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Abstract

A new model to make inferences about population characteristics from experimental datasets is presented. It derives con-
cepts and procedures from quantum chemistry. The model uses the observed values and the uncertainty estimates thereof. It
provides the different modes of the distribution and for each mode the expectation value, the standard deviation and a per-
centage indicating the fraction of observations encompassed. An implementation of the model that does not require uncer-
tainty estimates is provided too. In this paper, the model is elaborated and applied to the evaluation of interlaboratory stud-
ies. It has, however, a much wider generic application. It is demonstrated that the model can cope with asymmetric, strongly

Ž .tailing and multimodal distributions and that it is superior to existing techniques e.g. ISO 5725, robust statistics . q 2000
Elsevier Science B.V. All rights reserved.
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1. Introduction

Statistical inferences of population characteristics
from experimentally obtained datasets, e.g. measures
for location and dispersion, need to be made in many
fields of science. The calculation of such character-

) Corresponding author.

istics is frequently complicated by the nature of the
distribution underlying the data. A range of proce-
dures has been developed to deal with this problem,
such as outlier tests based on assumptions about the

w xdistribution functions 1 and nonparametric algo-
w x w xrithms like robust statistics 2 and bootstrapping 3 .

Better procedures are, however, still desirable.
A new model is presented in this paper which de-

rives concepts and practices from quantum chem-
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istry, in particular wavefunctions and matrix algebra.
No physical laws can be used to derive wavefunc-
tions underlying the experimental data encountered in
practice. The square of a wavefunction is a probabil-
ity density function. Using an estimate for the proba-
bility density function of the measurement process
concerned, a ‘wavefunction’ can be derived which
underlies the observation and which comprises the
observed value and its uncertainty. The wavefunc-
tions of all individual observations constitute a basis
set in which wavefunctions describing the properties
of the total dataset can be constructed. The procedure
outlined in this paper constructs the wavefunctions for
the dataset as a whole as linear combinations of the
wavefunctions of the observations. For each linear
combination, which corresponds to a mode of the
distribution of observations, the expectation value,
the standard deviation and a percentage indicating the
fraction of the observations encompassed is calcu-
lated. The first mode provides the population charac-
teristics sought.

Although this model can be applied to a variety of
situations, this paper will only be providing informa-
tion for the evaluation of data from interlaboratory
studies. Interlaboratory studies play an important role
in analytical chemistry to assess the performance pa-
rameters of a method, to assess the performance of

w xlaboratories and to certify materials 4 . The design,
conduct and evaluation of interlaboratory studies have
received considerable interest in the past years. In
close collaboration, IUPAC, AOAC and ISO have is-

w xsued guidelines for method-performance studies 5
w xand for laboratory-performance studies 6 . The Eu-

ropean Union has provided a detailed document de-
scribing how reference materials should be prepared
and certification studies should be conducted in
the framework of the Standards, Measurements and

w xTesting Programme 7 . The Analytical Methods
Committee of the UK-Royal Society of Chemistry
Ž .denoted as AMC in this paper reported on the or-
ganisation and statistical assessment of proficiency

w xtests 8 . ISO recently has published guides on the
w xorganisation of interlaboratory studies 9,10 . A com-

mon element throughout these standards and guide-
lines is the need to provide a statistical evaluation of
interlaboratory studies.

w xYouden and Steiner 11 have provided a corner-
stone with respect to the development of statistical

procedures related to the evaluation of method-per-
formance studies. The work of these authors has

w xevolved in time in to AOAC guidelines 12 , and the
w xstandard ISO 5725 13,14 . Basically, a series of out-

lier tests are applied to the data after which an
ANOVA based procedure is adopted to obtain the
expectation value and the reproducibility and re-
peatability of the method under study.

The procedure is based on the assumption that all
of the within-laboratory variances are equal and nor-
mally distributed, and that a normal distribution un-
derlies the between-laboratory variance. These as-
sumptions seem acceptable for method-performance
studies, in which participating laboratories experi-
enced in the method tested, follow the same, single
method protocol. In practice, however, these assump-
tions are frequently violated. The direct application of
ISO 5725 for laboratory-performance studies is
highly questionable. In such studies, laboratories are
free to use their own methodology. In addition to dif-
ficulties related to the distribution of the laboratory
means, there is a priori no reason to assume that the
within-laboratory variances will be the same. Some
researchers have used ISO 5725 to evaluate labora-
tory-performance studies after a transformation of the
data with the aim to reduce the problems regarding
deviations from normality and non-equal within-

Ž w x.laboratory variances. e.g. Ref. 15 . A more funda-
mental criticism of ISO 5725 concerns the use of

w xoutlier tests 1 .
In the past 10 years, robust statistics have been put

forward as a suitable technique to analyse the data
w xfrom interlaboratory studies 1,16–21 . The AMC and

Lischer methods have been tested by different groups
w x22–24 . In studies on marine samples, it has been
observed that many data distributions tend to have
positive outliers owing to, for instance, calculation or
transcription errors, errors with units or contamina-

w xtion 22 . Such data normally form up to 5% and, in
some cases, as much as 10% of the total amount of

w xdata. The robust statistics of AMC and Lischer 26
appear to have difficulties in coping with these
asymmetrical distributions, which is manifested as
inflated values for the robust means and robust stan-
dard deviations. In practice, this problem can be cir-
cumvented by inspecting the data and removing ‘ob-

w xvious outliers’ prior to the statistical evaluation 22 ,
but this brings an element of subjectiveness which the
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robust statistics intended to avoid. Other robust
methods are also reported in the literature, each with

Žits own advantages and disadvantages e.g. Refs.
w x.20,21,25,26 .

w xLischer 26 has listed the criteria for procedures
w xto evaluate interlaboratory studies 28 . These criteria

Žinclude a good efficiency for an ideal model i.e. the
.normal distribution , a small impact of minor devia-

tions from the ideal model on the outcome of the cal-
culations and a high resilience towards large devia-
tions. The model presented in this paper meets the

w xcriteria stated by Lischer 26 . The method is, how-
ever, more robust for asymmetrical distributions and
includes numerical and graphical means to assess data
distributions. A particular feature of this procedure is
that explicit use is made of the uncertainty of the in-
dividual laboratory data to establish the expectation
value and its uncertainty.

The mathematical approach is provided and ex-
plained in Section 2. Thereafter, the procedure is il-
lustrated with simulated datasets and with real
datasets derived from international laboratory-perfor-
mance studies.

2. Design and implementation of the model

In the model proposed in this study, so called
measurement functions are defined. The measure-

w xment functions are written in the Dirac notation 27
Ž .: Ž .as Nw x where x is the measurand , which is ab-i

: :breviated to Nw , for laboratory i and as NC fori

the interlaboratory study. The laboratory measure-
:ment function Nw is set equal to the square root ofi

a probability density function which encompasses the
expectation value m and uncertainty of the measure-i

ment of laboratory i. Likewise, C 2 represents a
probability density function which comprises the
consensus value and uncertainty of the interlabora-
tory study.

The measurement function has by definition the
following properties

² < : ² < :w w s1, w w sS , 0FS F1, 1Ž .i i i j i j i j

² < < :w x w sm . 2Ž .i i i

² :In these formulas, w N w implies an integrationi i

over the entire measurement range, S is the overlapi j

integral quantifying the ‘similarity’ of results of two
laboratories i and j, and m is the expectation valuei

of laboratory i for the sample tested.
The measurement functions of all N laboratories

� : 4constitute a basis set, N w , i s 1,2, . . . , N , fromi

which the interlaboratory measurement function is
constructed, i.e.

: :NC s c Nw . 3Ž .Ý i i
i

A procedure needs to be developed to estimate the
expansion coefficient c .i

It is assumed that the best estimate of the expecta-
tion value of the dataset is provided by the combina-
tion of laboratory measurement functions which has
the highest probability. This combination comprises
the best trade-off between the number of overlapping
observations in relation to the intensities of the over-

² :laps. We search for the maximum of CNC under
the constraint Ý c2 s1. For this, we use the methodi i

of Lagrange multipliers

E
2< :C yl c y1 s0, as1, . . . , NÝ iž /Eca i

4Ž .

which is equal to

E
2² < :c c f f yl c y1 s0,Ý Ýi j i j iž /ž /Eca i , j i

as1, . . . , N 5Ž .

and can be elaborated to the equation

c S ylc s0, as1, . . . , N. 6Ž .Ý i a i a

i

Ž .The N equations given in Eq. 6 can be written in
matrix form as an eigenvalue problem Sc s lc,
where the symmetric N=N overlap matrix S con-
tains elements S and c is the N=1 vector with el-i j

ements c . There are N solutions l with accompany-i

ing eigenvectors c. The trace of the overlap matrix S
is equal to N, because all the diagonal elements are
equal to one. Therefore, the sum of the N eigenval-
ues is also equal to N.
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:Let N C be the interlaboratory measurement1
Ž .function corresponding to the first highest eigen-

value l and eigenvector c . Then the expectation1 l1

value X and variance s2 can be obtained with the1 1

following formulas

² < < :C x C1 1
X s 7Ž .1 ² < :C C1 1

² < 2 < :C x C1 12 2s s yX . 8Ž .1 1² < :C C1 1

When all laboratories work in perfect agreement, i.e.
all laboratory measurement functions are identical, all
overlap integrals S will be equal to one and thei j

:eigenvalue l of NC will be equal to N. Such a1 1

situation will normally not be encountered, and l1
Žwill have a value between 1 all off-diagonal overlap

.integrals are zero and N. The value of l is a mea-1

sure for the degree of overall comparability of the
laboratories. More general: eigenvalue l is propor-i

tional to the probability of eigenvectors c . The for-li

Ž .mula l rN = 100, 0 F l F 1, represents thei i
Ž .percentage of basis functions or observations incor-

porated in the interlaboratory measurement function
:NC . For instance, if the eigenvalue l of the se-i 2

cond eigenvector c is close to l , a bimodal distri-l 12

bution is present. This may be inspected in detail by
plotting the laboratory means in a histogram or, in
analogy with principal component analysis, by the

Žconstruction of a biplot eigenvector c versusl1

.eigenvector c .l2

The procedure outlined above renders the total
variance s2 . Frequently, separate estimates of thetotal

Ž 2within- and between-laboratory variances s re-within
2 .spectively s are required. This is accom-between

plished by estimating s and s followed by thetotal within

calculation of s using the formula s2 sbetween total

s2 qs2 rn, n being the number of replicates.between within

The within-laboratory standard deviations can be
obtained for each interlaboratory measurement func-

:tion NC individually. To this end, a new basis seti
� : 4is employed: c N u , k s 1,2, . . . , N . The func-i k k

: :tions Nu are obtained from Nw by replacing in thei i

formula of the latter the expectation value m of thei

laboratory i by the expectation value X of the inter-i
:laboratory measurement function NC . The uncer-i

tainties of the individual laboratories are not changed.

:Consequently, the functions N u have the samei

expectation value and differences in the overlap inte-
grals are caused solely by differences in the uncer-
tainties of the laboratories concerned. A ‘reproduci-

:bility measurement function’ NQ is now sought as
: :the linear combination N Q sÝ g c N u . Thei k i k i k k

coefficients g are found using the method of La-
grange multipliers as described previously. The vari-

Ž . :ance calculated with formula 8 using N Q now
represents the within-laboratory variance. In the fol-
lowing, the within-laboratory standard deviation ob-
tained according to this approach is denoted as
s . The procedure can also be carried outwithin,weighed

without the coefficients being used as weighing fac-
Ž .tors all c are set equal to 1 , the within-laboratoryi k

standard deviation obtained in this way is indicated as
s .within,all

For the implementation of the model, a mathemat-
ical formulation needs to be established for the labo-
ratory measurement functions. In this paper, the
square root of the normal distribution is used, i.e.

2Ž .y xym i

21 2 s1:Nw x s e . 9Ž . Ž .)i 's 2pi

The use of the normal distribution for the probability
function of a laboratory makes the approach concep-
tually transparent to laboratories. It is also suggested
by the use of this distribution as basis for control
charts. In most cases, however, the number of obser-
vations from which the laboratory mean is estimated
is rather small, so that Student’s t-distribution may be
considered more appropriate. In this paper, calcula-
tions are carried out using basis functions based on
both the normal distribution and Student’s t-distribu-
tion. The model can also be based on different prob-
ability functions. As an example, the symmetric tri-
angular probability distribution is employed.1 It is
emphasized that no assumptions are made regarding
the relative magnitude of the within-laboratory vari-
ances, nor about the nature of the distribution of C 2.

1 ŽWith upper bound a and lower bound a and as a yq y q
. Ž . Ž . 2 Ža r2, this distribution is p t s ty a ra for a F tF ay y y q

. Ž . Ž . 2 Ž .q a r2, p t s a y a r a for a q a r2 F t F a ,y q y q y q
Ž . w xp t s0 otherwise 34 .
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The procedure requires a knowledge or estimate of
the uncertainty of the results of each laboratory. In
interlaboratory studies where the analyses are carried
out in replicate, the standard deviations of the indi-
vidual laboratories can be calculated and used in an
approximative sense for this purpose. When the stan-
dard deviations or other measures of uncertainty are
not known, an estimate may be made giving each
laboratory the same standard deviation. In analogy
with the international harmonised proficiency testing

w xprotocol 6 , these estimates may include a value
chosen by perception, for instance derived from liter-
ature, other interlaboratory studies or experience, by
prescription, based on the performance character-
istics required for a specific task, by reference to val-
idated methodology andror by reference to a gener-
alised model. In this paper, examples are given for
most possibilities. In addition, in the following an
implementation of the model is provided which re-
produces for a normal distribution the mean and
standard deviation. This implementation, denoted as
‘the normal distribution approximation’, can be used
when no estimates of the uncertainties are available.

The model has been programmed in MATLAB.
When normal distributions are used as basis func-
tions, the overlap integrals can be expressed analyti-
cally. The formulas are given in the annex. When
Student’s t-distribution is employed, analytical ex-
pressions for the overlap integrals can only be ob-
tained for specific cases, e.g. when the standard de-
viation and the number of degrees of freedom n of
the two distributions are equal and ns3,7,11, . . . .
Therefore, numerical integration has been used for all
calculations invoking probability density distribu-
tions other than the normal distribution. To this end,
the Matlab toolbox for Composite Gauss integration

w xprovided by Wilson 28 has been used. The pro-
grams described in this paper are available as MAT-
LAB toolbox upon request.

3. An illustration of the model

3.1. A small number of simulated obserÕations

As a first illustration of the procedure, a situation
with only two laboratories is discussed. The mea-

:surement functions of laboratories 1 and 2 are Nw1
:and Nw , the overlap between them S . The solu-2 12

: Ž :tion to this problem is given by NC s Nw qN1 1
:. : Ž : :.w r62 and N C s N w y N w r62, the2 2 1 2

eigenvalues being, respectively, 1qS and 1yS .12 12
Ž Ž ..The expectation value Eq. 7 will be equal to the

conventionally employed average of the two labora-
tory means if the uncertainties in both are equal, oth-
erwise, the expectation value will be slightly more
oriented to the laboratory mean with the lowest

Ž .uncertainty see formulas in Appendix A . The un-
certainty of the expectation value, expressed as the

Ž Ž ..standard deviation Eq. 8 , is related to the uncer-
tainties of the individual laboratory data and will in-
crease as the latter become greater. When the result
of a third laboratory is added, two situations may oc-
cur:

1. The overlap integral S andror S is distinctly13 23

larger than zero, the laboratory is involved in the
mixing process and obtains a non-zero expansion
coefficient in the interlaboratory measurement

:function NC .1

2. The overlap integrals S and S differ both neg-13 23

ligibly from zero. The 3=3 overlap matrix ob-
tains effectively a block-diagonal form with the
original 2=2 matrix, the solutions given above,
and a 1=1 matrix with eigenvalue 1.

In the second situation, the result of the third lab-
oratory would be classified as ‘outlier’ using normal
statistics, but it has no effect on the expectation value
obtained with this model. This argument may be ex-
tended to state that observations have no effect on the

² < < :expectation value C x C if they do not overlap1 1
: :with either Nw or Nw . Only the percentage ob-1 2

servations accounted for decreases as more non-over-
Ž .lapping observations occur, i.e. from 1qS r2 for

Ž .the originally two laboratories to 1qS rN when
Ny2 non-overlapping laboratories are involved.

3.2. Normally distributed simulated datasets

It is illustrative to consider the behavior of the
model for normally distributed datasets. To this end,
calculations have been carried out on data extracted
from a population with ms1 and s s1, and onwithin
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datasets which have in addition a normally dis-
Ž .tributed ‘between-sample’ or between-laboratory

component s s 5 = s . These datasetsbetween within
Ž .simulated 50 observations laboratory means , each

based upon seven replicates. One hundred calcula-
tions have been carried out for each of the two types
of datasets, the results are summarised in Table 1. The
correlation coefficients given in this table relate for
the parameter proper of the outcome of this model
and ANOVA.

Table 1 demonstrates that the model works well
with normally distributed data when the data are
drawn from one and the same population. The expec-
tation values and the standard deviations compare
well with those obtained with ANOVA. The interlab-
oratory measurement function C accounts for the1

Ž .major part 92.3 " 1.2% of the observations. The
model renders in comparison with the imposed popu-
lation characteristics and the outcome of ANOVA a
distinctly lower s and low percentage observa-total

tions accounted for when a between-sample variance
is applied. This observation can be explained as fol-
lows. The model calculates the characteristics of the
interlaboratory study on the basis of the interlabora-
tory measurement function C . In this function, the1

laboratories, which collectively account for the high-
est area of overlap, are emphasized. The overlap is
determined by the difference in laboratory-means in
relation to the magnitude of the laboratory-uncertain-
ties. In the second calculation, s is much largerbetween

than s . Laboratories in the centre of the normalwithin

distribution underlying s have more neigh-between

bours at short range than laboratories in the tails. The
procedure emphasizes the former laboratories —
driven by the uncertainties of the observations a nar-
row selection is made which is reflected in the lower
value for s calculated with the model.between

T he effec t o f the ra tio s rw ith in - la b o ra to ry

s on the results has been studied intobetween-laboratory

more detail. Twenty datasets of 20 laboratory-means
have been generated from a normal distribution with
a fixed s . For each set, a series of cal-between-laboratory

culations with different s rswithin-laboratory between-laboratory

ratios have been carried out by varying s ,within-laboratory

each laboratory being given the same value. The re-
sults of the computations are plotted in Fig. 1. The
expectation value corresponds well with the mean of
the population in all cases. As the within-laboratory

standard deviation decreases, the scatter in expecta-
tion values increases and the calculated between-
laboratory standard deviation s and the per-between

centage of observations accounted for decrease.
The decline in the overall standard deviation cal-

Ž .culated with C IMF1 in Fig. 1 with decreasing1

s rs ratio clearly demon-within-laboratory between-laboratory

strates the selection mechanism described above.
When the within-laboratory standard deviation is very
small compared to the between-laboratory standard
deviation, then the highest overlap is established by
an interlaboratory measurement function giving the
highest weight to the two laboratories with the small-
est difference in concentration. For this reason, the
spread in expectation values is largest at low
s rs ratios.within-laboratory between-laboratory

The calculations illustrate that the dependence
of the s with the ratio s rbetw een w ith in-laboratory

s is a consequence of the considerationbetween-laboratory

of the uncertainty in the calculations.
The calculated expectation value and s arebetween

in good agreement with the mean and standard devi-
ation of the underlying population when the ratio

Žs rs is about 0.78 see Fig.within-laboratory between-laboratory
.1 . This observation can be used to derive empiri-

Ž .cally an implementation of the model for near nor-
mal distributions which does not need estimates for
s . To this end, a normal distribution ofwithin-laboratory

Ž .observations laboratory means is used and the re-
quirement is imposed that the mean and standard de-
viation of this normal distribution are reproduced
well. In analogy with robust estimators of the stan-

w xdard deviation of a population 17,26 , the standard
deviation is approximated as s sa=MADsatrial

Ž < <.=median d , where d sx yM, M being thei j i j i j

median of the dataset. The parameter a is varied to
Žminimize the differences meanycalculated expec-

. Ž .tation value and s ys . The cal-population new procedure

culations lead to

s s1.168=MAD. 10Ž .normal distribution approximation

Ž .The use of Eq. 10 and its underlying approxima-
tions will be denoted as the normal distribution ap-
proximation of the model.

3.3. A case study: bimodal distributions

Among the calculations which have been carried
out and described in Section 4, two cases involving
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Table 1
Results of 100 calculations on simulated datasets with normal distributions

ANOVA This model

Ž .Mean s s Mean s s s Fraction encompassed %total within total within, weighed within, all

ms1 and s s1, 1.00"0.05 1.00"0.04 1.00"0.04 1.00"0.05 0.98"0.04 0.95"0.04 0.94"0.04 92.3"1.2within
2 2 2 2no between laboratory effect r s0.98 r s0.24 r s0.94 r s0.94

ms1 and s s1 1.00"0.1 5.11"0.53 1.00"0.04 1.00"0.3 2.19"0.4 1.00"0.05 0.94"0.04 32.3"3.6within
2 2 2 2and a between-laboratory r s0.43 r s0.13 r s0.71 r s0.94

component s s5=sbetween within
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Fig. 1. Dependence of mean and s calculated with IMF1 on the assumed ratio s rs . The dotted lines indi-between within-laboratory between-laboratory

cate the maximum and minimum values encountered in the 20 calculations, which have been carried out.

bimodal distributions are encountered which can be
used to illustrate and clarify the model. The two
datasets concerned are those for CB28 in the BCR

Ž .reference material CRM 536 see Fig. 3 and Table 2
Žand for Pb in a sandy marine sediment Fig. 4 and

.Table 4 .
Normal distributions are used for the basis func-

tions. In Fig. 2, the sum of all basis functions and of
the corresponding probability density functions are

Ž .depicted the solid lines for both CB28 and Pb. For
CB28, two poorly resolved maxima are observed, the
highest probability density being observed at about 50
mgrkg, the next highest at about 38 mgrkg. For Pb,
the graphs are more complex and exhibit a number of
well-resolved features, the highest probability den-
sity being found for a cluster of peaks at approxi-
mately 13 mgrkg and the next highest for a cluster
centered at about 8 mgrkg. The model described in

this paper implies an orthogonal transformation of the
basis functions in such a manner that a linear combi-
nation of basis functions with the highest probability
Ži.e. the highest eigenvalue l in the equation Scs

.lc is established. This linear combination is de-
noted as the interlaboratory measurement function C1

or IMF1. In addition, Ny1 in other interlaboratory
Ž .measurement functions C or IMF i are con-i

structed. In practice, the latter are ranked according
to their eigenvalue l and may be used to obtain in-i

sight in structures within the dataset. In most cases,
it is sufficient to consider C , in particular when l2 2

attains a value close to l which indicates that a bi-1

modal distribution is present. With Pb the eigenval-
ues l s18.6 and l s9.1 correspond to fractions1 2

Ž .encompassed l rN=100 of about 35% and 17%.i

With CB28, the fractions encompassed are about 56%
and 37%.
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Fig. 2. The model illustrated on observed datasets with a bimodal character: CB28 in CRM 536 and Pb in the sandy marine sediment sample
w xQTM002MS 38 .

For CB28 and Pb, the values of the interlabora-
tory measurement functions IMF1 and IMF2 and the
corresponding probability density functions IMF12

and IMF22 are also depicted in Fig. 2 as dashed and
dotted curves, respectively. In the case of Pb, it is
seen that the region with the highest probability den-
sity is contained in IMF1, IMF2 encompassing the
next highest mode. The expectation values calculated
for these modes were, respectively, 13.37"1.57 and
8.65"2.02. In the case of CB28, IMF1 and IMF2
have mass at both maxima, the expectation values of

Ž .both 44"6 and 44"7 are in between. The uncer-
tainty in the observations in relation to the concentra-

tion difference between the two maxima is for CB28
relatively large in comparison to that for Pb as mea-

Žsured by the ratio concentration difference maxi-
. Ž .ma r uncertainty in observations , which is about 3.9

for CB28 and 5.8 for Pb. When the calculations are
repeated for CB28 using half the value of the re-
ported standard deviations as uncertainties, the clus-
ters are resolved with expectation values close to peak
maxima seen in Fig. 2.

These findings indicate that our model can deal
with bimodal distributions. The eigenvalues l , l ,1 2

. . . , act as indicators for possible multimodality. A
separation between the modes will be accomplished
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when the difference between the modes is large with
respect to the uncertainties in the observations. In
other cases, biplots provide insight into the data
structures.

4. Calculations with datasets arising from inter-
laboratory studies

In this section, the model described in this paper
will be applied to datasets obtained in material-certi-
fication studies of the EU and in international inter-
laboratory studies conducted in the framework of the

w xEU QUASIMEME project 29,30 .

4.1. Calculations conducted on the certified refer-
ence materials CRM 349 and CRM 536 issued by the
EU-BCR

The former EU-BCR programme2 has issued the
certified reference material for chlorobiphenyls in fish

w xoil CRM 349 in 1988 31 and CRM 536 for PCBs in
w xfresh water sediment in 1998 32,33 . Laboratories

with a proven track record were invited to take part
in the material-certification studies. The protocol
provided stipulated that the analyses were to be car-
ried in fivefold and that appropriate quality assur-
ance and quality control had to be in place and docu-
mented. The analytical results were discussed in a
meeting with all participating laboratories. The final
dataset was defined on the basis of this technical dis-
cussion. The certified values and the overall standard
deviations were calculated, respectively, as the mean
and the standard deviation of the laboratory means
using several statistical procedures which test out-
liers, normality and homogeneity of variances. The
confidence intervals were calculated with the t-fac-

w xtors proper 31–33 .
Results of calculations are presented for CB28,

Ž .CB52, CB101, CB153 and CB180 Table 2 . Four
different implementations have been used: three

2 Now the EU-Standards, Measurement and Testing Pro-
gramme.

different basis sets, i.e. the normal distribution, Stu-
dent’s t-distribution and the symmetric triangular

Ž w xprobability distribution the parameter a 34 is set to
.3=s , and the normal distribution approxima-within

tion. The latter uses only the laboratory means, the
former three also the within-laboratory standard de-
viations.

For the model, the values calculated for the first
interlaboratory measurement function IMF1 should
be compared with the certified values. The results for
the second interlaboratory measurement function
IMF2 are given for an insight into the structure of the
data.

For CRM 536, the characteristics calculated with
the model in all implementations correspond well
with the certified values. The overall standard devia-
tions calculated with the model are somewhat lower,
except when the normal distribution approximation is
used. This observation can be attributed to the effect
of selection because the between-laboratory standard
deviation is in most cases in the order of 1.5–2 times
higher than the within-laboratory standard deviation.
The overall standard deviation calculated with the
normal distribution approximation is in the same or-
der or larger than the value stated in the certificate.
In this case, the standard deviation calculated with

Ž .formula 10 is used as within-laboratory standard
deviation for all laboratories. The magnitude of this
standard deviation is distinctively higher than the ob-
served within-laboratory standard deviations.

The sum of the percentages of observations ac-
counted for obtained with the model for the first two
interlaboratory measurement functions is, in all cases,
75% or more. This indicates that these two interlabo-
ratory measurement functions describe to a large ex-
tent the structure in the datasets. In most cases, the
results suggest that two modes are present. This was
discussed previously, in particular the case for CB28,
in Fig. 2 and is clearly demonstrated in the biplot de-
picted in Fig. 3. It is not clear whether this possible
bimodality has an analytical significance. Two-di-
mensional gas chromatography has been involved in

w xthe certification-study 33 . The possibility of co-
eluting congeners as CB25, CB26, CB29 and CB31
can be ruled out, the differences might be caused by
differences in recoveries or by evaporation losses

w xduring the clean-up 35 . The certified concentration
of CB28 and its uncertainty embodies the concentra-
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Fig. 3. A biplot for CB28 in CRM536. The eigenvectors belonging to the two interlaboratory measurement functions IMF1 and IMF2 are
plotted against each other.

tions of the two possible modes distinguished in this
study. In view of the limited number of observations,
there is no reason to question the certified value. Fur-
ther investigations might give rise, however, to a bet-
ter analytical understanding in the distribution of the
observations and, hence, to a more accurate certified
value.

The results for CRM 349 exhibit more or less the
same pattern as found for CRM 536. The data for
CB52 present a special case. The calculations with the
new model using, for instance, the basis functions
based on the normal distributions, reveal a bimodal
structure with two different expectation values which
are, respectively, distinctively higher and lower than
the certified value. When the model is used in the
normal distribution approximation, one mode is found
with an expectation value close to the value stated in
the certificate. The difference between the results of
these two implementations of the model can be traced
back to the difference between the observed within-
laboratory standard deviations and the constructed

Ž .value calculated with formula 10 . The information
presented in this study could, at the time of certifica-
tion, have resulted in additional analytical assess-
ments and, depending on the outcome thereof, in a
more accurate certified value.

4.2. Calculations conducted on the results of inter-
laboratory studies carried out in the context of the EU
QUASIMEME project

QUASIMEME was a project sponsored by the
European Union with the objective to improve the
quality of measurements carried out by about 95 lab-
oratories involved in European marine monitoring

w xprogrammes 29,30 . Interlaboratory studies were
conducted for nutrients in seawater and for trace
metals and for CBs and polycyclic aromatic hydro-
carbons in sediments and biological tissues. These
interlaboratory studies had the objective to assess the
analytical state of practice at that time and be repre-
sentative for the data submitted to European marine
monitoring programmes. Consequently, no method-
ological requirements were posed. The results of ex-
pert laboratories were used to evaluate the assigned
values. The data were assessed to establish important
features describing the overall performance of the
participants. The examples described in this section
have been selected to illustrate the potential of the
model to handle difficult distributions.

4.2.1. Metals in marine sediment
In the first round of the QUASIMEME interlabo-

ratory studies, marine sediments were distributed to
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Table 3
Ž w x.Results for Cd in a sandy marine sediment sample QTM002MS 38

Assigned value ISO 5725 Robust techniques New method

AMC Lischer Basisset: Basisset: Basisset: Normal
normal Student’s symmetric approximation
distribution t-distribution triangular

distribution

IMF1 IMF2 IMF1 IMF2 IMF1 IMF2 IMF1

Ž .Cd Mean mgrkg 0.03 0.060 0.059 0.033 0.023 0.060 0.023 0.078 0.023 0.012 0.024
Ž .all data Total SD mgrkg 0.010 0.100 0.019 0.167 0.005 0.003 0.011
Ž .Ns22 SD within all data, mgrkg 0.069 0.007 0.006 0.009 0.019 0.003
Ž .SD between mgrkg 0.148 0.059 0.026 0.010 0.103 0.019 0.166 0.004 0.003

Ž .SD within, weighed mgrkg 0.007 0.008 0.006 0.038 0.003 0.002
Ž .Fraction encompassed % 50.1 10.9 44.8 11.1 29.7 17.1 62.1

Ž .Cd trimmed Mean mgrkg 0.03 0.030 0.030 0.023 0.022 0.039 0.023 0.014 0.023 0.019 0.022
Ž .data set Total SD mgrkg 0.007 0.022 0.005 0.005 0.003 0.007 0.003
Ž .Ns13 SD within all data, mgrkg 0.014 0.006 0.006 0.006 0.004 0.002
Ž .SD between mgrkg 0.021 0.026 0.008 0.007 0.022 0.005 0.005 0.003 0.007

Ž .SD within, weighed mgrkg 0.006 0.009 0.004 0.003 0.002 0.002
Ž .Fraction encompassed % 68.1 12.5 59.5 14.5 48.5 16.4 61.4
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Table 4
Ž w x.Results for lead in a sandy marine sediment sample QTM002MS 38

Assigned Robust methods This model
value AMC Lischer Basisset: Basisset: Basisset: Normal

normal Student’s symmetric distribution
distribution t-distribution triangular approximation

distribution

IMF IMF2 IMF1 IMF2 IMF1 IMF2 IMF1

Ž .Pb Mean mgrkg 11.84 11.82 13.37 8.65 13.43 8.79 13.32 8.62 12.02
Ž .full data set s mgrkg 1.57 2.02 1.59 2.17 1.69 2.10 3.69total

Ž .Ns53 s mgrkg 4.20 4.16 1.51 1.99 1.55 2.15 1.61 2.07between
Ž .s mgrkg 0.99 0.68 0.80 0.71 1.13 0.74within, weighed

Ž .s mgrkg 0.76 0.80 0.82 0.69 0.93within, all
Ž .Fraction encompassed % 35.1 17.1 30.5 15.0 36.3 17.6 37.2

Ž .Pb Mean mgrkg 8.7 8.74 8.86 8.66 11.15 8.74 11.28 8.70 11.04 8.71
Ž .partial methods s mgrkg 1.59 2.02 1.89 2.00 1.63 2.09 2.65total

Ž .Ns24 s mgrkg 3.36 3.52 1.57 1.99 1.86 1.97 1.60 2.06between
Ž .s mgrkg 0.65 0.76 0.74 0.67 0.74 0.83within, weighed

Ž .s mgrkg 0.68 0.71 0.67 0.60 0.76within, all
Ž .Fraction encompassed % 34.2 21.8 30.7 20.4 35.8 21.6 66.8

Ž .Pb Mean mgrkg 13.1 14.17 14.09 13.97 14.26 14.03 13.63 13.96 14.30 13.98
Ž .total methods s mgrkg 1.27 2.65 1.09 1.84 1.40 2.86 1.15total

Ž .Ns29 s mgrkg 3.10 2.06 1.20 2.27 1.04 1.83 1.31 2.83between
Ž .s mgrkg 0.96 0.75 0.73 0.48 1.11 1.31within,weighed

Ž .s mgrkg 0.96 0.81 0.98 0.77 1.12within, all
Ž .Fraction encompassed % 52.0 13.4 46.1 12.7 53.2 13.5 62.0
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w xassess the analyses of trace metals 36 . The labora-
tories analysed the samples on six different days in
duplicate. During the assessments, it appeared that
systematic differences occurred for a number of met-
als in sediments due to differences in the digestion
techniques applied. This problem had to be ad-
dressed for each element and sampled separately dur-
ing the exercise, as the calculation of expectation
values for bimodal distributions is not appropriate.
The data for Cd and Pb are considered.

The determination of Cd in a sandy marine sedi-
ment with digestion methods giving a partial recov-

Ž .ery of the total metal content e.g. aqua regia proved
to constitute a difficult problem for conventional

w xstatistics 22 . The concentrations of Cd were very
low, resulting in a strongly tailing distribution. Both
ISO 5725 and the AMC robust statistics could not
cope with this distribution, results in line with the in-
dependently established assigned values were only
obtained when ‘obvious outliers’ were removed. As
the assigned values were established independently,
the dataset could be trimmed prior to the statistical
evaluation on the basis of the z-scores. It appeared
that trimming the dataset by discarding all data with

absolute z-scores greater than six gave rise to expec-
tation values, which were close to the assigned val-
ues. This approach was adopted as a standard proce-
dure in the QUASIMEME programme after round

w xthree 30 .
In Table 3, the outcome of the present procedure

is provided and compared with the calculations re-
ported previously. Trimming the dataset has a great
effect on the results obtained with ISO 5725 and both
robust procedures. The expectation values obtained
with the new model in all implementations change
hardly. Upon trimming, the percentage of observa-
tions accounted for increases owing to the deletion of
the results of nine laboratories, which have absolute
z-scores greater than six except when the normal dis-
tribution approximation is used. The results of the
calculations illustrate the high robustness of the new
model.

A second element, Pb, was studied in the sandy
marine sediment in the first round of the QUA-
SIMEME project. A total of 53 laboratories submit-
ted data. Twenty-four laboratories used acid mixtures
such as aqua regia to digest the samples, so that Pb
was only partially recovered from the material. The

Fig. 4. A biplot depicting the coefficients in the first two interlaboratory measurement functions obtained for the full dataset of Pb in the
w xsandy marine sediment sample QTM002MS 38 . Laboratories using partial and total methods have been indicated separately. Substructures

within the sets of partial and total data are visible.
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remaining 29 laboratories used a digestion invoking
hydrofluoric acid or equivalent, providing a ‘total’
determination of Pb. The two datasets were evalu-
ated separately, the difference was found to be sig-

w xnificant 36 .
In Table 4, the results of the two different applica-

tions of robust statistics and the results obtained by
the present method are given. The expectation values
of Pb found with the present procedure agree well for
both partial and total methods with those obtained
with robust statistics.

For the full dataset, both robust statistics proce-
dures provide an expectation value which is located
between the expectation values for the individual to-
tal and partial populations. The present procedure

renders two interlaboratory measurement functions
with low, similar percentages of observations ac-
counted for, indicating the presence of a bimodal dis-
tribution. The expectation values of these two inter-
laboratory measurement functions are quite close to
those obtained on the separate total and partial popu-
lations. The bimodal nature is also demonstrated by
the biplot given in Fig. 4, and by the right-hand part
of Fig. 2, which was discussed in the previous chap-
ter. The model also indicates a bimodal distribution
for the data observed with partial methods.

The good agreement between the calculations on
the full dataset and on the separate populations may
be traced back to a within-laboratory precision which
is relatively low compared with the difference be-

Table 5
Ž w x.Results of laboratory-performance studies on Cd, Cu, Hg and Pb in a plaice muscle tissue sample QTM017BT 38

Assigned Number Robust statistics This model
value of laboratories AMC Lischer Basis Normal

function: distribution
normal approximation
distribution

IMF1 IMF2 IMF1

Ž .Cd full dataset Mean mgrkg 6.1 37 8.79 7.75 5.42 6.86 5.95
Ž .s mgrkg 5.97 4.88 1.44 2.54 3.16total

Ž .Fraction encompassed % 46.5 17.1 67.3
Ž .Cd trimmed dataset Mean mgrkg 6.1 27 5.78 5.80 5.42 6.76 5.63
Ž .s mgrkg 2.00 1.98 1.43 2.50 2.06total

Ž .Fraction encompassed % 63.7 23.3 79.5
Ž .Cu full dataset Mean mgrkg 0.25 40 0.27 0.26 0.23 0.27 0.24
Ž .s mgrkg 0.09 0.08 0.05 0.08 0.06total

Ž .Fraction encompassed % 59.4 17.3 69.0
Ž .Cu trimmed dataset Mean mgrkg 0.25 34 0.24 0.24 0.23 0.27 0.23
Ž .s mgrkg 0.06 0.05 0.05 0.08 0.05total

Ž .Fraction encompassed % 69.8 20.4 74.4
Ž .Hg full dataset Mean mgrkg 67.4 35 64.12 63.85 64.23 58.66 63.83
Ž .s mgrkg 14.87 14.59 7.65 15.30 10.94total

Ž .Fraction encompassed % 53.1 20.6 66.2
Ž .Hg trimmed dataset Mean mgrkg 67.4 33 64.05 63.85 64.23 58.66 63.84
Ž .s mgrkg 13.22 13.03 7.65 15.29 10.93total

Ž .Fraction encompassed % 56.3 21.9 70.2
Ž .Pb full dataset Mean mgrkg 18.6 29 48.37 38.80 16.87 24.57 23.60
Ž .s mgrkg 51.44 40.09 9.44 14.36 26.60total

Ž .Fraction encompassed % 41.6 18.9 68.4
Ž .Pb trimmed dataset Mean mgrkg 18.6 17 18.91 18.91 17.39 22.87 18.14
Ž .s mgrkg 10.49 10.49 9.00 12.85 10.38total

Ž .Fraction encompassed % 67.9 27.9 77.4
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tween the sub-populations corresponding with the to-
tal and partial digestion. Such a favourable combina-
tion will not always be encountered.

4.2.2. Trace metals in marine biological tissues
In the fourth round of the QUASIMEME project,

Cd, Cu, Hg and Pb were measured in a plaice muscle
Ž .homogenate sample QTM017BT . Laboratories were

requested to report a single result from the analysis
of the sample. The concentrations were very low.

The uncertainty of the laboratory data has been
estimated as no replicate data are available. Berman

w xand Boyko 37 have organised interlaboratory stud-
ies of trace metals in marine biological tissues for
the International Council for Exploration of the

Ž .Sea ICES . These interlaboratory studies covered a
range of concentrations and included estimates of the
within-laboratory standard deviations. For the ele-
ments included in this study, the medians of within-
laboratory standard deviations for matrices with sim-
ilar concentration levels were considered. This
assessment resulted in the following estimates for the
within-laboratory relative standard deviations: Cu —
14%, Cd — 15%, Hg — 8% and Pb — 20%. For
each element, the median concentration in the pre-
sent dataset has been established. Each laboratory is
given a s equal to the appropriate percentage ofwithin

the median.
The computations are limited to the robust meth-

w xods of AMC and Lischer 26 and the model using
normal distributions as basis functions and the nor-
mal distribution approximation. The results are de-
picted in Table 5.

The number of laboratories included in the
trimmed dataset for Cd and Pb are substantially less
than in the full dataset. This reflects the difficulty in
the analysis of these elements at such low concentra-
tions.

The means calculated with robust statistics for the
full datasets are in poor agreement with the assigned
value for Cd and Pb, and differ largely from the
means obtained for the trimmed datasets for Cd and
Pb. Robust statistics give good results for the full and
trimmed datasets of Cu and Hg. The calculations in-
dicate that robust statistics cannot handle well the
skewed full datasets of Cd and in particular Pb.

The assigned values and the outcome of the model
agree for both the full and trimmed datasets with

normal distributions as basis functions. The results
obtained for the full and trimmed datasets differ
marginally. This demonstrates the ruggedness of the
model and that it handles strongly tailing distribu-
tions well too. The model applied in the normal dis-
tribution approximation appears to have some diffi-
culty to cope with the full dataset of Pb. The full
dataset of Pb is highly skewed and the assumptions
on which the normal distribution approximations are
based are not valid in this case.

5. Conclusions

A new model to infer population characteristics
from experimental data is presented and applied to the
evaluation of datasets from interlaboratory studies.
The calculations using this model offer a consider-
able number of advantages over the commonly used
ISO 5725 and robust statistical procedures. It has
been demonstrated that the model copes well with
highly skewed and with multimodal distributions. It
also provides quantitative measures and graphical
means to explore data structures and reveal features
which are less or not obvious by inspection or tradi-
tional data analysis. The model has been applied in
this paper exclusively to the evaluation of interlabo-
ratory studies, but has a much wider generic applica-
tion.
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Appendix A. Formulas for the overlap integrals

When the basis functions invoke normal distribu-
tions, all integrals required can be calculated analyti-
cally

2
m ymŽ .i j

exp y
2 2ž /4 s qs2 Ž .i j

S s .i j (s s 1 1i j
q2 2(s si j

S is proportional to a normal distribution of thei j
Ž .‘variable’ m y m with zero mean and variancei j

Ž 2 2 . 22 s qs . For the expectations of x and x , wei j

find

m s 2 qm s 2
j i i j² < < :f x f sSi j i j 2 2s qsi j

² < 2 < :f x fi j

22 2 2 2 2 2m s qm s q2 s qs s sŽ . Ž .j i i j i j i j
sS .i j 22 2s qsŽ .i j

Note that for is j, these expressions simplify to Si j

s1, m, and m2 qs 2, respectively.
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