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Abstract 

Optical power spectra obtained from experiments or from numerical simulations are probabilistic in nature. When fitting such 
spectra to few-parameter analytical line shapes, the results from a weighted nonlinear least squares fit are significantly better 
than those from an unweighted fit. This is demonstrated by fitting a Lorentzian to directly simulated power spectra and to power 
spectra obtained from a rate-equation simulation of a diode laser output. 

1. Introduction 

Fitting of optical power spectra is an important tool 
for laser physicists and spectroscopists [ l-31. In sim- 

ulations of the dynamic behaviour of a laser one often 
calculates the optical power spectrum in order to fit it 

with a theoretical curve so as to determine certain rel- 
evant parameters, e.g. linewidth and central frequency. 
Such numerical spectra are often obtained from a fast- 

fourier-transform (and then are called periodogram) 
of a noisy time series and, hence, are usually very noisy 
themselves. Even after averaging over several ensem- 
ble-members of time series the spectrum is still noisy 
and the question arises how one can best fit the exl?ected 
theoretical shape to such a spectrum, the former usually 
being smooth. Similarly, theoretical shapes containing 

few parameters can be fitted to a measured spectrum in 
order to estimate these parameters and also here one is 
confronted with the inherent probabilistic nature of a 

spectrum. In fact, in the fitting it is necessary to take 
into account the probabilistic properties consistently. 
Only by such a procedure, the residuals of the fit can 
be evaluated and the mode1 adequacy established [ 41. 

In particular, the measurement of the power spectra1 
density at a certain frequency must be regarded <as pro- 
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portional to a sample from a ,$-distribution [ 51 which 

implies a standard deviation proportional to the mean. 
Carroll and Ruppert (Ref. [6] (p.16)) say: “if the 
standard deviations vary by a factor of 3:l or more, 

then weighting will generally be called for”. Here we 
want to investigate quantitatively the importance of 
weighting in fitting optical spectra. Even though in one 
of the above mentioned papers [2] a weighted fit is 

mentioned, yet to our best knowledge the importance 
of a weighted fit seems not to be generally known. It is 

therefore the purpose of this letter to demonstrate quan- 
titatively the advantages of the weighted fit by means 
of a simulation study. As an application a simple Lor- 
entzian line shape will be fitted to a series of power 
spectra of a single-mode semiconductor laser obtained 
by numerical integration of the rate equations. 

2. Stochastic description of the spectrum 

Let a power spectrum with theoretical spectra1 profile 
W( v; 0), where v is the frequency, depend upon sev- 
eral parameters contained in the vector 0. In case of the 

Lorentzian profile here studied, W has the explicit form 

w(~; e)=e,i[i+(2(v-e,)1e,)*] , (1) 
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where 0= ( 8,, 0,, &) consists of three parameters: the 
central frequency 8,, the linewidth B,, and the ampli- 
tude (3,. This model is termed nonlinear because the 

derivative of W with respect to a parameter still depends 
on at least one of the parameters [4]. Two ways of 
estimating the unknown parameters 0 will be com- 

pared: (a) unweighted nonlinear least squares, and 
(b) weighted nonlinear least squares with weights 
1 / W’( V; 0). According to Carroll and Ruppert [ 61 
when the data are distributed according to the x2-dis- 

tribution this weighted least squares estimate is equal 
to the maximum likelihood estimate, which is the best 
possible estimate. As W is usually not known before- 
hand, for the actual weighted fit we must proceed iter- 

atively: first we take as weighting function the profile 
estimated from an unweighted fit, second we use the 

resulting profile to perform a refined weighted fit (so 
called iteratively reweighted least squares [ 61). 

In order to illustrate the method in a direct simula- 

tion, data points w, are produced by multiplying the 
theoretical spectral profile (of which ( 1) is an exam- 
ple) by a sample drawn from a $-distribution accord- 

ing to [5] 

w, = W( v,,; tI)x,:,Jd , n = 1, . . ., N , (2) 

where W( v,; 0) is the spectral profile at frequency v,. 
~2.~ is the nth sample drawn from a x*-distribution with 
d degrees of freedom. N is the total number of simulated 
data points. For an ensemble average over k periodo- 

A 

grams we have d = 2k. The expectation value of w, is 
given by 

awnI =wv,; f3 , (3) 

since E[x~,~] =d. Furthermore the variance of w, is 
proportional to the square of the mean: 

var(w,) = ( W( u,,; 0) id)’ var(x:.,) 

=(2/d)W’(v,; 0) (4) 

since var(x&) = 2d. Note that the variance is highest 
at the top of the spectrum. Thus, it can be seen that for 
a single, unaveraged spectrum (d = 2 in (2) and (4) ) 
the standard deviation at a given frequency is equal to 

the expectation value. This explains why the fluctua- 
tions cannot be made smaller by increasing the fre- 
quency resolution. 

3. Fit of directly simulated spectra 

B 

For the direct simulation study we use a Lorentzian 
profile ( 1) with parameters inspired by the application 
to be described in section 4. We choose the central 
frequency 0i = 0 MHz, the full linewidth at half maxi- 
mum 0, = 50 MHz, the amplitude 0, = 100 and the 
sampling frequencies v,, = (it - 201) 0.5 MHz, II = 
1 , . . . . N = 401. A typical simulated power spectrum 
according to (2) using a x*-distribution with d = 16 
degrees of freedom is shown in Fig. IA. The weighted 

C 

Fig. 1. (A) Directly simulated power spectrum, N= 40 I data points, (B) weighted residuals resulting from weighted fit, (C) residuals resulting 
from unweighted fit. 
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Fig. 2. Distributions estimated from weighted fit, (A) deviation of estimated linewidth parameter 4 - O,, (9) approximate standard error 6?. 

(C) ratio of these two ( 8, - &) / kz (solid line) and td/ distribution (dotted line). Further explanation in text. 

residuals of a weighted fit are satisfactory, i.e. they 

behave randomly and show constant variance (Fig. 

lB), whereas the residuals of an unweighted fit possess 
a variance which depends upon the function value (Fig. 
1C). Note that there are more negative residuals, which 
is explained by the asymmetry of the x*-distribution. 
In order to investigate quantitatively the properties of 
a weighted versus an unweighted fit we performed 1001 
simulations. This resulted in 1001 realizations of the 

estimates ( 6,, & I!$) and their standard errors (8,) 

8,, cf3) (for the calculation of these standard errors see 

e.g. [ 41) . We summarize the resulting estimates for 

the parameters and their standard errors by estimating 

smoothed probability densities using the Splus function 
ksmooth [ 111. Fig. 2A depicts the distribution of devi- 

ations in the linewidth parameter 6, - 0, (the difference 

between the estimated and the real value) of a weighted 

nonlinear least squares fit. It is symmetric around zero 
with a width of about 4 MHz. The distribution of the 

standard error e2 (Fig. 2B) is narrowly peaked around 

1.5 MHz. The ratio of the deviation and the est [mated 

standard error should be distributed approximately as 
a Student’s t-variable with degrees of freedom &equal 
to the number of data points (N) minus the number of 
parameters (3) (in this case, df= 398, the r,,distribu- 
tion is close to the normal distribution). The distribu- 
tion of this ratio is depicted by the solid line in Fig. 2C, 

whereas the dotted line represents the ttif distribution. 
There is a large similarity. The small differences which 

are present are attributed to the linear approximation of 

the standard errors [ 41. 

Let us now make a comparison with the results of an 
unweighted fit for which the residuals do not behave 
well (Fig. 1C). The linewidth parameter summary for 

this case is shown in Fig. 3. We note that the distribution 
of the deviation in Fig. 3A is wider by about a factor 

of 1.5 compared with Fig. 2A. Likewise the estimated 

standard errors are on average larger (compare Fig. 2B 

and Fig. 3B) and are more broadly peaked around 1.8 
MHz. Furthermore, the differences between solid and 

dotted lines are much more pronounced in Fig. 3C than 

in Fig. 2C, note the tails in Fig. 3C, which means that 
for large deviations the unweighted fit predicts more 

precise results than are actually achieved. We have 

investigated the differences between weighted and 
unweighted fit as a function of the number of data points 

N (and thus the spectral resolution A V) and the signal 
to noise ratio (which is proportional to the square root 
of the number of degrees of freedom d of the x2-distri- 

bution). The results shown in Table 1 confirm that the 
weighted fit is superior to the unweighted fit for all 
conditions investigated. For sample sizes ranging from 

small (N = 25) to large (N = 1601) and different signal 
to noise ratios the root mean square deviation (of 0,) 
of the unweighted fit is about 1.5 times as large as from 
the weighted fit. Only with the weighted fit the root 
mean square standard error u2 is about equal to the rms 
deviation of 19,, which is necessary for a consistent fit. 
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Fig. 3. Distributions estimated from unweighted fit. Lay out as in Fig. 2 

We conclude from this direct simulation study that 
the weighted fit is to be preferred for three reasons: (a) 
the weighted residuals behave well when the model is 
adequate; in contrast, if systematic deviations of these 
weighted residuals from randomness or constant vari- 
ance are observed, this indicates model inadequacy, 
(b) the weighted fit is more accurate and results in 
smaller deviations of the estimated parameters, and (c) 
the ratio of the deviation and the standard error is closer 
to the tdfdistribution, meaning a larger probability that 
the estimated parameters are correct [ 41. 

4. Fit of the power spectrum of a simulated diode 
laser 

As an application we consider the fit of the power 
spectrum of a single-mode semiconductor laser. In this 

type of laser the spontaneous emission is responsible 
for a central Lorentzian line shape [ 71 with sidebands 

at the relaxation oscillation frequency [8,9]. The 

dynamic behaviour of the intracavity optical field and 

the carrier-inversion is described by the standard rate 

equations [lo] where Langevin noise terms account 
for spontaneous emission. These coupled nonlinear sto- 

chastic differential equations are numerically inte- 

grated using a 6th order Runge-Kutta algorithm with a 

step size of l/60 of the relaxation oscillation period 

(the smallest time scale involved in the model). The 

resulting optical field can be Fourier transformed using 

an FFT to yield the periodogram that represents a single 

unaveraged spectrum. We can also divide the time 

series in a number of smaller blocks and perform an 

FFT on each block separately. The resulting power 

spectra will then loose resolution, as the latter is 

inversely proportional to the block length. If one then 

averages those FFT power spectra, thereby increasing 

the number of degrees of freedom d in (2) and (4)) a 

spectrum with smaller variance is obtained. This illus- 

trates the trade off between variance and resolution. 

Table 1 
Root mean square deviation and root mean square standard error oz (between parentheses) of linewidth parameter 0, as a function of number 
of data points N, resolution A v and degrees of freedom d 

N AV 

25 8 

101 2 

401 0.5 

1601 0.125 

d= 16, W 

6.9(6.0) 

3.1(3.0) 

1.5( 1.5) 

0.8(0.8) 

d=16 

10.1(6.1) 
5.0(3.5) 

2.5( 1.8) 

1.2(0.9) 

d=64, W 

3.3( 3.0) 

1.5( 1.5) 

0.8(0.8) 

0.4( 0.4) 

d=64 

6.0(3.2) 
2.7( 1.8) 

1.3(0.9) 

0.6(0.5) 

Unit is MHz. W indicates from weighted fit 
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Fig. 4. (A) Power spectrum of a simulakd semiconductor laser, N= 1201 data points, (B, C) as in Fig. 1 

First we discuss one fit in detail, thereafter we will 
summarize the results of a series of fits in which the 
pump current was varied. Dividing the time series in 
eight blocks of 32768 samples and taking the average 
of their respective periodograms results in the power 
spectrum whose central part is shown in Fig. 4A. In 
this figure we have shifted the frequency axis in such a 
way that the resonance frequency of the laser without 
noise lies at 0 MHz. The residuals resulting from a 

weighted nonlinear least squares fit are shown in Fig. 
4B. No systematic deviations are visible in the 
weighted residuals, and the variance of the weighted 

residuals appears constant, indicating a satisfactory 
description of the data by a Lorentzian. The root mean 
square error of the residuals is equal to 0.356, which 

is close to the theoretical value of ,12/d= 
J2/0= 0.354 (Eq. (4), with 8 periodograms 

averaged). Thus it is concluded that the fit is excellent, 
and that the estimated parameters of this central line 
are 6, = ( - 1.7 f 0.4) MHz, I$ = (53.0 + 1 .O) MHz 

and 63 = 94 + 3. The residuals from an unweighted non- 
linear least squares fit are shown in Fig. 4C. The non- 
constant variance results in an incomplete description 
of the data and precludes proper conclusion about the 
adequacy of the model function. Just for comparison 
the parameters estimated from an unweighted fit are 
6, = ( - 0.5 _+ 0.4) MHz, & = (53.5 + 1.2) MHz and 
I$ = 93 f 2, which in this particular case is not signifi- 
cantly different from the parameters estimated from the 
weighted fit. We investigated the linewidth 0, as a 
function of the pump current J for an eight time:; shorter 

time series. The estimates resulting from the weighted 
and the unweighted fit are depicted in Fig. 5A and 
Fig. 5B, respectively. According to Henry [7] and 
van Exter [9] the linewidth is proportional to 
1 /(J/J,,, - 1) where J,,, is the threshold pump current. 
The solid lines in Fig. 5 result from a weighted linear 
regression fit. The quality of this fit is considerably 
better in Fig. 5A than in Fig. 5B, as can be judged from 
the root mean square error of 0.94 versus 2.97. The 

effective slope parameters are (29.0 + 0.4) MHz and 
(27.7 k 0.7) MHz, respectively. Note in passing that 
both results differ from the theoretical value of 25 MHz 

predicted by [ 71 and [9]. This is an intriguing and 
confusing byproduct of our study, since it is the more 
reliable result that produces the largest deviation. This 

could indicate a fundamental shortcoming in the theory 
or in the numerical integration scheme. A more system- 
atic study would be necessary, but is outside the scope 
of this paper. 

5. Discussion 

It has been demonstrated that a weighted fit is nec- 
essary for a complete description of a line in a power 
spectrum. With any number of data points available 
and with any signal to noise ratio the weighted fit pro- 
duces superior estimates of the parameters and of their 
standard errors (Table 1). Hence, these results are rel- 
evant for spectra obtained from both simulation and 
experiment. Although we focused here on Lorentzian 
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A 

Fig. 5. Estimates of linewidth parameter 0, as a function of l/( J/J,- 1) where J is the pump current, (A) from weighted fit, (B) from 
unweighted fit. The lines resulted from a (weighted) linear regression fit. 

profiles, the conclusions are also valid for more general 

profiles. Thus for an adequate fit, which includes eval- 
uation of the adequacy of the line profile used through 
a test of the residuals, a weighted fit is mandatory. 

Summarizing: when fitting optical spectra the vari- 

ance of the measurements usually is intensity depend- 
ent. A description with multiplicative noise (2) is often 
appropriate and it has been shown that for such cases 

the results from a weighted nonlinear least squares fit 
are significantly better than those from an unweighted 

fit (Fig. 2, Fig. 3, Table I, Fig. 5). Moreover, taking 
into account the noise properties produces well distrib- 
uted weighted residuals (Fig. IB, Fig. 4B), thus the 

spectrum is described satisfactorily. 
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