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Parameter Precision in Global
Analysis of Time-Resolved Spectra

Ivo H. M. van Stokkum

Abstract—By means of simulation parameter estimation in according to (1) a separability of time and wavelength proper-
global analysis of time resolved spectra was studied. Kinetic, ties is possible for each component. Using a physicochemical
spectral as well as spectrotemporal models were used to descr'beparametric model, the data are analyzed globally, i.e. with a

a system consisting of an inherent mixture of components whose . . .
concentrations change with time. With a single component the single model describing the data at all imes and wavelengths,

parameter precision did not differ between the different model N order to improve the parameter precision, e.g. [1]-[8]. We
types. With two or more components the precision decreases have used kinetic and spectral, as well as spectrotemporal
with a kinetic or spectral model because of overlap between models [3], [8]. The aim of this paper is to study by means of

concentration profiles or spectra of the components. HOWeVer, gimjation parameter estimation in these three types of models,
with a spectrotemporal model the decrease is much less, and. ticular to | tigate th tential b fits of Usi
equals zero with zero spectral overlap. in particular to investigate the potential benefits of using a

o _ more complicated, spectrotemporal model.
Index Terms—Curve fitting, least-squares methods, modeling,

optical spectroscopy, parameter estimation, simulation, system

identification. . METHODS
The basic model which describes the time evolution of
l. INTRODUCTION spectra i
HE KINETIC and spectral properties of a system con- Ticomp
sisting of an inherent mixture of components whose ﬂi/\j = Z Cit; €N, +§ti,\j (2)
concentrations change with time can be studied by means of l=1T
time-resolved spectroscopy. To identify such a system, the Y=CE +E 3)

parameters which describe the kinetics and spectra of th . .
components have to be estimated. Overlap of the concentrat\ll_\cl)aere them x n matrix ¥ (with elementaﬁtiA J denotes the

. . 7
profiles or spectra of the components complicates this paralie-resolved spectra, measurednatime instantst;, andn
eter estimation. In the field of molecular photophysics antavelengthsy;. ¢, denotes the concentration of component
photochemistry, transient absorption and fluorescence spec@ UMe #i, iy, denotes the spectrum of componeht
troscopy, following an appropriately short exciting pulse dit wavelengthy;, and¢, , ~denotes a Gaussian distributed
radiation, are widely used [1]-[8] on timescales of picosecongtochastic disturbance with zero mean and variartceThe

to seconds. The (impulse) response of the system acrogsande;y; are stored in the matrices and £, of dimension
wavelength and time results in a so-called time resolved sp&e-X Ncomp @ANA7 X Nicomp, r€SPectively. Matrixz is, like W,
trum. According to the Beer—-Lambert law the spectroscopie x n. Now, three types of model are distinguished.
properties of a mixture of components are a superposition of

the spectroscopic properties of the components weighted AyKinetic Model

their concentration. Thus the perfect, noise-free, time-resolvedrhe concentrations are described by a kinetic model, which
spectrumy/ is a superposition of the contributions of thg,,,;, depends upon the nonlinear parametigs whereas the spec-

different components tral parameters of the x neom;, Matrix £ are conditionally
Tcomp linear parameters [9], [10]
Z/}(tv )‘) = Z cl(t)gl()‘) (1) v = 0(9]()ET +E. (4)

=1

where ¢ (t) ande;(\) denote, respectively, the concentratio. Spectral Model
and spectrum of componehfTypically, the number of compo-  The spectra are described by a parametric model, which de-
nents studied with time-resolved spectroscopy is less than tgands upon the nonlinear parametgss whereas the concen-

whereas the number of different wavelengths or the numhbgstion parameters of the x 1., Matrix C are conditionally
of different time instants goes up to thousands. Note thgiear parameters
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Furthermore, the estimated matricesfrom (4) andC from TABLE |
(5) can subsequently be fitted with, respectively, a spectPARAVETERsE (N 10° s-1), Pmax, A7 (N 10° cm ") AND a OF COMPONENTS
and a kinetic model. Overlap CSmall (CS) | CLarge (CL)
ESmall (ES) | 0.25,22,9,105,22,9,1
C. Spectrotemporal Model 10,18,8,2 | 0.6,18,8,2
Both the concentrations and the spectra are described by a ELarge (EL) | 0.25,19,9,1 | 0.5, 19,9, 1
model, which depends upon the nonlinear parameitgrand 1.0,18,8,2 | 0.6, 18,8,2

fs. Assuming first-order kinetics, a matrix of linear parameters
A describes the concentrations of the components in terms of
a superposition of simple exponential decays which are storggbriap between the spectra and concentration profiles of the
in the matrix C(fx) components could be large (EL, CL) or small (ES, CS).
U = C(0x)AET (85) + . 6) The nqnlinear parameters of the qombinations _used in the
simulations, whose values are inspired by experimental data
With components which decay independently, the mattix [3], [7], [8], are summarized in Table I. Normally distributed

becomes a diagonal matrikag(a). noise was added to the simulated data. With the low noise
level the standard deviation of the noise was equal to &
D. Parameter Estimation 10~2 of the maximum of the data (CS, ES and CS, EL case)

or 3x 1072 (CL, ES and CL, EL cases). The high noise level

The conditionally linear parameterg[in (4), C in (5), Ain as ten times higher.

(6)] can be eliminated in the nonlinear least squares (NLL

fit by means of the variable projection method [10]—[13]. ThiP In order to compare the parameter precision V.V'th d'ﬁere'?t
. ) ) : : pes of model an ensemble of datasets was simulated with
is especially profitable when their number is large, e.g., |

; . - certain parameters and noise level. The deviation(@ew
time-gated spectra analyzed with a kinetic model [3], [7]. Th — 0, the difference between the estimated and true value of

optimization routine uses a modified Levenberg—Marquardt . L
method with a trust region approach [14]. Variable projectio% parameter, the linear approximation standard error from (7)
) and the ratio of these two, which is the studentized parameter

was used to calculate the residuals [13], [14], using tgs ) o

L . I , [16], were calculated. From this ensemble of realizations
Kaufman approximation for their derivatives [10], [11]. A he [rm]s value was calculated and a smoothed probability
initial values the true values of the parameters were choségl

The precision of the estimated parameters is summarized %/nsny was estimated using the Splus funcksmooth[15].

the covariance matrix. The linear approximation covariance

matrix of the nonlinear parametefisis estimated from
B) = 52(JT 7)1 7 The parameter precision was studied as a function of the
cov(f) = 67( ) ) type of model and of the noise level. With a single component

wheres2 denotes the estimated variance ahig the Jacobian the parameter precision did not differ between the different
of the model function with respect to the paramet@reval- model types, irrespective of_Fhe noise _Ievel used. This is
uated at the NLLS estimate. The Kaufman approximation due to .the c.omple.te separability of the tl_me and wavelength
[10], [11] was used to calculate this Jacobian. The lineBfoPerties with a single component (1). With two components,
approximation covariance matrix of the conditionally lineafifférent combinations of overlap of the components were
parameters was estimated according to [13]. studied. A typical example of a global analysis with the help

of a kinetic model of a CL, ES combination data set with low

noise is shown in Fig. 1. Note that the fitted curves (dashed
i ) lines in Fig. 1(a) and (b) are close to the simulated curves
Models with one, two, or three components were simulatedy|ig lines). Fig. 2 shows the distributions fér estimated
The casencomp = 2, which is the first nontrivial case andfrom an ensemble of realizations of this kinetic model fit. The
which is of great practical importance [3], [7], [8], Wasyjstribution [Fig. 2(a)] of deviation shows no signs of bias
studied in depth. The concentrations of the components i aking at zero deviation) but it appears a bit skewed. The stu-
described by exponential decaysp(—kt) with rate parameter gentized parameter distribution [Fig. 2(c)] deviates somewhat
k, whereas the spectral shapes are described by a Gaussigp,ip atq distribution which would apply when the model is
the energy domairiz = A™*) [7] linear. The improvement gained with a spectrotemporal model
e(7) = 7° exp(—1n 2[2(F — Pnax)/ AT]?) (8) is clearly visible in Fig. 3 (note the differences in scalg). Note
that here the studentized parameter is more closely distributed
with parameters,,,.., A for, respectively, location and full- as ¢4; [Fig. 3(c)] which indicates that the spectrotemporal
width-at-half-maximum (FWHM). Thus the simulated datanodel is functionally linear [16]. Thus overlap combinations
are a function of eight parameters—for each component fonere studied at two noise levels. The averaged results for
parametersk, Pnax, A, and amplitudes. the two rate constants are collated in Table Il. With CS, EL
The time resolved spectrum was simulatednat= 51 overlap the spectrotemporal model (column ST) provides only
time points equidistant in the interval 0-2 ns and= 51 a small improvement over the kinetic model (column K).
wavelengths equidistant in the interval 350-550 nm. Théowever, with small spectral overlap (CL, ES and CS, ES)

I1l. RESULTS

E. Simulation
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Fig. 1. Global analysis with the help of a kinetic model of CL, ES com-
bination data set with low noise. (a) Concentration profiles. Squares ang
circles indicate first and second component, respectively. Solid and dashéd
lines indicate true and fitted, respectively. (b) Spectra, vertical bars indicate
plus or minus standard error.
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the spectrotemporal model is clearly superior (compare th
K and ST columns of Table Il), the precision is increased
about tenfold (CL, ES) and twofold (CS, ES). Surprisingly,
with CL, EL overlap (and low noise) the spectrotemporal
model increased the precision about fivefold. With high noise
the kinetic model could no longer resolve two components,
which is indicated by the rms deviations being larger than the
parameter values (Table I). With the spectrotemporal model
the precision was close to the CS, EL overlap, where the noise Sy
was two times larger, indicating a tradeoff between (temporal) 4 2 0 2 4

overlap and noise level. With the spectral parameters the deviation(k) / sigma(k)

results (not shown) are analogous. With CL, ES overlap the (©

spectrotemporal model provides Omy a small 'mprovemeEiE;. 3. Distributions estimated from spectrotemporal fit of CL, ES combina-
over the spectral model. However, with small temporal overlaipn with low noise. (a) Deviation of estimated rate constant (b) standard
(CS, EL and CS, ES) the spectrotemporal model is cleadyor. (c) studentized parameter (solid) ang distribution (dotted).
superior, providing an increase in the parameter precision

by a factor of 1.5 to 10. These results can be rationalized TABLE I

as follows. With this moderate number of samples (51) in RIS DEVIATION c;FSE’E*TETRCCT’EfALAN;fL(('ng)OiAS;;Z v

the time and wavelength domain the models were found to A FUNET(‘,ON') SFTEMF?OR;)L ANDOSPECTRAL Oo\/ERLAPS

behave functionally (almost) linear [Figs. 2(c) and 3(c)]. Thus
the covariance matrix of the parameters will be close to the

00 02 04

probability density

CS,ES | CL,ES | CS.EL | CL.EL

inverse of the Fisher information matri¥ [12]. Inspection of component | K | ST | K | ST| K | ST) K |ST
M (see the Appendix) shows that all elements of this matrix low noise 1 502|241 | 14)13] 78|09
contain inner productsfcq or s;—fsq (p,q = 1,2), as well as 2 1] 7 {263 1918|7718
inner products with partial derivative$e/90; and de/d0s. high noise 1 43 | 24 1240] 20 [ 1501130 ] 22001 130
These inner products are a measure of the overlap of temporal > 1101 73 1340 1701290 200 [ 18300 1 230

or spectral properties, large inner products between different

components being responsible for correlation, and imprecision

of the parameters. simulated. Besides the kinetic and spectrotemporal model,
To study robustness against systematic deviations from #hleo a spectral model of which the estimated concentration

model assumptions data subject to time jitter, a commamofiles were subsequently fitted with a kinetic model was

problem with time gated spectra [7], [8], were simulatedised. It is clear from Table Ill that with low noise the last

A uniformly distributed time jitter £0.05, 0.05) ns was approach (column S; K) produces the most precise estimates



VAN STOKKUM: GLOBAL ANALYSIS OF TIME-RESOLVED SPECTRA 767

TABLE Il When systematic errors are present, the choice of mod-

—1 . . . .
RMS DeviaTioN oF RaTE ConsTanTs (N 10° s™!) wit CS, ES els should take these into account, e.g., with time jitter (a
OVERLAP DATA SeET AND TIME JTTER PRESENT USING A KINETIC (K), bl ith ti ted t tral del
SPECTROTEMPORAL(ST) OR SPECTRAL FOLLOWED BY KINETIC (S;K) MoDEL Pommon pro_ 8 em wi Ime'_ga ed spec ra) a spec ra mo_ €
is least sensitive to the amplitude fluctuations. With low-noise

component | K | ST 5K subsequent kinetic analysis of the thus estimated concentration
low poise ! 1043 profiles provides the best results. However, with high noise,
2 65|54 20 the time jitter becomes relatively less important and the
high noisc 1 43120 42 spectrotemporal model is superior again (Table Il1).
2 110[ 76 | 620

APPENDIX

of the parameters, thus confirming [8]. However, with hi The aim of this appendix is to compare the Fisher informa-
. parar L g Lol L gﬂ n matrix M for the kinetic and spectrotemporal model with
noise, the time jitter becomes relatively less important, an

the spectratemporal model is again superior. two components. Using [17, Eg. (11)] it is found that with a

The computational efficiency of the three types of mode S|net|c model o 7
hardly depends upon the type of model, an iteration takes about M (ki ks) = 02 e1e19i P €1 €201 Pgo (A1)

0.3 s on a midrange workstation. The number of iterations eleagl Pgs  €5e2g3 Pgo
typically is less than five with proper initial values. With IOWWheregl — dey/dky is anm-vector containing the derivative

noise levels the fit always converged to a global miniMung¢ v 7ty concentration vector with respect to the decay rate
When choosing bad initial values in combination with hlgf;cl and P = I — CC' is an orthogonal projection matrix

noise levels the spectrotemporal model performed better ”E\‘hrank m — 2 which projects on the space orthogonal to
the _kinetic or spectral model, and local m_inima were most raf@ ~olumn space of(k.,k»). Note in passing that with
Finally, a model with three overlapping components has g e component the precision becomes independent of
been |nvest|g_ated, qamely the CS, ,ES pair from Tables ectral shape (only¥'e; matters), thus confirming the result
augmepted with a third compongnt W',th paramete.rs 0.5, 1Rat with a single component model the precision of a kinetic
9, 1 (first one ??f Fhe CL, EL payr). With a low noise Ievelmodel cannot be improved by a spectrotemporal model. When
(0 =6 x 1077 times the maximum of the ‘?'ata) It WaSie spectra are orthogonétf'=, = 0) the estimates for the
not possible to resolve three components with the kinetig,. .onstants become uncorrelated. HoweyBFg; will be
or spectral model, whereas the spectrotemporal model W§J|L|aller than in the single component case, because of the
recovered all parameters. Decreasing the noise down=o overlap of the exponential decays. Thus even without spectral

6 x 107 the spectrotemporal.model pargmeter precision W8§erlap the precision of the rate constants decreases when extra
about ten times better than with the kinetic or spectral mOd‘Ebmponents are added

The vector representation of the model function for the
IV. CONCLUSION spectrotemporal model with two independently decaying com-

: . . .. _ponents is
With a single component the parameter precision did not

differ between the different model types, irrespective of the
noise level used. With two or more components the precision Z aci(kr) © e(Pinax,t, A7) (A2)
decreases with a kinetic or spectral model because of overlap =1

between concentration profiles or spectra of the componemntere ¢; ® ¢; denotes a Kronecker product, resulting in an
However, with a spectrotemporal model the decrease is mue-vector. Analogous to the derivation of (A1) in [17] it can
less, and equals zero with zero spectral overlap (see theeshown that the Fisher information matrix consists of four
Appendix). This overlap is expressed as inner products lobcks

2

spectra or concentration profiles or derivatives thereof in LMy Mo
the Fisher information matrix [see (Al), (A3), and (A4)]. M) =0 Q[M M } (A3)
Compared to a kinetic model, the improvement in precision 2 2
using a spectrotemporal model is large when the spectvdhere 8 = (&1, a1, Pmax,1, AP, k2, G2, Pmax2, Amp)t,

overlap is smaller than the temporal overlap (CL, ES casend (see (A4), shown at the bottom of the page) where
see Figs. 2 and 3, and Table II). Compared to a spectral modet de;/0Pmax,; and hy = de;/0AD; aren-vectors contain-
the improvement is large when the temporal overlap is smalieg the partial derivatives of théth spectrum vector with
than the spectral overlap. respect to the location and width parameters. Now consider

apaqgggqsfeq apg};cqsfeq apaqggcqsffq apaqg};cqeth
aq c}; gqefeq c};cqs};sq aq c}:cqef fq aq c?;cqeghq

apaqc};gq fg €q apc};cq fg €q apaqc};cq fg fq apaqc};cq fg hyg

apay c}:gq hfeq apc};cq hfsq apay c};cq h};fq apaqc}; cq h};hq

My, = (A4)
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again the case when there is no spectral overlghey,

el fa, el ho, flea, hies zero), then the estimates for the
rate constants become again uncorrelatedo] = My, = 0

(8]

in (A3)]. In this caseM;; in (A3) is equal to the single
component case, and the precision is thus greater than wi
the kinetic model. With both types of model spectral overlap

introduces correlation and thus worsens the precision.
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