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Parameter Precision in Global
Analysis of Time-Resolved Spectra

Ivo H. M. van Stokkum

Abstract—By means of simulation parameter estimation in
global analysis of time resolved spectra was studied. Kinetic,
spectral as well as spectrotemporal models were used to describe
a system consisting of an inherent mixture of components whose
concentrations change with time. With a single component the
parameter precision did not differ between the different model
types. With two or more components the precision decreases
with a kinetic or spectral model because of overlap between
concentration profiles or spectra of the components. However,
with a spectrotemporal model the decrease is much less, and
equals zero with zero spectral overlap.

Index Terms—Curve fitting, least-squares methods, modeling,
optical spectroscopy, parameter estimation, simulation, system
identification.

I. INTRODUCTION

T HE KINETIC and spectral properties of a system con-
sisting of an inherent mixture of components whose

concentrations change with time can be studied by means of
time-resolved spectroscopy. To identify such a system, the
parameters which describe the kinetics and spectra of the
components have to be estimated. Overlap of the concentration
profiles or spectra of the components complicates this param-
eter estimation. In the field of molecular photophysics and
photochemistry, transient absorption and fluorescence spec-
troscopy, following an appropriately short exciting pulse of
radiation, are widely used [1]–[8] on timescales of picoseconds
to seconds. The (impulse) response of the system across
wavelength and time results in a so-called time resolved spec-
trum. According to the Beer–Lambert law the spectroscopic
properties of a mixture of components are a superposition of
the spectroscopic properties of the components weighted by
their concentration. Thus the perfect, noise-free, time-resolved
spectrum is a superposition of the contributions of the
different components

(1)

where and denote, respectively, the concentration
and spectrum of component. Typically, the number of compo-
nents studied with time-resolved spectroscopy is less than ten,
whereas the number of different wavelengths or the number
of different time instants goes up to thousands. Note that
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according to (1) a separability of time and wavelength proper-
ties is possible for each component. Using a physicochemical
parametric model, the data are analyzed globally, i.e. with a
single model describing the data at all times and wavelengths,
in order to improve the parameter precision, e.g. [1]–[8]. We
have used kinetic and spectral, as well as spectrotemporal
models [3], [8]. The aim of this paper is to study by means of
simulation parameter estimation in these three types of models,
in particular to investigate the potential benefits of using a
more complicated, spectrotemporal model.

II. M ETHODS

The basic model which describes the time evolution of
spectra is1

(2)

(3)

where the matrix (with elements ) denotes the
time-resolved spectra, measured attime instants , and
wavelengths . denotes the concentration of component

at time , denotes the spectrum of component
at wavelength , and denotes a Gaussian distributed

stochastic disturbance with zero mean and variance. The
and are stored in the matrices and , of dimension

and , respectively. Matrix is, like ,
. Now, three types of model are distinguished.

A. Kinetic Model

The concentrations are described by a kinetic model, which
depends upon the nonlinear parameters, whereas the spec-
tral parameters of the matrix are conditionally
linear parameters [9], [10]

(4)

B. Spectral Model

The spectra are described by a parametric model, which de-
pends upon the nonlinear parameters, whereas the concen-
tration parameters of the matrix are conditionally
linear parameters

(5)

1Notation convention: underlining indicates stochastic variables, uppercase
represents matrices, lowercase represents scalars or vectors.
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Furthermore, the estimated matricesfrom (4) and from
(5) can subsequently be fitted with, respectively, a spectral
and a kinetic model.

C. Spectrotemporal Model

Both the concentrations and the spectra are described by a
model, which depends upon the nonlinear parametersand

. Assuming first-order kinetics, a matrix of linear parameters
describes the concentrations of the components in terms of

a superposition of simple exponential decays which are stored
in the matrix

(6)

With components which decay independently, the matrix
becomes a diagonal matrix .

D. Parameter Estimation

The conditionally linear parameters [in (4), in (5), in
(6)] can be eliminated in the nonlinear least squares (NLLS)
fit by means of the variable projection method [10]–[13]. This
is especially profitable when their number is large, e.g., in
time-gated spectra analyzed with a kinetic model [3], [7]. The
optimization routine uses a modified Levenberg–Marquardt
method with a trust region approach [14]. Variable projection
was used to calculate the residuals [13], [14], using the
Kaufman approximation for their derivatives [10], [11]. As
initial values the true values of the parameters were chosen.
The precision of the estimated parameters is summarized by
the covariance matrix. The linear approximation covariance
matrix of the nonlinear parametersis estimated from

(7)

where denotes the estimated variance andis the Jacobian
of the model function with respect to the parameters, eval-
uated at the NLLS estimate. The Kaufman approximation
[10], [11] was used to calculate this Jacobian. The linear
approximation covariance matrix of the conditionally linear
parameters was estimated according to [13].

E. Simulation

Models with one, two, or three components were simulated.
The case , which is the first nontrivial case and
which is of great practical importance [3], [7], [8], was
studied in depth. The concentrations of the components are
described by exponential decays with rate parameter
, whereas the spectral shapes are described by a Gaussian in

the energy domain [7]

(8)

with parameters , for, respectively, location and full-
width-at-half-maximum (FWHM). Thus the simulated data
are a function of eight parameters—for each component four
parameters: , , , and amplitude .

The time resolved spectrum was simulated at
time points equidistant in the interval 0–2 ns and
wavelengths equidistant in the interval 350–550 nm. The

TABLE I
PARAMETERSk (IN 109 S-1), ��max;��� (IN 103 cm�1) AND a OF COMPONENTS

overlap between the spectra and concentration profiles of the
components could be large (EL, CL) or small (ES, CS).
The nonlinear parameters of the combinations used in the
simulations, whose values are inspired by experimental data
[3], [7], [8], are summarized in Table I. Normally distributed
noise was added to the simulated data. With the low noise
level the standard deviation of the noise was equal to 6
10 of the maximum of the data (CS, ES and CS, EL case)
or 3 10 (CL, ES and CL, EL cases). The high noise level
was ten times higher.

In order to compare the parameter precision with different
types of model an ensemble of datasets was simulated with
certain parameters and noise level. The deviation dev

, the difference between the estimated and true value of
a parameter, the linear approximation standard error from (7)
and the ratio of these two, which is the studentized parameter
[9], [16], were calculated. From this ensemble of realizations
the rms value was calculated and a smoothed probability
density was estimated using the Splus functionksmooth[15].

III. RESULTS

The parameter precision was studied as a function of the
type of model and of the noise level. With a single component
the parameter precision did not differ between the different
model types, irrespective of the noise level used. This is
due to the complete separability of the time and wavelength
properties with a single component (1). With two components,
different combinations of overlap of the components were
studied. A typical example of a global analysis with the help
of a kinetic model of a CL, ES combination data set with low
noise is shown in Fig. 1. Note that the fitted curves (dashed
lines in Fig. 1(a) and (b) are close to the simulated curves
(solid lines). Fig. 2 shows the distributions for estimated
from an ensemble of realizations of this kinetic model fit. The
distribution [Fig. 2(a)] of deviation shows no signs of bias
(peaking at zero deviation) but it appears a bit skewed. The stu-
dentized parameter distribution [Fig. 2(c)] deviates somewhat
from a distribution which would apply when the model is
linear. The improvement gained with a spectrotemporal model
is clearly visible in Fig. 3 (note the differences in scale). Note
that here the studentized parameter is more closely distributed
as [Fig. 3(c)] which indicates that the spectrotemporal
model is functionally linear [16]. Thus overlap combinations
were studied at two noise levels. The averaged results for
the two rate constants are collated in Table II. With CS, EL
overlap the spectrotemporal model (column ST) provides only
a small improvement over the kinetic model (column K).
However, with small spectral overlap (CL, ES and CS, ES)
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(a)

(b)

Fig. 1. Global analysis with the help of a kinetic model of CL, ES com-
bination data set with low noise. (a) Concentration profiles. Squares and
circles indicate first and second component, respectively. Solid and dashed
lines indicate true and fitted, respectively. (b) Spectra, vertical bars indicate
plus or minus standard error.

the spectrotemporal model is clearly superior (compare the
K and ST columns of Table II), the precision is increased
about tenfold (CL, ES) and twofold (CS, ES). Surprisingly,
with CL, EL overlap (and low noise) the spectrotemporal
model increased the precision about fivefold. With high noise
the kinetic model could no longer resolve two components,
which is indicated by the rms deviations being larger than the
parameter values (Table I). With the spectrotemporal model
the precision was close to the CS, EL overlap, where the noise
was two times larger, indicating a tradeoff between (temporal)
overlap and noise level. With the spectral parameters the
results (not shown) are analogous. With CL, ES overlap the
spectrotemporal model provides only a small improvement
over the spectral model. However, with small temporal overlap
(CS, EL and CS, ES) the spectrotemporal model is clearly
superior, providing an increase in the parameter precision
by a factor of 1.5 to 10. These results can be rationalized
as follows. With this moderate number of samples (51) in
the time and wavelength domain the models were found to
behave functionally (almost) linear [Figs. 2(c) and 3(c)]. Thus
the covariance matrix of the parameters will be close to the
inverse of the Fisher information matrix [12]. Inspection of

(see the Appendix) shows that all elements of this matrix
contain inner products or , as well as
inner products with partial derivatives and .
These inner products are a measure of the overlap of temporal
or spectral properties, large inner products between different
components being responsible for correlation, and imprecision
of the parameters.

To study robustness against systematic deviations from the
model assumptions data subject to time jitter, a common
problem with time gated spectra [7], [8], were simulated.
A uniformly distributed time jitter ( 0.05, 0.05) ns was

(a) (b)

(c)

Fig. 2. Distributions estimated from kinetic fit of CL, ES combination with
low noise. (a) Deviation of estimated rate constantk1, (b) standard error, (c)
studentized parameter (solid) andtdf distribution (dotted).

(a) (b)

(c)

Fig. 3. Distributions estimated from spectrotemporal fit of CL, ES combina-
tion with low noise. (a) Deviation of estimated rate constantk1, (b) standard
error, (c) studentized parameter (solid) andtdf distribution (dotted).

TABLE II
RMS DEVIATION OF RATE CONSTANTS (IN 106 s�1) WITH

KINETIC (K) OR SPECTROTEMPORAL(ST) MODEL AS

A FUNCTION OF TEMPORAL AND SPECTRAL OVERLAP

simulated. Besides the kinetic and spectrotemporal model,
also a spectral model of which the estimated concentration
profiles were subsequently fitted with a kinetic model was
used. It is clear from Table III that with low noise the last
approach (column S; K) produces the most precise estimates
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TABLE III
RMS DEVIATION OF RATE CONSTANTS (IN 106 S�1) WITH CS, ES

OVERLAP DATA SET AND TIME JITTER PRESENT USING A KINETIC (K),
SPECTROTEMPORAL(ST) OR SPECTRAL FOLLOWED BY KINETIC (S;K) MODEL

of the parameters, thus confirming [8]. However, with high
noise, the time jitter becomes relatively less important, and
the spectrotemporal model is again superior.

The computational efficiency of the three types of models
hardly depends upon the type of model, an iteration takes about
0.3 s on a midrange workstation. The number of iterations
typically is less than five with proper initial values. With low
noise levels the fit always converged to a global minimum.
When choosing bad initial values in combination with high
noise levels the spectrotemporal model performed better than
the kinetic or spectral model, and local minima were most rare.

Finally, a model with three overlapping components has
been investigated, namely the CS, ES pair from Table I
augmented with a third component with parameters 0.5, 19,
9, 1 (first one of the CL, EL pair). With a low noise level
( times the maximum of the data) it was
not possible to resolve three components with the kinetic
or spectral model, whereas the spectrotemporal model well
recovered all parameters. Decreasing the noise down to

the spectrotemporal model parameter precision was
about ten times better than with the kinetic or spectral model.

IV. CONCLUSION

With a single component the parameter precision did not
differ between the different model types, irrespective of the
noise level used. With two or more components the precision
decreases with a kinetic or spectral model because of overlap
between concentration profiles or spectra of the components.
However, with a spectrotemporal model the decrease is much
less, and equals zero with zero spectral overlap (see the
Appendix). This overlap is expressed as inner products of
spectra or concentration profiles or derivatives thereof in
the Fisher information matrix [see (A1), (A3), and (A4)].
Compared to a kinetic model, the improvement in precision
using a spectrotemporal model is large when the spectral
overlap is smaller than the temporal overlap (CL, ES case;
see Figs. 2 and 3, and Table II). Compared to a spectral model
the improvement is large when the temporal overlap is smaller
than the spectral overlap.

When systematic errors are present, the choice of mod-
els should take these into account, e.g., with time jitter (a
common problem with time-gated spectra) a spectral model
is least sensitive to the amplitude fluctuations. With low-noise
subsequent kinetic analysis of the thus estimated concentration
profiles provides the best results. However, with high noise,
the time jitter becomes relatively less important and the
spectrotemporal model is superior again (Table III).

APPENDIX

The aim of this appendix is to compare the Fisher informa-
tion matrix for the kinetic and spectrotemporal model with
two components. Using [17, Eq. (11)] it is found that with a
kinetic model

(A1)

where is an -vector containing the derivative
of the th concentration vector with respect to the decay rate

, and is an orthogonal projection matrix
of rank which projects on the space orthogonal to
the column space of . Note in passing that with
a single component the precision becomes independent of
spectral shape (only matters), thus confirming the result
that with a single component model the precision of a kinetic
model cannot be improved by a spectrotemporal model. When
the spectra are orthogonal the estimates for the
rate constants become uncorrelated. However, will be
smaller than in the single component case, because of the
overlap of the exponential decays. Thus even without spectral
overlap the precision of the rate constants decreases when extra
components are added.

The vector representation of the model function for the
spectrotemporal model with two independently decaying com-
ponents is

(A2)

where denotes a Kronecker product, resulting in an
-vector. Analogous to the derivation of (A1) in [17] it can

be shown that the Fisher information matrix consists of four
blocks

(A3)

where , , , , , ,
and (see (A4), shown at the bottom of the page) where

and are -vectors contain-
ing the partial derivatives of theth spectrum vector with
respect to the location and width parameters. Now consider

(A4)
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again the case when there is no spectral overlap (,
, , zero), then the estimates for the

rate constants become again uncorrelated [
in (A3)]. In this case in (A3) is equal to the single
component case, and the precision is thus greater than with
the kinetic model. With both types of model spectral overlap
introduces correlation and thus worsens the precision.
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