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Abstract - By means of simulation parameter estima- 
tion in g lob~ l  analysis of time resolved spectra was 

found to depend upon the amount of 
n the time and Wavelength properties 

~~i~ overhp is small. It was found that an analytical 
a noisy instrument response 

cision of rate constants estimated 
by iterative reconv~~ution. 

I. INTRODUCTION 
A system consisting of a mixture of components whose 
concentrations change with time can be studied by 
means of time resolved spectroscopy. In the field of 
molecular photophysics and photochemistry transient 
absorption and fluorescence spectroscopy following an 
appropriately short pulse of radiation are widely used. 
The identification of such a system amounts to the esti- 
mation of the parameters which describe the kinetics 
and spectra of the components. The (impulse) response 
of the system across wavelength and time results in a 
so-called time resolved spectrum. According to the Beer- 
Lambert law the spectroscopic properties of a mixture of 
components are a superposition of the spectroscopic 
properties of the components weighted by their concen- 
tration. Thus the perfect, noise-free, time resolved spec- 
trum y~ is a superposition of the contributions of the 
nComp different components: 

where c l ( t )  and denote, respectively, the con- 
centration and spectrum of component 1. Typically the 
number of components studied with time resolved spec- 
troscopy is less than ten, whereas the number of differ- 
ent wavelengths or the number of different time instants 
goes up to thousands. Note that according to (1) a sepa- 
rability of time and wavelength properties is possible. 
Using a physico-chemical parametric model the data are 
analysed globally, i.e. with a single model describing the 
data at all times and wavelengths, in order to improve 
the parameter precision e. g . [ 1 1, [2], [3], [4], [5], [ 61. We 
have used kinetic, spectral as well as spectrotemporal 
models [2],[6]. The aim of this paper is to study by 
means of simulation parameter estimation in these three 
types of models, in particular to investigate the potential 
benefits of using a more complicated, spectrotemporal 
model. A special problem which occurs with (global) 
analysis of single photon timing fluorescence decays is 
the treatment of the stochastic aspect of the measured 
instrument response [7] (and references cited therein). 
Usually it is neglected, but here we show that an analyti- 
cal description of the instrument response improves the 
parameter precision. 

II. METHODS 
The basic model which describes the time evolution of 
spectra is the following': 

ncomp 

I =  1 
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(1 ) 'Notation convention: underlining indicates stochastic variables, 
uppercase represents matrices, lowercase represents scalars or 
vectors. 
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where the m x n  matrix Y (with elements tp ) 
denotes the time resolved spectra, measured at in t ide 
instants t ,  , and n wavelengths A,. c denotes the con- 
centration of component I at time t , ,  E denotes the 
contribution of component I at wavelength A,, and sf 
denotes a Gaussian distributed stochastic disturbatice 
with zero mean. The c i f ,  and E are gathered in the 
matrices C and E, of dimension m x  nComp and 
n x nComp , respectively. Matrix Z is, like Y , m x ~ r t  . We 

now distinguish three types of model. 

A. Kinetic model 

The concentrations are described by a kinetic imodel, 
which depends upon the nonlinear parameters 8 ,  
whereas the spectral parameters of the nxncomp 
matrix E are conditionally linear parameters [8],[9] 

-"A 

4 
1% 

1% 

y = C(8)ET + E (4) 

B. Spectral model 

The spectra are described by a parametric model, which 
depends upon the nonlinear parameters 8 ,  whereas the 
concentration parameters of the wz x nComp matrix C are 
conditionally linear parameters 

y T  = E ( 8 ) C T  + zT (5) 

Furthermore, the estimated matrices E from (4) and C 
from (5) can subsequently be fitted with, respectively, a 
spectral and a kinetic model. 

C. Specfrotemporal model 

Both the concentrations and the spectra are described 
by a model, which depends upon the nonlinear p,arame- 
ters 8. Assuming first order kinetics, a matrix of linear 
parameters A describes the concentrations of the com- 
ponents in terms of a superposition of simple decays 
which are gathered in the matrix C ( 8 )  . 

= C ( 8 ) A E T ( 8 ) + E  (6) 

With Components which decay exponentially the matrix A 
becomes a diagonal matrix diagqa) . 
D. Simulation 

We simulated models with two components. The con- 
centrations of the components are described by expo- 
nential decays exp (4) with rate parameter k ,  
whereas the spectral shapes are described by a Gauss- 
ian in the energy domain 

E(V) = V3eXp(-In2[2(v - ?,,)/A?]2) (7) 

with parameters Vmn, AV for, respectively, location and 
Full Width at Half Maximum (FWHM). Thus the simu- 
lated data are a function of eight parameters: for each 
component four parameters: k,  ti,,,, AV and amplitude 
U. To these data normally distributed noise was added. 

E. Parameter estimation 

The conditionally linear parameters ( E  in (4), C in (5), A 
in (6)) can be eliminated in the nonlinear least squares 
(NLLS) fit by means of the variable projection method 
[9]. This is especially profitable when their number is 
large, e.g. in time gated spectra analysed with a kinetic 
model [2],[5]. The precision of the estimated parameters 
is summarized by the covariance matrix. The linear 
approximation covariance matrix of the nonlinear param- 
eters 8 is estimated from 

COV(@ = B2(JTJ)- '  (8) 

where @ denotes the estimated variance and J is the 
Jacobian of the model function with respect to the 
parameters 8 ,  evaluated at the NLLS estimate 8 .  We 
used the Kaufman approximation [9],[10] to calculate 
this Jacobian. The linear approximation covariance 
matrix of the conditionally linear parameters contains 
two contributions. We describe here only the kinetic 
model case, the case of the spectral model fit is treated 
analogously. Using standard linear algebra, in particular 
the matrix inversion lemma, it can be derived that: 

T 
cov(vec(% >> = 621, @ (c*G)-* + GCQV@)GT (9) 

where vec( ) denotes the vector representation, 69 is 
. Note a(vecC) the Kronecker product, and G = ( B  @ 0)- 

8 
thaR the first term on the right hand side 07 (9) corre- 
sponds to the usual linear regression covariance matrix 
when the nonlinear parameters 0 were known, whereas 
the second term takes into account the uncertainty of 0 .  

F: Profile t plots 

To investigate the adequacy of the linear approximation 
covariance matrix we calculated a likelihood based pro- 
file t plot [8]. For a nonlinear model we define the profile t 
function for parameter 8, as 

z(Q,) = s i g n ( 8 , - 8 , ) ~ ~ ) / B  (1 0) 

where 

s ( e p )  = S(8,, (1 1) 

is the projile s .m of _squares- function and 
( ep ,  @-,I = (81, ..., Bp-  1, e,, g p +  1, ..., enpur) is the 
least squares estimate conditional on 8,. A 1 - a  likeli- 
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hood interval for 8, is now defined as the set of all 8, 
for which 

ELar'F 
(EL) 

where t d f ,  a/? is the upper a/2 quantile for Student's t 
distribution with df degrees of freedom. Plots of the pro- 
file t function versus the studentized parameter as 
defined in (13) 

0.25, 19000,9000 
1.0, 18000, 8000 

would produce a straight line through the origin with unit 
slope in the case of a linear model. For a nonlinear 
model a plot of ~ ( 8 ~ )  versus S(eP) (from (13)) will be 
curved, the amount of curvature giving information about 
the nonlinearity of the model. 

G. Projection of data 

When we assume that the standard deviation of the 
noise is small, we can reduce the data 'r by projecting 
upon the first ticomp right or left singular vectors result- 
ing from the Singular Value Decomposition (SVD) of the 
data matrix: 

y = _USKT (1 4) 

where U and W are orthogonal matrices containing the 
left and right singular vectors, respectively, and S is a 
matrix of zeros except for its diagonal which contains the 
singular values in non-increasing order. We will describe 
the procedure for the spectral model fit, the case of the 
kinetic model fit is treated analogously. Disregarding the 
stochastic character of the first ncomp left singular vec- 
tors U the projection gives us 

"comp 

Going from (5) to (15) we have reduced our data from 
n x m  lo nxnComp . Instead of C we must now esti- 

mate the ncomp x ncomp projected concentration 
parameters GTU,c<,mp . The parameter estimation is com- 
pletely analogous to the unprojected case. However, to 
estimate the variance B2 from the fit of the projected 
data the sum of squares of the residuals is augmented 
with the sum of squares of the remaining singular values, 
s ... . The degrees of freedom dfare identical to 
the unprojected case. 

+ ncomp 

Ill. RESULTS 
A. Precision with different types of model 

In order to compare the parameter precision we simu- 
lated on ensemble of datasets (at least 51) with certain 
parameters and noise level, and calculated the deviation 
dev(8) = 6 - 8 ,  the difference between the estimated 
and true value of a parameter, the linear approximation 
standard error from (8) or (9) and the ratio of these two, 
which equals minus the studentized parameter (1 3). 
From this ensemble of realizations the rms value was 
calculated and a smoothed probability density was esti- 
mated using the Splus function ksmooth [I 11. 
The time resolved spectrum was simulated at m = 51 
time points equidistant in the interval 0-2 ns and n = 51 
wavelengths equidistant in the interval 350-550 nm. The 
overlap between the spectra and concentration profiles 
of the components could be large (EL,CL) or small 
(ES,CS). The parameters of the three combinations 
used in the simulations, whose values are inspired by 
experimental data [5],[6], are summarized in Table I. We 

TABLE 1 
Parameters k ,  Vmat AQ of components (in 10gs-',cm-') 

studied the parameter precision as a function of the type 
of model and of the noise level with two combinations of 
components. With the low noise level the standard devi- 
ation of the noise was equal to ~ x I O - ~  of the maximum 
of the data (CS, EL case) or 3 ~ 1 0 - ~  (CL,ES and CS,ES 
cases). The high noise level was ten times higher. A typ- 
ical example of a global analysis with the help of a 
kinetic model of a CL,ES combination data set with low 
noise is shown in Fig. 1. Note that the fitted curves 
(dashed lines in Fig. la,b) are close to the simulated 
curves (solid lines). The first two singular values are sig- 
nificantly greater than the remaining ones. Fig. 2 shows 
the distributions estimated from an ensemble of 751 
realizations of this kinetic model fit. The distribution (Fig. 
2a) of deviation appears a bit skewed. The studentized 
parameter distribution deviates from a tdf distribution 
which would apply when the model is linear. The 
improvement gained with a spectrotemporal model is 
clearly visible in Fig. 3 (note the differences in scale). 
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Fig. 1. Global analysis with the help of a kinetic model 
of CL,ES combination data set with low noise. (a) 
concentration profiles. Squares and circles indicalte first 
and second component, respectively. Solid and clashed 
lines indicate true and fitted, respectively. (b) Spectra, 
vertical bars indicate plus OF minus standard error. (c) 
First ten singular values of data matrix on a logarithmic 
scale. 

a b C 

dsuialion(k) (llns) slgma(k) (lins) 

Fig. 2. Distributions estimated from kinetic fit of 
CL,ES combination with low noise. (a) deviati'on of 
estimated rate constant k , ,  (b) standard error, (c) 
studentized parameter (solid) and tdf distribution 
(dotted). 

a b C 

devialion(k) (lins) slgma(k) (lins) deviation(k) / sqmajk) 

Fig. 3. Distributions estimated from spectroterriporal 
fit of CL,ES combination with low noise. (a) deviation 
of estimated rate constant k ,  , (b) standard error, (c) 
studentized parameter (solid) and tdf distribution 
(dotted). 

Note that here the studentized parameter is more closely 
distributed as tdf (Fig. 3c) which indicates that the spec- 
trotemporal model is functionally linear [12]. VVe thus 
studied two combinations at two noise levels. The aver- 
aged results for the rate constants are collated in 
Table II. With large spectral overlap (EL) the spectrotem- 
poral model provides only a marginal improvement over 
the kinetic model. However, with small spectral overlap 
(ES) the spectrotemporal model is clearly superior, com- 
pare the last two columns of Table II. In most cases the 
rms deviation is approximately equal to the rms standard 
error (between parentheses). In two exceptional cases, 
indicated with an asterisk, outliers were present in the 
standard error estimates. 
With the spectral parameters the results for the locations 
Vmax are collated in Table I l l .  With large temporal over- 

TABLE II 
Rms deviation (standard error) of rate constants (in 1 06s-') 

I I CS, EL 

model 

low 
noise 

~- 
C( O)ET 

14(14) 

19(20) 

C( B)AET(  0) 

13(12) 

18(17) 

C( B)ET C(0 )AET(  0) 

:& 

noise 
240(*) 20( 17) + 340(*) 170(110) 

TABLE ill 
Wms deviation (standard error) of Vmax (in 10'cm-') 

model 

low 
noise 

__- _.- 

high 
noise 
-- 

CS, EL 

E( 0) CT 

46(55) 

1 OO(*) 

41 O(*) 

1 CL, E§ I 
C ( 0 ) A E T ( O )  I E ( 0 ) C T  I C ( 0 ) A E T ( 8 )  I 

I I 

112(13) l I l (13 )  

26(25) 36(23) 37(35) 

lap (CL) the spectrotemporal model provides only a mar- 
ginal improvement over the spectral model. Again, with 
small temporal overlap (CS) the spectrotemporal model 
is clearly superior, compare columns two and three of 
Table Ill. The results for the width parameters AV are 
comparable. With low noise the kinetic or spectral fits 
using projected data produced results identical to the fits 
with unprojected data. With high noise the results were 
only slightly worse. To study robustness against system- 
atic deviations from the model assumptions we simu- 
la1:ed data subject to time jitter, a common problem with 
time gated spectra [5],[6]. We simulated a uniformly dis- 
tributed time jitter (-0.05,0.05) ns. Besides the kinetic 
and spectrotemporal model we also used a spectral 
model of which the estimated concentration profiles 
were subsequently fitted with a kinetic model. It is clear 
from Table lV that with low noise the last approach pro- 
duces the most precise estimates of the parameters, 
thus confirming [6]. However, with high noise the time jit- 
ter becomes relatively less important, and the spec- 
trotemporal model is again superior. 

B. Precision with instrument response noise 

Next, we investigate by means of a simulation study the 
effect of noise in the instrument response upon the pre- 
cision of rate constants estimated by iterative reconvolu- 
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TABLE IV 
Rms deviation (standard error) of rate constants (in 

1 o~s-’); time jitter present 

I I CS, ES rate peak analytical instru- 
ment response 

20 22000 0.054(45) I model I C(0)ET [ C ( 0 ) A E T ( O )  I E ( 0 ) C T  ; C(0) I 
noisy instrument 
response 

0.079(50) 
low 
noise 

I 

lO(7) 4(3) 3(2) 
65(16) 54(11) 20(10) 

- 

tion, a well known problem in the (global) analysis of 
single photon timing fluorescence decays. 
We simulated the measurement of the Gaussian shaped 
instrument response of 141 ps FWHM with Poisson sta- 
tistics, its peak value being 5000. An exponential decay 
with k = 2 ~ 1 0 ~ ~ s ~ ’  convolved with the true instrument 
response was simulated at m = 161 time points equidis- 
tant in the interval 0-800 ps with Poisson statistics, its 
peak value being either 22000 or 2200. In a much more 
difficult estimation situation a second component with a 

10 -1 decay rate constant of k = 1x10 s and equal ampli- 
tude was added. The rms deviations of the rate constant 
estimates when fitting with an analytical expression for 
the instrument response or when the observed, stochas- 
tic instrument response was used in combination with 
numeric convolution 1131 are collated in Table V. With lit- 
tle noise (first, third and fourth row) the analytical 
approach provides a clear improvement (up to 40%) over 
the numeric convolution with the observed, stochastic 
instrument response. With more noise (second, fifth and 
sixth row) the improvement becomes relatively smaller, 
on the order of 10%. Note further that in general the rms 
standard errors are somewhat smaller than the rms devi- 
ations, and thus are too optimistic. Increase of the peak 
value by a factor of ten corresponds roughly to an 
improvement in precision by a factor of 2-4, which 
includes f i .  
The applicability of the use of an analytically described 
instrument response in iterative reconvolution depends 
upon the availability of a suitable analytical description. 
A versatile candidate function is (a linear combination of) 
a[(t  - p)/(y~)]Yexp(y - ( t  - p)/z) with parameters 
a, y, p, z for amplitude, shape, location, width. Convolu- 
tion of this function with an exponential decay results in 
the confluent hypergeometric function. 

C. Profile t plots 

Profile t plots for the rate parameters estimated with the 
L,ES combination already analysed in Fig. 1 are shown 

high 43(45) 20(22) 42(11) 

1 1  O(97) 76(70) 623(252) 

I 20 I 2200 I 0.153( 138) 10.165(146) I 

FI 
I20 156000 I 1.43(1.33) I 2.41 (1.63) I 

0.26(0.24) 10.30(0.26) I 
20 5600 id 5.0(4.5) 5,4 (5.0) 

’ 1.23(1.10) 1.33(1.10) 

as solid lines in Fig. 4. Note that in this case of close 
decay rate constants the curves deviate from the dashed 
straight line which indicates nonlinearity of the model 
and thus inadequacy of the linear approximation stan- 
dard errors. E.g. the 99% likelihood interval for k ,  = 8, is 
asymmetric around the least squares estimate and equal 
to (0.429, 0.524) whereas the linear approximation inter- 
val is 0.495 k 0.051 . 
For comparison we show the profile t plots for the rate 
parameters estimated with the CS,ES combination and 
the same, low, noise level in Fig. 5. Note that in this small 
overlap case the solid and dashed line are hardly distin- 
guishable, indicating that in this case the model is func- 
tionally linear [12]. With a CS,EL combination the profile 
t plots deviate a little bit more from the dashed line than 
in Fig. 5 (not shown) indicating a slight nonlinearity. 

8, 82 

P P ? F  $ 9  2 

Fig. 4. Plots of profile t function ~ ( 0 )  versus 
studentized parameter S(0) (solid lines) for the rate 
parameters estimated in Fig. 1. Dotted horizontal and 
vertical lines indicate derivation of 99% likelihood 
interval around least squares estimate (squares). 
Dashed line represents q 0 )  = S(0) which is 
appropriate for linear models. 
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Fig. 5. Plots of profile t function z(0) versus 
studentized parameter 6(0) (solid lines) for the rate 
parameters estimated from a CS,ES combination. 
Dotted horizontal and vertical lines indicate derivation 
of 99% likelihood interval around least squares 
estimate (squares). Dashed line represents 
z(0) = S(Q> which is appropriate for linear models. 

IV. CONCLUSIONS 
The improvement in parameter precision that can be 
achieved by a spectrotemporal model depends upon the 
overlap between component properties. Compared to a 
kinetic model the improvement is largest when the spec- 
tral overlap is small (Table 11). Compared to a spectral 
model the improvement is largest when the temporal 
overlap is small (Table Ill). 
When systematic errors are present the choice of mod- 
els should take these into account. E.g. with time jiitter (a 
common problem with time gated spectra) a spectral 
model is least sensitive to the amplitude fluctuations. 
With low noise subsequent kinetic analysis of the thus 
estimated concentration profiles provides the best 
results. However, with high noise the time jitter becomes 
relatively less important and the spectrotemporal model 
is superior again (Table IV). 
With ideal noise data reduction by projection upion the 
first nComp singular vectors does not harm the parame- 
ter precision. However, with structured noise, e.g. near 
an isosbestic point in difference absorption spectroscopy 
(Van Brederode and Van Stokkum, unpublished obser- 
vations), the noise can dominate the nComp -th singular 
vectors thus causing failure of the fits with projected 
data. 
The analytical description of the instrument response 
improves the precision of rate constants estimated by 
iterative reconvolution. The improvement depends again 
upon the noise level of the data. The irnprovennent is 
largest with low noise in the data where the stochastic 
errors in the observed instrument response are relatively 
more important (Table V). 
Profile t plots can be calculated to investigate the degree 

of model nonlinearity. When the data can be reduced by 
projection upon the first ncOmp singular vectors this time 
consuming calculation can be speeded up considerably. 
The adequacy of the linear approximation covariance 
matrix depends again upon the overlap between compo- 
nent properties, in accordance with [14]. With small over- 
lap in both the spectral and temporal domain the model 
behaves functionally linear (Fig. 3, Fig. 5) whereas with 
large temporal overlap the profile t plots for the kinetic 
parameters clearly show nonlinearity (Fig. 2, Fig. 4). 
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