

dimensions m� n, where m and n are, respectively, the

number of different time instants and wavelengths. The

matrix element wij then contains the measurement at time

instant ti and wavelength kj. Using the matrix notation

greatly simplifies the description of the model for the

observations and allows the use of matrix decomposition

techniques (Section 2.6.1). Assuming additive noise (Sec-
tion 2.1.2), the basic model which describes the time

evolution of spectra is the following:

w
tikj

¼
Xncomp

l¼1

cltielkj þ n
tikj

ð20Þ

clti denotes the concentration of component l at time ti, elkj

denotes the contribution of component l at wavelength kj,
and n tikj

denotes a normally distributed stochastic distur-

bance with zero mean (the underlining indicates that a

variable is stochastic). The clti and elkj
are collated in the

matrices C and E, of dimension m� ncomp and n� ncomp,

respectively. The columns of C are the concentration pro-

files of the components, whereas the columns of E are the

component spectra. Note that possible systematic errors are

not included in this description (see Section 2.1). When

there is a wavelength-dependent time delay, we have

w
kj
¼ Cekj þ nkj

ð21Þ

and else we can write

W ¼ CET þ N ð22Þ

Matrix t represents the noise and is, like C, m� n. wkj

and nkj
are the kj

th column of, respectively, C and t. ekj
is

the transpose of the kj
th row of E.

2.6.1. Estimation of the number of components

When there are no linear dependencies between the

component spectra, and thus no linear relationships between

the columns of E, the matrix E is of full rank. Analogously,

when there are no linear dependencies between the

concentrations of the components, and thus no linear

relationships between the columns of C, the matrix C is

also of full rank. This rank is equal to the number of

components. Consequently, when rank (C) = rank (E) =ncomp

and with noise-free data (t = 0), we have rank (C) = rank

(CET) = ncomp. Thus, with experimental data of which we do

not know the number of components, we can estimate this

number by estimating the rank of C using the Singular

Value Decomposition [73–79] of C

W ¼ U S WT ð23Þ

where U and W are orthogonal matrices, respectively, m� n

and n� n, whose columns contain the left and right singular

vectors. S is an m� n matrix which is zero except for its

diagonal, which contains the singular values. With ncomp

components and noise-free data we have exactly ncomp

significant singular values: s1z s2z . . .z sncomp
>sncomp

+ 1 =

. . . = 0. The addition of the noise t perturbs the SVD of the

noise-free C in two respects. First, the singular values are

changed. According to Corollary 8.3.2. of Ref. [73], an upper

bound for this perturbation is given by the largest singular

value of t, say s1,t. Thus, the perturbation is negligible

when sl� sl + 1Hsl, t, l = 1, . . ., ncomp. Second, the singular

vector pairs (ul, wl), (ul + 1, wl + 1), are perturbed. Theorem
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8.3.5. of Ref. [73] states that the amount of the perturbation

depends upon the isolation of the relevant singular values.

Thus, when sl� sl + 1c s1,t, the noise can greatly alter the

singular vector pairs.

When Eq. (22) is applicable, the number of components

can be determined from the number of singular vector pairs

and accompanying singular values significantly different

from noise. The consequences of a wavelength-dependent

time delay upon the rank are unclear, and need to be

considered case by case.

2.6.2. Equivalence of spectral or kinetic models

Let us assume in the following that we have successfully

determined ncomp. Starting from Eq. (22), we here distin-

guish two different kinds of parametrizations:

The concentrations are described by a kinetic model,

which depends upon the parameters h

W ¼ CðhÞET þ N ð24Þ

The spectra are described by a parametric model, which

depends upon the parameters h

W ¼ CET ðhÞ þ N ð25Þ

Subsequently, the estimated matrices E from Eq. (24) and

C from Eq. (25) can be fitted with, respectively, a spectral

and a kinetic model.

Because of the linearity of the model function, the

decomposition of C into the product of two matrices is

problematic, which is to a differing extent recognized by

many authors (e.g. Refs. [11,18,19,49,78,80–82]). Let A be

an invertible matrix then:

CET ¼ CAA�1ET ¼ ðCAÞðEA�T ÞT ð26Þ

Because we are dealing with a model function CET the linear

combinations of spectral or kinetic models will produce the

identical residual matrix Z =C�CET. Thus, the minimum of

the least squares criterion is independent of the details of the

kinetic model as are the estimated kinetic parameters. From

Eq. (26) we conclude that the difference between two kinetic

models lies in their spectral parameters. A priori knowledge

about E (for instance nonnegativity of the el (k)) offers us the
possibility to choose between alternative models. With a

spectral model an analogous problem exists, in this case the

estimated concentrations need to be nonnegative. Summariz-

ing: when no a priori information about the correct model is

present, two steps must be distinguished in the analysis of

time-resolved spectra: fitting the data and finding the ‘‘best’’

model. A common procedure is the following: exponential

decays are assumed to be present and the data are fitted with a

sufficient number of decays ndecay, so that the residuals appear

satisfactory. This is usually termed ‘‘global analysis’’ (Sec-

tion 2.4.1). Judging goodness of fit is strongly problem-

dependent. Suppose the Decay Associated Spectra are all
different (which is often the case), and the SVD analysis is in

accordance with the presence of ndecay spectrally and tempo-

rally independent components. Note that in general the DAS

do not correspond to real spectra, this is only the case when a

component decays without interconversions to other (spec-

trally active) components. Then, to find the best compart-

mental model (Section 2.4.3), several models with

ncomp = ndecay components can be tried, comparing them by

the plausibility of their then called Species Associated Spectra

(SAS). Here a spectral model can be of great help. This is

usually termed ‘‘target analysis’’. Furthermore, thermody-

namic considerations can be helpful in case the dependence

on temperature or pH has been measured (Section 2.4.3.5).

2.6.3. Projecting the data upon singular vectors

In Refs. [76,78] applications of SVD in time-resolved

spectroscopy are discussed. SVD is also instrumental in

self-modeling of the BR photocycle [43–45]. Next to the

use of SVD for rank estimation (Section 2.6.1), an important

application is data reduction and noise suppression. Assum-

ing the noise is small, the Singular Value Decomposition

results can be used to project the data upon the first ncomp

singular vectors. Projecting upon the first ncomp right sin-

gular vectors the kinetic model Eq. (24) becomes

WWncomp
¼ CðhÞETWncomp

þ NWncomp
ð27Þ

Analogously, projecting upon the first left singular vec-

tors the spectral model Eq. (25) becomes

UT
ncomp

W ¼ UT
ncomp

CET ðhÞ þ UT
ncomp

N ð28Þ

These projections reduce the dimensionality of the non-

linear least-squares fits [32,47,83,84], thus saving compu-

tational resources. A drawback of the projection is that the

noise can easily perturb the projected data (Section 2.6.1),

resulting in loss of information. Furthermore, it becomes

much more difficult to calculate summary statistics (Section

3). These drawbacks can easily be avoided by using the

variable projection algorithm [85], discussed more fully in

Section 3, by which the nonlinear least-squares fit of the

full, unprojected data becomes feasible.

2.7. Spectrotemporal models

In the ideal case all a priori knowledge is used for a

model-based fit of the data. This leads to a spectrotemporal

model [62]. Three cases can be distinguished: (1) a param-

eterized model for both kinetics and spectral shapes is

available; (2) in addition to the kinetic model, limited

spectral knowledge is available, in the form of spectral

equalities or constraints (e.g. the spectrum is assumed to

be zero in a certain wavelength range); and (3) in addition to

the model for the spectral shapes, limited band amplitude



I.H.M. van Stokkum et al. / Biochimica et Biophysica Acta 1657 (2004) 82–10492
curve knowledge is available, e.g. a certain amplitude is

assumed to be zero in a certain time range.

When the separability of time and wavelength properties,

Eq. (1), is not applicable, sometimes a spectrotemporal

model can be used [86,87]. E.g., in describing solvation,

the time dependence of the spectral parameter m̄max from Eq.

(17) or Eq. (18) can be described as m̄max(t) = m̄max(l)+

(m̄ max(0)� m̄ max(l))exp(� t/s) where s represents the

characteristic solvation time.

2.7.1. Spectral shape model and kinetic model

The most straightforward spectrotemporal model

includes a kinetic model (e.g. a compartmental model from

Section 2.4.3), a spectral shape model (e.g. from Section

2.5.1) and in general also some amplitude parameters. In

case both the kinetic and the spectral model are of a global

type, these are the amplitudes of each combination of

exponential decay and band shape. With a more detailed

model they can be limited to one or more scaling parame-

ters. It is shown in Ref. [88] that with such a detailed model,

the parameters of a multicomponent model can be estimated

with higher precision. In the case of zero spectral overlap,

this precision is equal to the precision of a single component

model.

In Eq. (29) both the concentrations and the spectra are

described by a model, which depends upon the parameters

h. Assuming first order kinetics, a matrix of amplitude

parameters A describes the concentrations of the compo-

nents in terms of a superposition of simple decays which are

collated in the matrix C(h).

W ¼ CðhÞAET ðhÞ þ N ð29Þ

When applied to the simulated data of Section 2.4.3.1,

the matrix C(h) contains two exponential decays (parame-

ters kl), whereas the matrix E(h) consists of two skewed

Gaussian shapes (Eq. (17), parameters (m̄max, Dm̄, b)l). The
matrix of amplitude parameters A to be estimated will be

proportional to the AII from Eq. (10).

The vector representation [24] of the matrix C is given

by

vecðWÞ ¼ ðEðhÞ 
 CðhÞÞvecðAÞ þ vecðNÞ ð30Þ

where 
 denotes the Kronecker product [24]. In case a

particular kinetic model (with concentrations ci(h)) is tested,
we put

vecðWÞ ¼
Xncomp

i¼1

vecðciðhÞeTi ðhÞÞai þ vecðNÞ ð31Þ

When applied to the simulated data of Section 2.4.3.1,

this is equivalent to the target analysis with the ci (h) from
Model II. Instead of the ncomp

2 parameters of the A matrix

now only ncomp amplitude parameters need to be estimated.
It was demonstrated in Ref. [88] that this improves the

precision of the parameters h in Eq. (31) relative to Eq. (30).

2.7.2. A priori spectral knowledge and kinetic model

The second type of spectrotemporal model includes a

kinetic model (e.g. a compartmental model from Section

2.4.3), and a spectral model which incorporates limited a

priori spectral knowledge, e.g. a spectrum is assumed to be

zero in a certain wavelength range. Thus, in that wavelength

range a component with zero spectrum does not contribute.

An extreme case is the emission from P* (from the bacterial

reaction centre) which is assumed to be in equilibrium with

non-emitting relaxed radical pair states (see Section 2.4.3.3)

[63]. With difference absorption measurements the situation

becomes even more complicated, because the ground state

bleach spectrum is needed as well, and in the case of a

photocycle an extra parameter for the fraction cycling has to

be introduced (Section 2.7.4).

The kinetic model of Eq. (24) needs to be modified in

order to incorporate the a priori spectral knowledge

W ¼ CðhÞẼT þ N ð32Þ

where ẼT contains less unknown parameters than n� ncomp.

E.g. in a certain wavelength range for certain components

some of the elements of Ẽ are equal to zero, or some linear

relationships exist. Examples will be discussed in Section

2.7.4 and in the case study (Section 4).

2.7.3. A priori band amplitude knowledge and spectral

model

The third type of spectro’’temporal’’ model includes a

spectral shape model (e.g. from Section 2.5.1) and a BAC

model which incorporates a priori knowledge, e.g. that in a

certain time (or pH, or temperature, . . .) range the band

amplitude is assumed to be zero. Thus, in that range a

component with zero amplitude does not contribute.

The spectral model of Eq. (25) needs to be modified in

order to incorporate the a priori band amplitude knowledge

W ¼ C̃ET ðhÞ þ N ð33Þ

where C̃ contains less unknowns than m� ncomp. E.g. in a

certain range for certain components some of the elements

of C̃ are equal to zero, or some linear relationships exist.

This type of model was applied in studying the oligomer-

ization of photosynthetic antenna peptides [89]. From a

series of detergent-dependent absorption spectra an inter-

mediate spectrum could be resolved with the help of the

constraints that this spectrum did not contribute at the

extreme detergent concentrations.

2.7.4. Spectrotemporal model for a photocycle

With difference absorption measurements from a photo-

cycle the situation becomes even more complicated, because

the ground state bleach spectrum is needed as well, and an

extra parameter for the fraction cycling has to be introduced.
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The noise-free, time-resolved difference absorption DA is a

superposition of the ncomp contributions of the different

components (analogous to Eq. (1)):

DAðt; kÞ ¼
Xncomp

l¼1

clðtÞDelðkÞ ð34Þ

where cl(t) and Del(k) denote, respectively, the concentration
and SADS of component l. By definition, Del(k) = el(k)�
e0(k), where e0(k) is the ground state bleach spectrum.

Regarding Eq. (34), we note that the quantity which will

be estimated is the product clDel, which in itself is

insufficient for the determination of the absolute values

of cl and Del. Since in the photocycle no states are lost, the

relative concentrations of the components can be estimat-

ed, and thus also the relative amplitudes of their difference

spectra. Here we take c1(0)u 1, and thus all concentrations

are relative to the concentration of the first photocycle

state in the model.

In matrix notation Eq. (34) reads:

DA ¼ CðE � e0ÞT ¼ CET � C1eT0 ð35Þ
where the m� n matrix DA denotes the time-resolved

difference absorption, measured at m time instants ti, and

n wavelengths kj. The columns of the matrices C and E, of

dimension m� ncomp and n� ncomp, respectively, contain

the concentration profiles and SAS of the components. The

matrix–vector product C1 is a vector containing the sum of

the concentrations of the photocycling intermediates, which

is equal to the ground state depletion. This sum decreases

monotonically from one at time zero to zero at the end of the

photocycle. When the ground state spectrum of the sample

before excitation ẽ0 has been measured on exactly the same

setup (which is not always feasible in the case of ultrafast

measurements), the model can be extended with the fraction

cycling parameter fc. We can then substitute for the bleach

spectrum e0 = fc�ẽ 0. Using the vector representation of a

matrix and the Kronecker product [24] (
), Eq. (35) can

then be rewritten:

vecðDAÞ ¼ ðIn 
 CÞvecðET Þ � ðẽ0 
 C1Þfc ð36Þ

When we use a kinetic model, we can express Eq. (36) as

vecðDAÞ ¼ ½In 
 CðhÞ � ẽ0 
 CðhÞ1�
vecðET Þ

fc

2
4

3
5 ð37Þ

Since the last column � ẽ0
C(h) 1 is a linear combination

of all the other columns, an extra assumption is necessary to

remove this dependence. With BR the M state(s) are

assumed not to absorb above c 540 nm [23], thus remov-

ing these elements from vec(ET) (arriving at vec(ẼT)) and

deleting the accompanying columns in In
C(h). With pho-

toactive yellow protein [6,91,92] the pB state(s) are as-

sumed not to absorb above c 430 nm. Both the M and pB
states possess an absorption maximum to the blue of the

ground state, and occur on a millisecond time scale during

the photocycle.

2.7.5. Anisotropy models

Measurement and subsequent modelling of polarization

dependence offer an opportunity to resolve components

provided their anisotropies differ. Commonly measurements

are made at three angles relative to the polarization of the

excitation: parallel, perpendicular and magic angle. At the

magic angle there is no anisotropy effect present, from the

two other measurements the anisotropies can be estimated.

In an associative model, an anisotropy decay function ri(t) is

associated with each component i. Alternatively, a single

anisotropy r(t) can be applied to all components or to all

decays, which is called a nonassociative model. The models

discussed below are all associative.

2.7.5.1. Emission anisotropy. In order to include parallel

and perpendicular data, the kinetic model for the magic

angle data from Eq. (24) is extended by multiplying the

concentration of each component i by 1 + cri(t), where c
equals 0, 2, � 1 for magic angle, parallel, and perpendicular

data, respectively [12]. The full model for the experimental

traces MA(t), VV(t), and VH(t) then reads:

MAðt; kÞ

VVðt; kÞ

VHðt; kÞ

2
6666664

3
7777775
¼

Xncomp

l¼1

clðtÞelðkÞ

1

1þ 2rlðtÞ

1� rlðtÞ

2
6666664

3
7777775

0
BBBBBB@

1
CCCCCCA
PiðtÞ

ð38Þ

When Raman scattering is present, it can easily be

included in the model. It has the time profile of the IRF

and possesses an anisotropy rRS, a spectrum eRS(k), and
contributes a term eRS(k)(1 + crRS)i(t) to Eq. (38). Ideally

rRS equals 0.4.

Preferentially the measured data are modelled in Eq.

(38). Alternatively, an anisotropy signal can be calculated

from the parallel and perpendicular data

rðt; kÞ ¼ VVðt; kÞ � VHðt; kÞ
VVðt; kÞ þ 2VHðt; kÞ ð39Þ

Compared to the measured data, the calculated r(t, k) will be
much more noise-sensitive, in particular when the signals

are small.

2.7.5.2. Difference absorption anisotropy. With difference

absorption the situation is much more complicated. An

excited state component possesses three spectral contribu-

tions: excited state absorption (ESA), ground state bleaching
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(GSB) and stimulated emission (SE), whereas a component

in the ground state possesses two spectral contributions:

absorption (GSA), and bleaching (GSB). In principle, each

contribution has its own anisotropy. Thus, the total contri-

bution of an excited state component reads (omitting the

subscript l for clarity):

ðcðtÞfESAðkÞð1þ crESAðtÞÞ þ SEðkÞð1þ crSEðtÞÞ

þ GSBðkÞð1þ crGSBðtÞÞgÞPiðtÞ ð40Þ

whereas a ground state component contributes:

ðcðtÞfGSAðkÞð1þ crGSAðtÞÞ
þ GSBðkÞð1þ crGSBðtÞÞgÞPiðtÞ ð41Þ

An important question is, under which conditions can

these different contributions be resolved. Consider the

following case: a ground state component possesses two

contributions: a bleach with maximum anisotropy rGSB =

0.4, and absorption. Suppose the bleach is not present in part

of the measured wavelength range, then from that part rGSA
can be estimated from

DAðt; kÞ

DAOðt; kÞ

DA?ðt; kÞ

2
6666664

3
7777775
¼ cðtÞGSAðkÞ

1

1þ 2rGSAðtÞ

1� rGSAðtÞ

2
6666664

3
7777775

0
BBBBBB@

1
CCCCCCA
PiðtÞ

ð42Þ

When the thus estimated rGSA differs from rGSB, the two

contributions can be resolved over the full wavelength

range. In conclusion: contributions with different anisotropy

can in principle be resolved when their anisotropy is known

a priori, or when a contribution with unknown anisotropy

appears isolated in part of the measurement range.

A coherent coupling artefact, which is often present in

ultrafast experiments [31,93], can be included in the model.

Usually its time profile can be approximated by the IRF. It

possesses an anisotropy rCA, a spectrum eCA(k), and con-

tributes a term eCA(k)(1 + crCA) i(t) to Eq. (42). Target

analysis of ultrafast difference absorption spectra was in-

strumental in resolving structural heterogeneity of the 2-

aminopurine chromophore [90]. The different excited states

possessed widely differing anisotropies, which were also

wavelength-dependent. About 70% of the population

showed a high anisotropy (rc 0.35) below 440 nm, and a

low anisotropy (rc 0.1) above 440 nm. The remaining

30% of the population showed an opposite anisotropy

(rc� 0.2). The anisotropy information was limited to the

first 50 ps, due to the rotational correlation time sc 25 ps

of the chromophore, ri(t) = r0iexp(� t/s).
2.7.5.3. Anisotropy model for the BR photocycle. In Sec-

tion 2.7.4 a general photocycle model was introduced. Here

we extend this model with an anisotropy model for a special

case, the BR photocycle. In order to include the parallel and

perpendicular data, we extend the model for the magic angle

photocycle data from Eq. (36) by multiplying the concen-

tration of each component i (ground state bleaching (GSB)

or photocycle intermediates) by 1 + cri(t), where c equals 2,
� 1 for parallel and perpendicular data, respectively. The

full model then reads [23]:

DAðt; kÞ

DAOðt; kÞ

DA?ðt; kÞ

3
77775 ¼

Xncomp

l¼1

clðtÞelðkÞ

1

1þ 2rlðtÞ

1� rlðtÞ

2
66664

3
77775� fc

� ẽ0

1

1þ 2rGSBðtÞ

1� rGSBðtÞ

2
66664

3
77775
Xncomp

l¼1

clðtÞ ð43Þ

For the time dependence of the anisotropy, an exponen-

tial decay model can be used:

riðtÞ ¼ r0iexpð�ktumbtÞ ð44Þ

in which ktumb is the rate of (membrane) tumbling, and r0i is

the anisotropy at time zero of component i. An alternative

method for target analysis of BR photocycle anisotropy data

has been developed by Borucki et al. [94] and Heyn et al.

[95]. Based upon mild assumptions, they exploited the

anisotropy dimension to estimate the SAS and concentration

profiles.

Lozier et al. [20] measured five-way data of the BR

photocycle: wavelength from 380 to 700 nm, time from 1 As
to 0.3 s, temperature from 5 to 35 jC, under four solvent
conditions (pH 5, pH 7, pH 9, and pD 7) and under three

polarization conditions (magic angle, parallel and perpen-

dicular). A spectrotemporal model was applied to these data

[23], which consisted of five parts: (i) a compartmental

scheme (Section 2.4.3) for the MA concentrations with fully

reversible transitions between the photocycle intermediates

(Fig. 2A), (ii) the temperature dependence of the micro-

scopic rate constants was described with thermodynamic

parameters (Eq. (14), Section 2.4.3.5) for each of the solvent

conditions, (iii) a photocycle model (Eq. (37), Section 2.7.4)

which contains the SAS including the GSB and a fraction

cycling parameter. The SAS are assumed to be temperature

independent [96], (iv) an anisotropy model (Eqs. (43) and

(44)), and (v) spectral assumptions (Section 2.7.2) on the

SAS, i.e. that the M intermediates did not absorb above 540

nm, that the N and O intermediates did not contribute to the

difference absorption below 460 nm, and that the L and N

intermediates did not absorb above 680 nm. Relative to the

iophysica Acta 1657 (2004) 82–104



Fig. 2. Target analysis of bacteriorhodopsin photocycle, using a reversible

compartmental scheme (A) with six intermediates KWLWM1W
M2WNWO!BR. (B) Estimated SAS, note the congestion of K, L, N

and BR. Key: magenta, K; red, L; blue, M; green, N; black, O; and cyan,

BR. (C) Free energy changes relative to K (at 293 K) during the photocycle.

Key: black, pH 5; red, pH 7; blue, pH 9; green, pD 7. Vertical bars indicate

plus or minus standard error.
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analysis in [20], parts (iii) and (v) were the major improve-

ments. This model consistently described the five-way data.

The estimated SAS are shown in Fig. 2B. From the

thermodynamic parameters, the free energy changes during

the photocycle can be calculated, and DG relative to the first

intermediate is depicted in Fig. 2C. Thus, this target analysis

is instrumental in monitoring the energetics of the BR

photocycle. Although this photocycle has been studied for

30 years, there is still some controversy [21–23]. In an

alternative approach, all possible kinetic schemes using a

full K-matrix (Eq. (6)) were tested [19], successively elim-

inating superfluous microscopic rate constants. The method

was tested on concentration profiles estimated from reso-

nance Raman data, and arrived at a similar kinetic scheme
[80], except for a few small differences. An alternative

description with two parallel, irreversible photocycles is

proposed in [21,22]. This exemplifies that the explanation

of multiexponential decay of components by equilibria or by

heterogeneity (Section 2.4.3.3) is a recurring theme in target

analysis.

2.7.6. Multi-pulse excitation models

Multi-pulse spectroscopy can provide extra information

with which complicated compartmental schemes can be

unravelled [7]. When a second pulse interacts with an

excited state, three processes can occur: (i) when the state

is emissive at the wavelength of the second exciting pulse,

stimulated emission occurs, and the excited state returns to

the ground state or to a ground state intermediate (GSI),

which subsequently relaxes to the ground state. In this case,

the second pulse is termed a dump pulse. (ii) When the state

shows excited state absorption at the wavelength of the

second exciting pulse, a higher excited state is created,

which subsequently relaxes, possibly through the same or

very similar intermediate states. (iii) When an excited state

is already present, and a new excited state is created,

singlet–singlet annihilation can occur. To isolate the effect

of the second exciting pulse from a possible ground state

excitation, the effect of the second pulse alone is subtracted

from the measurement with both exciting pulses. Formally

this can be described as follows:

DAPPðt; kÞ ¼
Xncomp

l¼1

cl;PPðtÞelðkÞ
 !

PiPPðtÞ ð45Þ

where the subscript PP indicates the ordinary pump-probe

difference absorption experiment. Now the second pulse

(which we call here the dump pulse) has an additional effect,

which can be approximated by:

DAPDPðt; kÞ ¼
Xncomp

l¼1

cl;PDPðtÞelðkÞ
 !

PiPDPðt � DlÞ ð46Þ

with iPDP (t�Dl) being the IRF of the dump pulse

administered after an interval Dl with respect to the first,

pump pulse. The interaction of the dump pulse with an

Excited State Intermediate (ESI) results in the disappearance

of part of the population of the ESI and possible appearance

of GSI or another, higher ESI. Thus, the compartmental

scheme of the cl,PDP (t) is in general extended with these

new states. In the ideal case the dump pulse results in the

enhanced population of a GSI, and introduces no new states.

When this GSI decays faster than it is formed by normal

decay of the ESI, the dump pulse uncovers the GSI. This is

the case with the Green Fluorescent Protein [97,98]. After

excitation of GFP, a proton is transferred resulting in a long-

lived (ns) excited state, which is responsible for the green

fluorescence. A second pulse resonant with this emission

dumps this excited state resulting in a GSI. This GSI relaxes
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in two steps of about 3 and 440 ps, whereby the proton is

transferred back to the ground state. The pump-dump-probe

technique in combination with the target analysis reveals the

dynamics and the SADS of the states involved in this

ground state proton transfer.
3. Parameter estimation

After formulation of a model for the observations (Eqs.

(24), (25), (29), (32), (33) and (37)) the unknown parame-

ters have to be estimated from the data. It is important to

recognize that these equations represent a separable nonlin-

ear model, also called partially linear model [24].

This means that, conditionally on the intrinsically non-

linear parameters h, the conditionally linear parameters [25]

(E in Eq. (24), C in Eq. (25), A in Eq. (30), a in Eq. (31), Ẽ in

Eq. (32), C̃ in Eq. (33), Ẽ and fc in Eq. (37)) can be solved for

using a special algorithm.

Because we assume additive normally distributed noise

(Section 2.1.2) the nonlinear least squares estimator is also

the maximum likelihood estimator, which in the ideal case

results in maximal parameter precision [24,25]. The number

of unknown parameters that need to be estimated can easily

amount to several thousand, e.g. estimation of many spectra

at hundreds of wavelengths with the help of a kinetic model

(Eq. (24)). Therefore, it is crucial to reduce the dimension-

ality of the parameter search space by implicitly solving for

the conditionally linear parameters. This is done by the

Variable Projection algorithm developed in the seventies

[85,99,100], which later became widely used in global

analysis [19,101,102]. This algorithm exploits the bilinear

structure of the model function. Crucial for precise param-

eter estimation is careful weighting of the observations [34].

After convergence of the nonlinear least squares fit routine,

a further check of the neighbouring parameter space can be

done using new starting values for the unknown parameters.

This is elaborately discussed in Ref. [16]. Having estimated

the parameters careful checking of the residuals is of

paramount importance. With matrices of data, and thus also

of residuals, the SVD is an ideal tool to check for structured

residuals [92]. When the residuals are satisfactory, the

parameter precision needs to be investigated. Linear ap-

proximation standard errors can be calculated from the

Jacobian of the model function. With the Variable Projection

algorithm the situation is somewhat more complicated. Here

we present the equations for the kinetic model (Eq. (24)).

Conditionally on the kinetic parameters h, Eq. (24) repre-
sents a linear model. Therefore, the spectral parameters are

estimated by:

ÊT ðhÞ ¼ CyðhÞW ð47Þ

where Cy(h) is the Moore–Penrose generalized inverse of

C(h), and the circumflex ^ denotes ‘‘estimator of’’. It can be

proved that the approximate covariance matrix of the vector
representation of ÊT is given by (omitting the h dependence

for clarity):

covðvecðÊT ÞÞ ¼ r̂2ðIn 
 CyCy
T

Þ þ GcovðĥÞGT ð48Þ

with r̂2 the variance estimate, and with matrix G consisting

of columns vec Cy BC
Bhi

ÊT
� �

. In a simulation study [88], it

was shown that the linear approximation standard error is

adequate for the kinetic parameters, thus the model is

functionally linear [103]. However, the linear approximation

standard error is less adequate for the spectral parameters

[104]. In that case likelihood-based confidence regions can

be calculated [25,37,104].

3.1. Incorporating multiple experiments

A commonly occurring situation is when multiple experi-

ments are done which are believed to be described by a

single (most often kinetic) model, however, each experiment

may possess some experiment-specific parameters. Exam-

ples are (i) measurement of time gated spectra in two or

more different wavelength ranges, or under different polar-

ization angles; (ii) trace measurements in different time

ranges; (iii) measurements with varying instrument

responses. In most of these cases global analysis is still

applicable, but extra nuisance parameters may have to be

introduced. E.g. because of laser power fluctuations, scaling

parameters may be necessary to simultaneously analyse data

from different experiments (case (ii)) [92]. This number of

scaling parameters can become very large. The generaliza-

tion of Eq. (37) to a simultaneous target analysis of multiple

experiments is straightforward. For each extra experiment,

an overall scaling parameter is needed, to account for

variations in the product of sample OD and intensity of

the actinic flash. With the five-way BR photocycle, this

amounts to 235 scaling parameters, which is much more

than the number of kinetic and spectral parameters [23].

3.2. Software

The modelling of time-resolved spectra is an iterative

process, which benefits from a dedicated Problem Solving

Environment [12,13,16,105] that incorporates a wide vari-

ety of models. The data analysis environment described in

Refs. [12,13] concentrates on fluorescence data. The pro-

gram described in Ref. [16] applies a simulated annealing

strategy for estimation of the globally optimal model

parameters. The implementation and application of the

variable projection algorithm to global analysis was de-

scribed in Ref. [101].
4. Case study: ultrafast dynamics of PYP

The purpose of this section is to apply the above

presented methodology in a typical case study with real
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three-way data sets. A chromophore–protein complex, the

photoactive yellow protein (PYP) [5,6,91,92,106], was

studied by time-resolved polarized difference absorption

spectroscopy. The PYP chromophore (p-coumaric acid,

pCA) is covalently bound to a 14-kDa protein, and then

absorbs maximally at 446 nm (black spectrum in Fig. 9A).

Upon excitation, PYP traverses a photocycle that eventually

leads to a signaling state, most probably the pB state (also

called I2) mentioned in Section 2.7.4. The dynamics of the

PYP photocycle extend from femtoseconds to seconds. In

this experiment PYP was excited at 400 nm (blue pump

spectrum in Fig. 9A). The early photophysics and photo-

chemistry of this model system are discussed in detail

elsewhere [8]. Here we present the modelling of three types

of ultrafast data: we start with the magic angle (MA) data,

then we add anisotropy data, and finally we test the kinetic

scheme with multipulse data.

4.1. Residual analysis of MA data

The MA data (typical traces are shown in Fig. 3) were

globally analysed using a parallel kinetic scheme (Section

2.4.1, Eq. (3)) with five lifetimes plus a coherent artefact.

The uncorrected data (black) exhibit common noise, which

is most clearly visible around 6, 100 and 400 ps. This is

likely caused by baseline fluctuations in the data. To

investigate this further, the matrix of residuals was subjected

to Singular Value Decomposition (Eq. (23), Section 3). Fig.

4C shows that the first singular value is significantly larger

than the remainder. The first right singular vector (w res,

Fig. 4B) is almost flat in wavelength, whereas the first left

singular vector (u res, Fig. 4A) displays no clear structure in

time. These baseline fluctuations can be estimated from the

residuals, and subtracted from the data, thus refining the

analysis. The refined data are depicted in red in Fig. 3. This

procedure results in a decrease of the root mean square error
Fig. 3. Selected difference absorption traces (in mOD) of PYP after 400-nm ex

ordinate. Uncorrected (black) and after correction for baseline fluctuations (red). D

relative to the maximum of the IRF, and logarithmic thereafter.
(rmse) from 0.85 to 0.42 mOD. Note that most of the

fluctuations have been corrected for, as evidenced from

the difference between the black and red solid lines. The

results of SVD of the residual matrix from the refined global

analysis have been depicted in Fig. 4D–F. Note that there

appears to be no significantly larger first singular value in

Fig. 4F. Judged from this residual analysis, and from the

estimated parameters (vide infra), this global analysis is

considered satisfactory.

4.2. Global analysis of MA data: DADS and EADS

The results from the global analysis of the MA data are

shown in Fig. 5, using respectively a parallel (left) or a

sequential (right) kinetic scheme. The concentrations of the

components are depicted in Fig. 5A and B. When using a

parallel scheme the estimated DADS are shown in Fig. 5C.

Alternatively a sequential scheme with increasing lifetimes

(Section 2.4.3.2) can be used resulting in Evolution Asso-

ciated Difference Spectra (EADS), Fig. 5D. Note that both

schemes result in exactly the same residuals and quality of

fit of the data (Section 2.6.2). The DADS are interpreted as

loss or gain of absorption with a certain lifetime, whereas

the EADS represent the spectral evolution, e.g. the third

EADS rises with the second lifetime and decays with the

third lifetime. With simple systems the interpretation of the

DADS or EADS can be straightforward. E.g. when the

sequential scheme with increasing lifetimes represents the

correct physicochemical picture, the EADS correspond to

true Species Associated Difference Spectra (SADS) charac-

terizing the intermediate states. In that case the DADS

represent decay and rise of these states. With the compli-

cated system here at hand the interpretation becomes an

iterative process, and in fact the target analysis described

below allows for a better interpretation of the DADS or

EADS. At this point a number of comments are in order.
citation, measured at magic angle. Probe wavelength indicated along the

ashed lines indicate fit. Note that the time axis is linear from � 5 to + 5 ps



Fig. 4. Results from Singular Value Decomposition of the residual matrix. Top panels: uncorrected data. Bottom panels: residuals from data after correction for

baseline fluctuations. (A, D) First left singular vector, showing dominant temporal structure. (B, E) First right singular vector, showing dominant spectral

structure. (C, F) Singular values on logarithmic scale.
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The first DADS (black) which decays in 0.8 ps shows a

major loss of Excited State Absorption (ESA) from 340 to

420 nm and of Stimulated Emission (SE) from 460 to 630

nm. Less clear is a loss of Ground State Bleach (GSB, 420–

460 nm). From the shape of the first DADS, it cannot be

decided which states rise with 0.8 ps. The second DADS

(red) decays in 3.3 ps. Again ESA loss is evident from 340

to 410 nm, as well as loss of SE (480–600 nm) and of GSB
Fig. 5. Global analysis of PYP magic angle data using a parallel (left) or sequen

lifetime 0.8 ps (black), 3.3 ps (red), 34 ps (blue), 1 ns (green), long-lived (magenta

DADS and EADS. (E, F) show normalized spectra. Vertical bars indicate approx
(410–460 nm). Note the large differences in shape between

the first and second DADS which indicate the presence of

other states. The third DADS (blue) decays in 34 ps. Its

shape is similar to the second DADS (compare the normal-

ized DADS in Fig. 5E). The fourth DADS (green, lifetime

c 1 ns) shows loss of GSB as well as loss of product state

absorption (490–570 nm) which will later be ascribed to

intermediate I0. The fifth and final DADS (magenta) is long-
tial kinetic scheme (right). (A, B) show c(t) of the five components. Key:

). Coherent artefact with IRF time profile is in cyan. (C, D) depict estimated

imate standard errors.



Fig. 6. Selected difference absorption traces (in mOD) of PYP after 400-nm excitation, measured at magic angle (blue), parallel (black), and perpendicular

angle (red). Probe wavelength indicated along the ordinate. Insets depict raw anisotropy. Dashed lines indicate fit. Note that the time axis is linear from � 5 to

+ 5 ps relative to the maximum of the IRF, and logarithmic thereafter.
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lived and represents the intermediate I1. The coherent

artefact is described by the cyan spectrum which is associ-

ated to the IRF. Depicted here is its contribution at the IRF

maximum. This spectrum steals some amplitude from fast

processes, e.g. early SE (470–540 nm) and solvated elec-

tron production (above 550 nm, explained below). Unless

noted otherwise, the relative errors in the estimated lifetimes

are about 10%. The estimated errors in the spectral param-

eters (see Eq. (48)) are also small, as evidenced by the error

bars (vertical lines at extrema).

The first EADS (black in Fig. 5D) equals the sum of all

DADS. Apart from the coherent artefact contribution, it

represents the difference spectrum at time zero. It is char-

acterized by a large GSB (420–460 nm). Note that the

subsequent EADS show a gradual decrease of this GSB.

The final EADS (magenta) equals the final DADS. If we

assume that the evolution from the fourth to the fifth EADS
Fig. 7. Selected difference absorption spectra (in mOD) of PYP after 400-nm exc

angle (red). Probe time indicated along the ordinate. The two early spectra are aff
corresponds to the transition from photocycle intermediates

I0 to I1, then the fourth and fifth EADS represent the SADS

of I0 and I1, respectively. The apparent loss of GSB in this

transition could be due to non-unity quantum yield of this

transition. Alternatively, the absorption of I1 largely over-

laps with the GSB, thus resulting in a smaller SADS. Both

alternatives will be tested below. The second and third

EADS are most difficult to interpret because at least three

states contribute: excited state intermediates, I0, and also a

ground state intermediate (vide infra).

4.3. Target analysis of anisotropy data: SAS

To disentangle these complicated dynamics, more infor-

mation is needed. Measurements at parallel and perpendicu-

lar polarization angles add information on anisotropy

differences of the intermediates relative to the anisotropy of
itation, measured at magic angle (blue), parallel (black), and perpendicular

ected by dispersion. Insets depict raw anisotropy. Dashed lines indicate fit.



Fig. 8. Compartmental schemes for the target analysis of polarized transient

difference absorption of PYP after 400 nm excitation. Vertical upward

arrows indicate excitation. Excited state intermediates ESI1, 2 and 3 decay

into I0 or GSI. Scheme B differs from A by an additional decay from ESI1

to the ground state, and by a parallel photo ionization.

Fig. 9. (A) Normalized steady-state absorption (black) and emission (red)

spectra of PYP, spectra of the pump pulse (blue) and of the dump pulse

(green, applied in Fig. 10). (B, C, D) SAS estimated from the PYP

anisotropy data using the compartmental schemes of Fig. 8. Panel B,

corresponding to Fig. 8A, differs from panel C (which corresponds to Fig.

8B) by the absence of a decay from ESI1 to the ground state. Panel D

differs from panel C in the SAS of I1, it corresponds to Fig. 8B without the

decay from I0 to GSI. Key: GSB (black), ESI1, 2, 3 (red), GSI (blue), I0
(magenta), I1 (green), pCA radical (cyan). Coherent artefact has been

omitted for clarity. Vertical bars indicate approximate standard errors.
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the GSB. Representative traces and spectra are shown in Figs.

6 and 7, respectively. Disregarding the dispersion, the 0.5-,

300- and 2500-ps spectra resemble the first, fourth and fifth

EADS (Fig. 5F), respectively. The 4-ps spectrum resembles a

mixture of the second and third EADS. For illustrative

purposes only, the raw anisotropies r (t,k) (calculated accord-
ing to Eq. (39)) are depicted in the insets of Figs. 6 and 7. Note

that the r(t, k) are noisy, as explained in Section 2.7.5.1, and

not suitable for further analysis.

A necessary prerequisite for the simultaneous analysis of

the anisotropy data is a target model (Section 2.7.5.2). The

target model consists of four parts: a compartmental scheme

(Section 2.4.3) for the MA concentrations, a photocycle

model (Section 2.7.4) which contains the SAS including the

GSB (see Eq. (34)), an anisotropy model (Section 2.7.5.2)

and spectral assumptions (Section 2.7.2) on the SAS. The

compartmental scheme (Fig. 8A) consists of three Excited
State Intermediates, ESI1, 2 and 3, each decaying mono-

exponentially (symbolized by the triple arrows), thus de-

scribing the three time scales of SE and ESA decay. This

heterogeneity is not unusual for a biological system (Section

2.2.1). An alternative scheme with three interconverting

states is discussed in Ref. [8]. An ESI can either decay into

the photocycle intermediate I0 or into the unrelaxed Ground

State Intermediate (GSI). Subsequently, GSI relaxes to the

ground state. As described above, the photocycle interme-

diate I0 relaxes to the long-lived I1. Of paramount impor-

tance for the fit of these anisotropy data with coexisting

intermediates are the spectral assumptions which allow to

describe parts of the data with a subset of the intermediates.

The spectral assumptions used are: (i) GSB zero above 475



Fig. 11. SADS estimated from the PYP data with and without dump pulse

(cf. Fig. 10) using the compartmental scheme of Fig. 8B. Key: SADS of

ESI1, 2, 3 (red), GSI (blue), I0 (magenta), I1 (green). Coherent artefact has

been omitted for clarity. Vertical bars indicate approximate standard errors.
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nm, (ii) SAS of ESI1, 2 and 3 identical, (iii) SAS of GSI

nonzero from 427 to 500 nm, (iv) SAS of I0 zero below 475

nm, (v) SAS of I1 zero below 440 nm. Although the

anisotropy differences are small, they do allow resolution

of the GSB spectrum (to which an anisotropy of 0.4 is

assigned), and of the SAS of the intermediates (which

possess somewhat lower anisotropies). The estimated SAS

are shown in Fig. 9B. Instead of the five lifetimes from the

global analysis, now seven lifetimes are estimated from the

target analysis. Next to the long-lived GSB, an extra lifetime

of 2.3 ps is estimated for the GSI. The SAS are all smooth,

except for that of the ESI (red) which still appears to contain

some bleach contribution from 420 to 460 nm. To improve

the shape of the SAS of the ESI, an additional decay path

from the ESI1 state directly to the ground state was added.

Since this rate cannot be estimated from the fit, it was

adjusted iteratively in order to produce a satisfactory shape.

Actually a contribution of this path of 50% was used. Note

that in Fig. 9C, the negative part of the ESI SAS (red)

resembles the mirror image of the ground state SAS (black),

analogous to the steady-state emission and absorption spec-

tra in Fig. 9A. This shows that a rate parameter that does not

influence the quality of fit of the data can be determined

indirectly from the resulting SAS. In retrospect, we can now

interpret the shape difference of the first and second DADS

between 460 and 490 nm (Fig. 5E) and ascribe it to a rise of

the GSI which accompanies the ESI1 decay.

Furthermore, a small long-lived product state absorp-

tion is present below 375 nm. This absorption was not

influenced by the dump experiments (described in Section

4.4) and could therefore be attributed to resonantly

enhanced photo ionization of the chromophore (p-couma-

ric acid, pCA) resulting in a radical and a solvated

electron. It is possible to isolate this contribution from

the GSB using spectral constraints. When the GSB is

assumed to be zero below 375 nm, the long-lived signal
Fig. 10. Selected difference absorption traces (in mOD) of PYP after 400 nm exci

(green in Fig. 9A) and administered c 400 fs later. Probe wavelength indicated a

from � 2 to + 2 ps relative to the maximum of the IRF, and logarithmic thereaft
below 375 nm can be attributed to the radical, resulting in

the cyan SAS. The absorption of the solvated electron

cannot be resolved, it is clearly visible in the long-lived

DADS (magenta) above 570 nm in Fig. 5E. The aniso-

tropies of ESI2, I0 and I1 were estimated to be, respec-

tively, 0.33, 0.35 and 0.35, significantly lower than the

0.4 anisotropy of the GSB. The other anisotropies could

not be precisely estimated.

As discussed in Section 4.2, an alternative interpretation

of the loss of bleach in the transition from I0 to I1 is that the

absorption of I1 largely overlaps with the GSB. Thus, the

spectral assumption (v), SAS of I1 zero below 440 nm, can

be replaced by a different assumption, namely that the

quantum yield of the transition from I0 to I1 is unity, instead

of 41% as estimated using the spectral assumption (v). This

results in the I1 SAS depicted in Fig. 9D. Although this

modified kinetic scheme cannot be excluded, the spectral

shape of the I1 SAS is considered unlikely. This question

can be resolved by a precise measurement of the wavelength

dependence of the anisotropy at a few nanoseconds (before
tation (black) and after a second dump pulse (red) centered around 505 nm

long the ordinate. Dashed lines indicate fit. Note that the time axis is linear

er.
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it disappears by tumbling, Eqs. (44), and 445 nm inset in

Fig. 6), provided there is no photoionization present.

4.4. Target analysis of multipulse data: SADS

The compartmental scheme of Fig. 8B was put to the test

with a multipulse experiment (Section 2.7.6). Administering

a second laser pulse (green in Fig. 9A) resonant with the SE

transfers population from excited to ground state intermedi-

ates. Thus, different concentrations of intermediates are

created, providing new clues to resolve their properties. From

the representative traces in Fig. 10 it becomes evident that the

dump pulse depletes the ESI population resulting in de-

creased SE (530 nm), and decreased ESA (378 nm), con-

comitant with transient increased absorption at 470 nm. The

last is attributable to the GSI. Also note the relatively small

amount of GSB recovery (445 nm) upon application of the

dump pulse, which also points to the presence of a GSI.

Overall, the estimated SADS in Fig. 11 are consistent with the

SAS of Fig. 9C. Unfortunately, the contribution of the radical

and the solvated electron could not be resolved with these

data, which were measured above 378 nm. The absorption by

the solvated electron is clearly visible in the SADS of I0 and I1
above 570 nm. Both the anisotropy and the multipulse

experiments are satisfactorily described by the kinetic

scheme of Fig. 8B in combination with the anisotropy and

IRF parameters, the SAS of Fig. 9C and the SADS of Fig. 11.
5. Conclusion

Global and target analysis are indispensable tools in the

investigation of complex systems with time-resolved spec-

troscopy. In particular, multipulse experiments enable test-

ing of complicated kinetic schemes. Spectrotemporal

modeling offers a solution to the inverse problem, and

allows precise estimation of the kinetic and spectral param-

eters that describe the complex system dynamics.
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