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I .  INTRODUCTION 
The anterior surface of the human eye (cornea) is for 
84% responsible for the refraction of light and thus of 
eminent importance for good sight. Ophthalmologists 
have recognized the role of the cornea in the refraction 
process. A modern technique to improve a patient’s sight 
is by adjusting the corneal surface. ?he rapid develop- 
ment of this keratorefractive surgery induced the need 
for accurate methods to evaluate the shape of the cor- 
nea. 
To measure the shape of the cornea standardiy a cylin- 
drically symmetrical ringpattern (stimulus) is mirrored to 
the eye. Analysis of the recorded reflection (Purkinje 
image) allows for reconstruction of the corneal surface. 
Available instruments employing this technique are 
known not to work ideally [l]. In pathological cases with 
severely irregular or badly reflecting corneas, automatic 
recognition of the ringpattern often fails as the mires 
become extremely distorted or vague. Moreover, as it is 
impossible to uniquely identify positions along each ring 

it has to be assumed that reflection occurs in meridional 
planes to come to a description of the corneal shape per 
meridian only. 
We have developed a protolype-stimulus that exploits 
the virtues of Pseudo Random inary Arrays (PWBA’s), 
which, encoded in a coloured stimuluspattern, contribute 
to a very robust measuremen~techniqu~ with uniquely 
characterized points. In our approach it is not necessary 
to make the aforementioned reflection-assumption ena- 
bling an integral reconstruction of the cornea. 
Details of our design are worked out in Section II. In Sec- 
tion III some experimental aspects of the stimulus are 
presented and the accuracy and robustness of our 
approach is studied. Section IV describes the recon- 
struction of the corneal surface. 

The essence of our novel technique lies in the use of 
uniquely characterized positions both on the stimulus 
and in the recorded reflection. In this way a one-to-one 
correspondence between points on the stimulus and on 
the registering device is established which can be used 
to reconstruct the corneal shape. implementation of this 
design is facilitated by properties of Pseudo Random 
Binary Arrays. 

Pseudo Random Binary Arrays (PRBA’s) (A[i,j] I i < n, j < 
m, A[i,j] E (0,l)) are the two dimensional analogon of 
Pseudo Random Binary S e ~ u ~ ~ c e s  (Sri] I i < n). Primi- 
tive polynomials with coefficients 0 or 1 provide the feed- 
back path of shif-tregisters that are used to generate 
these maximum length sequences. PRBA’s exist in vari- 
ous sizes and have many useful distinguishing features. 
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The key virtue we use is the “window”-property: each bit- 
pattern seen through a prescribed window of k-by-1 (or 
larger) bits sliding over the array is unique. Conversely, 
each k-by4 (or larger) subpart of tlne PRBA uniquely 
defines a position in the PRBA. Fig. 1 shows an example 
of a PRBA (with n = 3, m= 5, k = 2, I= 2). For a more for- 
mal treatment of PRBAs we refer to [2j. 
We have opted to encode a large PRBA (n = 65, m= 63, 
k = 6, I= 2) through a representation of the 0’s and the 1’s 
by two bright colours. A third colour (black in our 
approach) is necessary to provide distinction between 
adjacent bits of the same value. The assembled pattern 
presents a checkerboardpattern when mirrored to a 
sphere of radius 8 mm (average radius of the human 
eye). Fig. 2 demonstrates our encoding of the PRBA of 
Fig. 1 (the 0’s and i ’s  are added for clarity) Each posi- 
tion where two black squares meet (“crossing”) can be 
uniquely labelled with the positional lrndices of the adja- 
cent bits in the encoded PRBA. 
The prototype-instrument devised by us is depicted in 
Fig. 3. It consists of a cylinder closed at one side con- 

1 1 1  
1 1 0  

0 1 0 0 1  

Fig. 1. Example of a PRBA: each subarray of 2 by 2 or 
larger contains a unique bitpattern. 

taining a patiern (stimulus or stimulator) that is brightly lit 
from the back. The object to be measured is positioned 
in front of the open end; ,the reflected image (Purkinje 
image) is registered with a camera behind the other 
(closed) end. The camera used in this configuration is a 
Panasonic 3-CCD camera (GP-US502). Digitization of 
the resulting image is done with the Matrox Meteorhgb- 
framegrabber placed in a Dell Pentium 90 PC. Further 
processing of the captured information is done on a SUN 
SPARCclassic workstation within the SCIL-image image- 
procesising environment [is] and the S-plus modelling 
environment [6]. 

Fig. 2. Example of our encoding: two colours are used to 
represent the bits of the PRBA of Fig. 1 (the 0’s and 1’s 
are added for clarity). 

Stimulus pattern 

Tamera 

Fig. 3. Crosscut of our prototype. The stimulus pattern, lit from the back by neon tubes, is mirrored to the eye, its 
reflection is registered with a camera. 
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Ill. PATTERN RECOGNITION 
A. Implementation 
In uniquely identifying the crossings the first step is to 
localize them in the inputimage. This is done with a 
matched filter approach [3]. Locations are accepted as 
crossings if the response to the matched filter exceeds a 
preset threshold value. By adjusting the threshold false- 
positive responses are eliminated. Secondly the colours 
of the adjacent coloured squares must be determined. In 
order to do this the relative RGB-values of the pixels of 
the coloured squares are aggregated, leaving out the 
pixels of the outermost two layers to diminish the effect 
of blurring. The relative colour of a pixel ( r i ,  gi, bi)  is 
defined as ( r i / s j ,  g i / s i ,  b , / s i )  where si = ri + g, + b j  . 
After this the relative colours are clustered with the K- 
means clustering algorithm into two groups representing 
the 0’s and 1’s 141. If the average relative colour of a 
square is closer to the centre of the 0-cluster than to the 
other it is identified as a 0, otherwise as 1. Thus we 
come to a tentative assignment of bitvalues. 
Subsequently, a graph is constituted by linking crossings 
to their respective neighbouring crossings. Here we take 
into account that with two neighbouring crossings the 
configuration of the coloured squares inverts. This proc- 
ess can be conceived as reconstructing the checker- 
boardpattern. From the checkerboard a binary “sub”- 
array is recovered (possibly not the entire PRBA is “rec- 
ognized” as not all the crossings might be identified). 
Matching of the subarray against the “mother”-PRBA 
leads to a unique identification of the crossings. 

5. Colour experiments 
A key problem that had to be solved was which colours 
should be used in our encoding. Obviously those colours 
should be taken that provide optimal recognition, also 
under noisy circumstances. To determine this we mir- 
rored patches of 6 colours (Red, Green, Blue, Cyan, 

agenta, Yellow) to a blue and a brown eye and a metal 
ball (as an ideal testobject for comparison), and deter- 
mined the average relative colour of the reflections regis- 
tered by our camera. 
Fig. 4 (metal ball), Fig. 5 (blue eye) and Fig. 6 (brown 
eye) show the results projected on the plane r + g + b =I : 
circles of radius twice the corresponding standard devia- 
tion are drawn round each average; along the vertical 
axis is the normalized blue-coordinate, along the hori- 
zontal axis (the sloping lines in the graph) the normal- 
ized green-coordinate. 
From these figures it can be concluded that red and 
magenta are indistinguishable. Furthermore, red/ 
magenta, blue and green closely resemble a grey tint 
(the centre of the graph). Yellow and cyan lie farthest 
apart, providing the best distinction and thus the most 

optimal choice for our encoding. 

C. Precision in the localization of pattern elements 
The precision of our matched filter approach as to the 
localization of the crossings was tested in the following 
experiment. 
Artificial images were generated holding a checkerboard 
of 11 by 11 squares presenting our design. In each simu- 
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Fig. 4. Relative response of our camera to six coloured 
patches mirrored to a metal ball: circles of radius twice 
the standard deviation are drawn round each average 
(r=Red, m = Magenta, b = Blue, c = Cyan, g = Green, y = 
Ye I low). 
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Fig. 5. Relative response of our camera to six coloured 
patches mirrored to a blue eye 
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Fig. 6. Relative response of our camera to patches of six 
colours mirrored to a brown eve 
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lated image the location of th crossings (IQ0 in total) 
was exactly known. The distance between neighbouring 
crossings was set to a prefixed number of pixels (block- 
size). The RGB-colour of the black, cyan and yellow 
squares were taken as (O,O,O), ( ,2!55,255), (255,255,O) 
respectively. To introduce disturbance u n ~ o ~ ~ e l ~ ~ ~ e d  uni- 
formly distributed noise of preset sla ndard deviation was 
added to the individual colour channels sepaira~~~y. In 
this we try to relate the average distance between the 
real and detected location (and co~~espond~ng standard 
deviation) to the blocksize and the standard dei,/~a~ion of 
the applied noise. We expected to find deterioration of 
the results with small blocksizes and large arriounts of 

esuits are collated in Table I. 

TABLE I 
PRECISION OF OUR LOCALIZATION PROCEDURE: EACH ENTRY 
PRESENTS THE AVERAGE DISTANCE BETWEEN THE FIEAL AND 

DETECTED LOCATION 1N PATTERNS WITH DIFFERENT 
BLOCKSIZES (IN PIXELS) AND WITH DIFFERENT AMOIONTS OF 

NOISE 

Blocksize Standard deviation of added noise 

The results remain fairly stable under various amounts of 
noise and with different blocksizes. The procedure fails 
only with huge amounts of noise (SE9 200) and with small 
blocksize (6 pixels) as the average 
the standard deviation exceeds half the blocksize. A pre- 
cision of about 1 pixel in the localization of paltiern ele- 
ments is demonstrated under very noisy circurnstanees 
(SD 100) and with small pattern e ~ e i ~ e n ~ ~  (6). 

D. Accuracy in the identification of ~ 9 ~ ~ ~ e r n  elmrenLs 
To determine the accuracy of our j ~ e r ~ ~ j f i ~ a ~ i ~ t n  proce- 
dure we devised four stimulus patterns 
encoding. The average blocksize register 
era when mirroring these stimuli to a s 
radius was 7 by 7, 9 by 9, 11 by 1 f or 13 by I3 pixels. 
Table II relates the blocksize to the percentagc, = errone- 
ously identified blocks when mirrored to a b~lue or a 
brown eye or to a metal ball. 

TABLE I1 
ACCURACY OF OUR IDENTlFlCAPlON PROCEDURE: THE 

PERCENTAGE OF WRONGLY {CLASSIFIED COLOURED SQUARES 
AT A GIVIEN BLOCKSIZE 

metal ball 

~~~ ~~ 

sizes deviate from the blocksizes 
y as the two eyes and the metal ball 

do not present perfect spheres with 8 mm radius. 
From these tables it can be concluded that in the proc- 
ess of recovering the patlern from the inputimage a sig- 
nificant number of bits will be wrongly interpreted. Thus 
it is necessary to evaluate to what extent (despite misin- 
terpretations) it is still possible to come to a unique iden- 
tification of the subpattern (and thus to come to a 
compllete faultcorrection). 

E. Relocation experimenifs 
te the robustness of the PR 
acterifation of subarrays we conducted the 

following experiment. 
From the “ m a s t e ~ - ~ ~ B A  (the one which was used dur- 
ing the course of our roject with n = 63, m= 65, k = 6, I = 
2) all rectangular sub rrays were taken of all sizes larger 
than 6 by 2. In each individual subarray bits were 
inverted with an a priory taken probability (noiselevel). 
Subsequently the master PRBA (M) was searched for 
the original position of each subarray (S) by sliding the 
subarray over the PRBA (relocation). At each position 
(x,y) the ~ a ~ m i n g  distance was recorded (the number 
of different bitvalues): 

k l  

IS(i, j ) - M ( x  + i, y + j>l (1) - .- 

(with k and I the height and the width of the subarray). 
Correct relocation was admitted if a subarray had an 
absolute minimum in Hamming distance at its original 
position. Fig. 7 illustrates this process for a specific sub- 
array containing 1550 bits at noise level 17.5%. 
Fig. 8 summarizes the results of the simulations. Along 

I axis is the size of the subarray (height 
vertically the fraction of subarrays of a 

given size that could be correctly relocated. Each curve 
corresponds to a different noise level. From this figure it 
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can be concluded that when no noise is applied all sub- 
arrays of all sizes will be correctly relocated. Conversely, 
the original position of not even one subarray is correctly 
identified when approximately 50% of the bits are 
inverted. At a noise level of 20% (worst case in our appli- 
cation, see Table II) a rectangular subarray has to 
include minimally 150 bits to allow for correct relocation. 
Experiments with different randomseeds showed identi- 
cal profiles. 

E Summary of the identification process 
From our colourdiagrams it can be deduced that cyan 
and yellow, located farthest apart, provide the best pick 
for our encoding. Introduction of more colours (for exam- 
ple to incorporate additional information) is unrealistic as 
alternatives appear closely to either cyan or yellow (Fig. 
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ormalized Hamming-distance for all possible 
relocations of a 1550 bit subarray with 17.5% noise; the 
average normalized Hamming distance is 0.5, at the 
position standing out it is 0.1 75. 

0 100 200 300 400 
subarray size 

Fig. 8. Relocation properties of a PRBA: a 
searchprocess was undertaken to the original position of 
ali subarrays of all sizes (relocation). Each curve shows 
the fraction correctly relocated subarrays 04 a given size 
at a specific noise level. 

5 and Fig. 6). 
Under controlled, simulated circumstances we demon- 
strated a precision of one pixel in the localization of pat- 
tern elements, even under noisy circumstances 
( 10lo1og(Signal/Noise) = 101Q10g(255/100) = 4.06) 
and with small pattern elements (six by six pixels per ele- 
ment). 
When the average size of pattern elements is 7 by 7 pix- 
els approximately 20% of them is wrongly interpreted. 
These errors can be totally corrected if the pattern con- 
tains a rectangular area of at least 150 bits (See Fig. 8). 
As our prototype contains 4095 coloured blocks (= 65 
times 63 bits) a resolution that is even slightly better than 
that of commercially available instruments (8 pixels per 
ring) is feasible. 

Ow approach enables an integral reconstruction of the 
corneal shape whereas standard techniques lead only to 
a description of the cornea in crosscuts. To exploit the 
benefit of our method we ~mp~emen~ed a reconstruction- 
algorithm that, as a first approximation, models the cor- 
neal shape as an ellipsoid with a fixed centre and 6 
degrees of freedom (representing the length of the three 
axes and three rotation angles). 
Suppose a point 8 on the stimulus is reflected by the cor- 
nea in a point c on the ~ ~ ~ - c h ~ ~  (see Fig. 9). Given an 
instance of our modelfunction 7; it is possible to calculate 
a point s’ on the stimulator that would be registered in c 
when mirrored lo the surface described by ‘8: (This can 
be done by simple backwards raytracing.) Our objective 
is to minimize 1 1  s’ - 8 I t  for the crossings in our checker- 
board pattern, coming down to nonlinear parameteresti- 

Stimulus s’ s 
1 1 8 1 m w m M  

\ 

CCD 

Model 

Fig. 9. General outline of the reconstructionprocess: s is 
a point on the stimulus that is registered in rc: on the 
E D ;  s’would result in registration in ewhen mirrored to 
an instance of our modelfunction. The distance between 
all points 8 and s’ is minimized by adjusting the 
parameters of the modelfunction. 
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ard paramete~es~ima~~on p 

oiir r~cons~ruc~ion ~ ~ ~ g o ~ ~ ~ h m  under artifi- 
es lasing a raytracing program i(P0VRAY 

171) as well as with cal~b~a~ed steel balk and 
In the ~ a ~ ~ ~ ~ ~ ~ n g  ~ ~ v ~ ~ o n ~ ~ ~ ~  a p ~ ~ ? c ~ s ~ o n  of 
the ~ e ~ o n s ~ ~ u ~ ~ ~ o n  of the shape of a sphere of 8 mm was 
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radius of three steei balk with our ~ r o ~ o t y ~ e  ai 
Zeiss  era^^^^^^^ def~n~ng the gold st 
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The principal curvatures measu~ec~ with our instrument 
are derived from the apex of the ~ ~ c o ~ s ~ r u ~ ~ e ~  ellipsoid. 

~ e s e ~ ~ ~ ~ a n c e  of the results 

Table IV holds the curvatures measure 
apex of the right e 
also with nonideal 
ments is almost id 

THE CURVATURE OF THREE STEEL BAILS M ~ A ~ ~ R ~ ~ ~  WITH A 

of three ~ e s ~ ~ e r s o n s ~  It slhsws that 
jects ‘the outcome of the tli~do instru- 

K E ~ A T ~ ~ ~ T E R  AN5 OUR F’RBTOTYPE 

keratometer cornea- 
topograph 

/ object I Wmax Rmin I Ri’nax Rmin 1 
“47 

.01 

I 3 I 8.01 1 8.01 j 7.99 1 7.99 I 

TABLE 1V 
THE CURVATURE OF THE CORNEAL APEX OF THRIEE EYES 
MEASURED WITH A K ~ R ~ T O M ~ T E ~  AND OUR PRC’TOTYPE 

__l-s 

cornea. 1 
~ o ~ ~ ~ ~ a ~ ~  I 

7.36 I 7.26 1 7.26 1 7.23 Lz I - ~ 

Thus a precision in the order of that under simulated cir- 
c ~ ~ s ~ ~ n c e s  is attained, exem lifying the eff icxy of our 

~ ~ ~ ~ e n ~ $ y  research is directed t ~ l ~ a r d s  
described ~econstruc~~onme~ho~ ~aking 
local a b e ~ ~ a ~ ~ ~ n s  of the ~ o ~ ~ e ~ ~  shap 
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PRBA’s allow for a unique cha 
Simulations dernonstrale a hig 
dures in localizing padtern 
despite a significant number of misinterpretations in the 

rn dements, using the characteris- 
REM a complete faultcorrection is 
have introduced a unique charac- 

terization of points on the stimulus, integral reconstruc- 
tion of the corneal shape becomes possible. Thus we 
have developed a new measurement-technique provid- 
ing a resolution that is at least as good as that of com- 
mercially available instruments. 

This research is supported by the Dutch Technology 
F~unda~ion (STW) under project number VNS33.2983. 
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