
ANALYTICAL BIOCHEMISTRY 191, 110-118 (1990) 

Estimation of Protein Secondary Structure and Error 
Analysis from Circular Dichroism Spectra 

Ivo H. M. van Stokkum,l Hans J. W. Spoelder, Michael Bloemendal,* 
Rienk van Grondelle, and Frans C. A. Groen 
Faculty of Physics and Astronomy, and *Faculty of Chemistry, Free University, Amsterdam, The Netherlands 

Received June 4,199O 

The estimation of protein secondary structure from 
circular dichroism spectra is described by a multivar- 
iate linear model with noise (Gauss-Markoff model). 
With this formalism the adequacy of the linear model is 
investigated, paying special attention to the estimation 
of the error in the secondary structure estimates. It is 
shown that the linear model is only adequate for the 
a-helix class. Since the failure of the linear model is 
most likely clue to nonlinear effects, a locally linearized 
model is introduced. This model is combined with the 
selection of the estimate whose fractions of secondary 
structure summate to approximately one. Comparing 
the estimation from the CD spectra with the X-ray data 
(by using the data set of W. C. Johnson Jr., 1988, Anna 
Rev. Biophys. Chem. 17, 145-166) the root mean 
square residuals are 0.09 (a-helix), 0.12 (anti-parallel 
B-sheet), 0.08 (parallel p-sheet), 0.07 (B-turn), and 0.09 
(other). These residuals are somewhat larger than the 
errors estimated from the locally linearized model. In 
addition to a-helix, in this model the B-turn and “other” 
class are estimated adequately. But the estimation of 
the antiparallel and parallel &sheet class remains un- 
satisfactory. We compared the linear model and the lo- 
cally linearized model with two other methods (S. W. 
Provencher and J. Gkickner, 1981, Biochemistry 20, 
1085-1094; P. Manavalan and W. C. Johnson Jr., 
1988, And. Biochem. 167, 76-85). The locally linear- 
ized model and the Provencher and Glackner method 
provided the smallest residuals. However, an advan- 
tage of the locally linearized model is the estimation of 
the error in the secondary structure estimates. o 1990 
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Structural information on proteins is necessary to 
understand their function. Although high-resolution 
methods, like X-ray diffraction or NMR spectroscopy, 
are available, in most cases their application is cumber- 
some or even impossible. Therefore other techniques 
have to be used that yield less detailed, but nevertheless 
important information. For the further development of 
such methods a quantification of the resulting informa- 
tion and estimates of possible errors are essential. 

Proteins show characteristic uv circular dichroism 
(CD) spectra that are related to the presence of second- 
ary structure (1,2). In contrast to high-resolution meth- 
ods the CD spectrum represents an average over the 
entire protein. There are two ways in which one can 
investigate the relation between the secondary struc- 
ture of a protein and its CD spectrum. First one can 
consider the forward problem: given a model for the sec- 
ondary structure of a protein, what will be its CD spec- 
trum? This leads to complicated quantum mechanical 
calculations (1,3-5). Second, one can regard the inverse 
problem: given a measured CD spectrum, how can one 
estimate the corresponding secondary structure? Dur- 
ing the past 25 years this second question has been in- 
vestigated extensively (l-15). These analyses are based 
upon secondary structure classifications obtained from 
X-ray diffraction (16). However, the comparison of clas- 
sifications between several investigators reveals discrep- 
ancies (cf. Fig. 6 from Yang et al. (15)). Since even the 
X-ray specialists disagree about the criteria for classify- 
ing protein secondary structure there is no golden stan- 
dard available (cf. (16)). Still one can stick to a certain 
classification method (9) and investigate whether the 
fractions of secondary structure classes can be esti- 
mated adequately from protein CD spectra. This esti- 
mation needs a model (8,9,13,14). In this paper a mul- 
tivariate linear model with noise (Gauss-Markoff 
model (17)) is applied. An important extension, in com- 
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parison with the aforementioned studies, is that this 
model allows estimation of the error in the secondary 
structure estimates. We will first explore the basic as- 
sumption of the linear model. Then we apply the theory 
of the Gauss-Markoff model to our problem and evalu- 
ate the linear model. To incorporate also nonlinear ef- 
fects a locally linearized model will be introduced. Fi- 
nally, both models are compared with two other 
well-known methods (13, 14). 

EXPLORATIONS 

The basic assumption of the different methods to 
solve the inverse problem is the following: a CD spec- 
trum c(X)’ is a superposition of the contributions of the 
different secondary structure classes. In formula, it can 
be written as 

111 
k=l 

where bk(X) denotes the CD spectrum belonging to the 
kth secondary structure class and fk denotes the fraction 
of class k. N,, is the number of secondary structure 
classes. We adopt the classification of Hennessey and 
Johnson (9) who distinguished five classes: a-helix (H), 
antiparallel P-sheet (A), parallel B-sheet (P), P-turn (T), 
and other (0). By definition fractions are non-negative, 
and summate to one: 

NC1 
fk 2 0; c fk = 1. PI 

k=l 

At first glance these two equations pose problems. What 
if a bk(X) contributes negligibly to the CD spectrum? Or 
what if bk(X) = -bk,(X), like the contributions of left- and 
right-hand P-turns, which coexist in some proteins, cf. 
Brahms and Brahms (Ref. (6), p. 173). It will in general 
be impossible to recover fractions with negligible contri- 
butions bk(X). In addition taking into account the effect 
of experimental errors upon the CD analysis (l!), the 
application of the normalization constraint C~Z; fk = 1 is 
questionable. Some authors use this constraint (6,7,14) 
in the estimation of the fk, whereas others (8-13) simply 
consider an analysis with 2 fk far from one as unsuc-  ̂
cessful. With the second constraint, fk 3 0, the same 
dichotomy appears. 

Regarding Eq. [l] a natural question to ask is: do simi- 
lar structures possess similar CD spectra, and vice 
versa? This brings up the next question: how do we 
measure similarity? We investigated several measures 
and chose the root mean square (rms) difference 6, 
which is a symmetric distance measure: 

’ See the Appendix for a glossary of terms used in this paper. 

6 x,12 = 
i 

; z (Xi1 - xi2p 
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1/Z. [31 
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The summation in Eq. [3] extends over N,, when two 
secondary structure classifications (X = f) are com- 
pared, and over N, when two CD spectra (X = c) are 
involved. An alternative measure is the maximum of the 
cross-correlation function between two CD spectra, 
which takes into account the correlations between suc- 
cessive values. We found that this measure produced 
equivalent results. 

To compare distances between CD spectra with dis- 
tances between the accompanying secondary structure 
classifications we will use the Pearson product moment 
correlation coefficient r: 

rq = 
N Ci xiYi - Ci,j vXiYj 

((N Ci ‘” - (Ci Xi)2)(N Cj$ - (Cj Yj)2))1’2 

The summations in Eq. [4] extend over all pair combina- 
tions of reference proteins, and we substitute x = 6, and 
y = 6,. r varies between -1 and 1, where an r of 1 indi- 
cates perfect correlation, -1 indicates anticorrelation, 
and 0 indicates no correlation at all. 

We will explore the basic assumption using the refer- 
ence data of Johnson and co-workers (8-13). For illus- 
trative purposes we have reordered the proteins accord- 
ing to increasing a-helix fraction. A first look at the CD 
spectra in Fig. la is very instructive. Consider protein 
22, which is the pure a-helix compound polyglutamic 
acid, possessing the largest CD spectrum. The similari- 
ties of the CD spectra 21, 20, and 19 compared with 
spectrum 22 are evident, and the corresponding f (Fig. 
lb) all indicate a large c-w-helix content of 70-80%. But 
for proteins with small a-helix content a connection be- 
tween CD spectrum and secondary structure classifica- 
tion is hardly discernible, compare the lower halves of 
Figs. la and lb. It is not surprising that the scatter dia- 
gram in Fig. lc, where we compare the distance between 
the CD spectra 6, with the difference in a-helix fraction 
6,) shows a significant correlation rac,a,, (H in Fig. le). In 
contrast, the correlations between 6, and 6,, a,, S,, are 
much weaker (A, P, T, in Fig. le), and even insignificant 
in the case of 6,. Regarding the correlation with 6, (0 in 
Fig. le) one needs to be careful, because the fraction f5 is 
not classified according to the X-ray analysis but de- 
rived directly from the first four classes: f, = 1 - C”,=, fk. 
Finally, the correlation between 6, averaged over the 
classes and 6, in Fig. Id (cross-hatched bar in Fig. le) 
seems to result from the correlation in Fig. lc, where the 
largest 8;s were found. The correlation coefficients be- 
tween the different classes show a significant negative 



112 VAN STOKKUM ET AL. 

A 
c 
L 

T  
4 

0 
-1 

HRPTO 

e) f) 

d) 6c [AC) 

$i 

0 
0 5 lo 

1 
6 

a) hhml b) c) 6c [A&l 

FIG. 1. Comparison of CD spectra (a) and classifications of accom- 
panying secondary structures (b) of 22 reference proteins (data from 
Johnson and co-workers (9,ll)). The scatter diagrams represent the 
relation between the CD spectra distance and the accompanying sec- 
ondary structure distance of all pair combinations of reference pro- 
teins. In (c) 6, (abscissa) is compared to 6,] (ordinate), whereas in (d) it 
is compared with S, averaged over the five classes. The correlation 
coefficients belonging to (c) and (d) constitute the outer bars in (e). In 
between are shown the correlation coefficients for the classes A, P, T, 
and 0. (f) shows the correlation coefficients between the different fk 
The hatching with the negative slope (e and f) indicates correlation 
coefficients which differ significantly from zero at the 5% level. The 
reference proteins, ordered according to increasing o-helix fraction, 
are: 

1 BenceJones protein 
2 concanavalin A 
3 prealbumin 
4 rubredoxin 
5 a-chymotrypsin 
6 elastase 
7 carboxypeptidase A 
8 ribonuclease A 
9 papain 
10 subtilisin BPN’ 
11 glyceraldehyde-3-phosphate 

dehydrogenase 

12 subtilisin novo 
13 thermolysin 
14 lysozyme 
15 flavodoxin 
16 cytochrome c 
17 lactate dehydrogenase 
18 triose phosphate isomerase 
19 hemerythrin 
20 hemoglobin 
21 myoglobin 
22 polyglutamic acid 

correlation between on the one hand f, and on the other 
handf,, f4, and f, (H and A, T, and 0 in Fig. If). All other 
correlations between different classes are insignificant. 

Summarizing this data impression, the CD spectrum 
belonging to the a-helix (spectrum 22) is striking and 
dominates the spectra of compounds with a-helix frac- 
tions above 30% (i.e., proteins lo-22 in Fig. la). We also 
note that there are no obvious correlations between the 
CD spectra and the secondary structure classes A, P, T, 
and 0. 

THE LINEAR MODEL 

One approach to solve the inverse problem is to deter- 
mine first CD spectra bk(X) for the pure secondary 
structures, and then fit a CD spectrum of an unknown 
protein with these estimates &(X) (2, 6, 7). Since these 
bk(X) are nonorthogonal it is better to start from a set of 
CD spectra of reference proteins and estimate the pa- 
rameters of the inverse of Eq. [l] (8,9). For this estima- 
tion we formulate the inverse problem as a multivariate 
linear model with noise, a so-called Gauss-Markoff 
model (17). The terminology of the model is largely 
adopted from Compton and Johnson (8). c is a digitized 
CD spectrum measured at i’V, wavelengths. fh is the esti- 
mate for the fraction of secondary structure class k, be- 
longing to c. C is a matrix which contains the CD spectra 
that are used as references in its columns, whereas F is 
the matrix of the accompanying fractions of secondary 
structure. For each class k the model is formulated as 

Fk = X,C + vk. 151 

The coupling row vector X,, which has to be estimated 
from the reference data Fk and C, can be considered as 
the inverse of the bk(X) in Eq. [ 11. It is assumed that the 
noise vk is N(0, a:,,), where ufk still needs to be esti- 
mated. When we have estimated X, from the set of refer- 
ence proteins, we can use this estimate, &, to estimate 
the fraction fk from the CD spectrum c of an unknown 
protein: 

fk = &. WI 

For each class K the solution of the least-squares prob- 
lem of Eq. [5] is given by (e.g., (17)) 

& = FkCT(CCT)+ = FkCTCvC+ = F&+. [71 

Here Ct denotes the (Moore-Penrose) generalized in- 
verse of C. Since C is rank deficient we perform a singu- 
lar value decomposition (18, 19) to find Ct: 

c = USVT c+ = VS+UT. PI 

Here S is a diagonal matrix which contains the singular 
values in decreasing order. The problem is to determine 
how many of these singular values are significant. In our 
further analysis we treat this number as a variable N,. 
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The matrix St contains as non-zero elements the recip- 
rocals of the significant singular values. It is thus im- 
portant to determine N, carefully, since too high an N, 
contributes noise to St. The matrices U and V are or- 
thogonal: U-l = UT. The first N, columns of the matrix 
U contain the basis vectors which are used for the de- 
composition of the CD spectra. The first N, columns of 
the matrix V contain the least-squares coefficients 
which fit C to US (Eq. [B]). Combining Eqs. [7] and [B] 
we arrive at 

rz, = F,VS+UT. PI 

The main difference between this and other models (8, 
9) lies in the inclusion of a noise term in Eq. [5], which 
allo-ws estimation of errors. The covariance of X,, 
D(X,), depends linearly on the covariance of Fk (Eq. 
151): 

6(2tk) = CtTti(F,)C+ = lifJJS+‘S+UT, [W 

where we have used fi(F,J = i?fJ. The covariance of Fk, 
&, is estimated by 

Finally, the covariance of the estimator fk = Xkc is esti- 
mated by 

d(f,) = cTIj(k& = ifk 1 1 s+UTC 1 1 2, WI 

where we have assumed that the error in c is uncorre- 
lated for the different X. Then the product UTc will be 
insensitive for noise, and thus the main contribution to 
D(f^) arises from the covariance of Xk, which reflects the 
goodness of fit of the linear model. Thus the error in the 
secondary structure estimate, ik@, depends upon the 
covariance of the coupling row vector X,, which in turn 
depends upon the covariance (T:,~. 

It is also possible to estimate the CD spectra belong- 
ing to the different secondary structures, i.e., the bk(X) 
of Eq. [ 11. The method is analogous to that outlined 
above for the estimation of X,. Now the model reads, for 
each wavelength X, 

C, = B,F + vx v,, - N(0, a;,), [I31 

with as solution 

i, = C,F+ = C,V,St,U; v41 

and covariance estimate 

Lj(B,) = FtTLj(C,)F+ = ;f,U&S$U;, 1151 

where 

Note that the estimate of bk(X) consists of Nh esti- 
mates B,,. 

ADEQUACY OF THE MODEL 

An often used indicator for the quality of the estimate 
jis the difference bc,; between the original CD spectrum 
and its reconstruction c :̂ 

c^ = CVS’ UTC = USS+UTC. iI71 

This 6,, measures to what extent the original CD spec- 
trum is reconstructed using the first N, orthogonal basis 
vectors of U. Thus it is a monotonically declining func- 
tion of N,. To test the model we use one member from 
the database as a test protein, estimate the model from 
the remaining 21 reference proteins, and estimate the f 
of the test protein. This is done for all 22 members of the 
database. 

The adequacy of the model is determined in three 
ways: 

First, the rms difference between the estimation from 
the CD spectrum and the X-ray data, S,i, is estimated, 
together with its standard deviation $(a,,~), for each test 
protein pooled over its five structure classes and for 
each structure class pooled over the 22 possible test pro- 
teins. In the following S,i will be termed rms residual. 

Second, a significant correlation coefficient rfk,i (Eq. 
[4] ) indicates the presence of a linear relation between 
fk and ft. These F~~,J, are calculated for all pair combina- 
tions of secondary structure classes, pooled over the 22 
possible test proteins. 

Third, since we want an unbiased estimate of fk, the 
hypothesis that the relation between fk and fk is de- 
scribed by 

with @ = 1 is tested. This is done, for each secondary 
structure class k, by means of Student’s t test with 

t= IP-11 -= Ifi- 
i?j da 

p= Ci fi6 

r WI 
hi Ii 

where the summations extend over the fk of all the 22 
test proteins. With this test one can only conclude 
whether or not the hypothesis has to be rejected. Rejec- 
tion implies that the estimate is biased. 
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RESULTS 

Our first concern is to determine the number of signif- 
icant singular values, N,. The results of the linear model 
as a function of N. are shown in Fig. 2 for three test 
proteins. The rms error between reconstructed and orig- 
inal CD spectra, & in Fig. 2a, shows a steady decrease 
with increasing N,. The usual noise level of experimen- 
tal CD spectra, about 0.3At (9), is reached with NB = 5. 
Thus the fit of the CD spectrum over this wavelength 
range needs about five singular values (9). However, the 
rms residual S,f in Fig. 2b shows quite a different pic- 
ture. Minimal 6,i is reached with different N. for these 
three different proteins. With hemoglobine (protein 20, 
squares, 75% a-helix) the smallest S,,i is 0.08, which is 
reached with N. = 1. Addition of two more singular val- 
ues deteriorates the prediction until 6,~ = 0.24. The 
other two proteins in Fig. 2 reach minimal $fat N, = 7 
(triangles) and N, = 3 (circles). Thus although the addi- 
tion of more singular values improves the fit of the CD 
spectrum, it sometimes deteriorates the secondary 
structure prediction. 

The CD spectra of Fig. la are almost noise-free due to 
smoothing. In Fig. 2c we simulated a more realistic situa- 
tion by adding (Gaussian white) noise to the test CD 
spectrum. This allows us to estimate an upper bound for 
the number of significant singular values N,. Figure 2c 
shows that 6,~ starts to rise after N, = 7. We conclude 
that singular values above seven represent noise and 
can be considered insignificant. 

Following Johnson and co-workers (8, 9, 13) we will 
evaluate the linear model with N, = 5, the number 
needed to fit the CD spectrum. The overview of the lin- 
ear model in Fig. 3 shows that the rms residuals are still 
quite large. For the test proteins S,i varies between 0.05 
and 0.23 (Fig. 3~). When the residuals (fk - fk) are re- 
lated to the values of fk (Fig. 3a), S,,f for the structure 
classes (Fig. 3f) is only acceptably small for class H (a- 
helix). For instance, with the P class the rms residual 
(Fig. 3f) is large compared to the f3 values (triangles in 
Fig. 3a). There appears to be a clear underestimation of 
fi and f3 (note the negative residuals with A and P in Fig. 
3a). There is no significant correlation between bc,; (Fig. 

FIG. 2. Overview of the model prediction for proteins 20 (squares), 
17 (circles), and 14 (triangles) as a function of N,, the number of 
singular values. (a) S+; (b) a,,!; (c) 6,~ with a Gaussian white noise 
added to the CD spectra of the test proteins, q” = l.OAc. 
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FIG. 3. Overview of the results of the linear model with NB = 5. (a) 
fk - fk (ordinate) as a function of fk (abscissa) for the 22 different test 
proteins. The residuals are shown for the five different classes (indi- 
cated by squares, circles, triangles, plusses, and crosses, respectively). 
The vertical lines indicate plus or minus one standard deviation (Gfk). 
The dotted lines indicate fk - fk = 0. (b) 1%: fk (ordinate) for the 22 
different test proteins (abscissa). The vertical lines indicate plus or 
minus one standard deviation (i( ,ZNcl L=l fk)). (c) 6,~ for the 22 test pro- 
teins. (d) de,E for the 22 test proteins. (e) rf,f, the hatching indicates 
correlation coefficients significantly different from zero, at the 5% 
level. (f) 6,~ per secondary structure class. The cross-hatching indi- 
cates that the hypothesis fk = fk was not rejected at the 5% level. 

3d) and a,,~ (Fig. 3~) (r = 0.40, df = 20, P > 0.05). Note 
that, as to be expected, the test proteins whose CF:ll fk 
is far away from 1 (Fig. 3b) also show a large S,,p There 
is a significant correlation between ] 1 - C fk ] and 6,i (r 
= 0.73, df = 20, ;P < 0.001). The correlation coefficients 
between fk and fi (Fig. 3e) show on the diagonal only a 
significant correlation rfl,il. The upper row is approxi- 
mately equal to the upper row in Fig. lf, which confirms 
that class H is estimated well. Quite astonishing A 
shows the best correlation with T. Comparing rows two 
to five in Fig. If and Fig.-3e we see the inadequacy of the 
estimates A, P, T, and 0 corroborated. Figure 4 shows 
estimates (solid) of the coupling matrices X and B, to- 
gether with their errors (dotted). Note that only for X, 
and b,(X) is the error relatively small, whereas with the 
other components the error is about as large as the ab- 
solute values of the X, and bk( X). The dotted lines in Fig. 
4b show the same shape, which follows from Eq. [15], 
where it is seen that for all classes the covariance is 
proportional to x,,x. The dotted lines in Fig. 4a also pos- 
sess the same shape, here the covariances are propor- 
tional to UStTStUT (Eq. [lo]). Figure 4c shows the prod- 
uct of X and B, which in the ideal case should result in 
the identity matrix. It is clear that only the (H, H) ele- 
ment of XB suffices. All other diagonal elements are less 
than 0.5, and there are large off-diagonal elements 
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FIG. 4. Overview of the coupling matrices X and B of the linear 
model. Both have been estimated from the complete reference set 
(Nrer = 22) with N, = 5. (a) From top to bottom X,, . . ,&, the dotted 

lines indicate the standarderror belonging to each estimate. (b) From 
top to bottom b, (X), . . . , 6, (X). (c) The product of X, (ordinate) and 
q (abscissa). Vertical lines indicate standard deviation. 

(XB(A, P), (A, T), (0, P), (0, T)). These deviations from 
the identity matrix indicate that the linear model is far 
from ideal. 

In summary, the linear model predicts only the a-he- 
lix fraction accurately. 

THE LOCALLY LINEARIZED MODEL 

There are two complementary ways to improve the 
linear model: one can remove from the reference set 
those proteins which add conflicting information (13), 
or one can synthesize an appropriate reference set. Ac- 
cording to the basic assumption the N,,-dimensional f 
space of secondary structure classification and the N,- 
dimensional c space of CD spectra are related through 
Eq. [l]. We hypothesize that this assumption applies 
only to regions off space which are related to regions of c 
space. Thus for the proteins 19-22 with large f, a differ- 
ent model is needed as for the proteins with small cu-he- 
lix content. In this way nonlinear effects, like the chain 
length dependence of the CD spectrum of a-helix (ll), 
can be incorporated. Looking back at Figs. lc and ld we 
note that in general a small 6, correlates with a small 6,. 
To synthesize a locally linearized model we adopt the 
hypothesis that those reference proteins with a small 6, 
relative to the test protein are more likely to contribute 
valuable structural information. We reordered the refer- 
ence proteins according to 6,, and now repeated the anal- 
ysis as a function of the number of reference proteins 
Nref and of N,. Thus a multitude of estimates is gener- 
ated. To choose from this multitude -we adopted the fol- 
lowing selection criteria: -0.05 < fk G 1.05 (note the 
circles and triangles in the lower left corners in Fig. 3a 

which indicate negative {,). Furthermore we chose the 
estimate whose C fh was nearest to 1. -As a refinement 
the estimate with the smallest Z<Cnp;ll fk) can be chosen 
among the 10 estimates with C fk nearest to 1. This 
selection procedure thus resulted in models fine-tuned 
per test protein, with varying Nref and N,. 

The selection procedure is illustrated in Fig. 5. We 
note first that the three references with smallest 6, also 
show the smallest 8, (circles and squares, respectively, in 
Fig. 5a). It should be stressed that for an unknown pro- 
tein the S,,i of Fig. 5b are not available. For an unknown 
protein we want to select a (Nref, NJ pair with a small 
6,~. In this case of a protein with a dominant contribu- 
tion of a-helix, small 6,~ are reached with N, = 1 or 2. A 
requirement for our selection procedure is that those N, 
values are selected. The C & in Fig. 5c shows only a few 
estimates near 1, and the estimates with (Nref, N,) = (21, 
1) and (3, 1) are nearest to 1. The latter possesses the 
smallest Z( C fk). Thus with the refined selection we find 
the minimum &iof Fig.-5b, whereas with the selection of 
the estimate with C fk nearest to 1 we get the fifth 
best estimate. These two estimates have 6,~ of 0.04 and 
0.08, which are appreciable improvements compared to 
Fig. 3 (Nref = 21, N, = 5, 6,~ = 0.23). 

An overview of the locally linearized model with the 
selection of the estimate with c fk nearest to 1 is shown 
in Fig. 6. With all but two of the test proteins a smaller 

b) Nref ,d) 

0 D , , , I , , , , , , ( 
13 5 7 911l315171921 

8 
1 3 5 7 9 11 l3 15 17 19 21 

a) protein reordered C) Nref 

FIG. 5. Overview of the locally linearized model estimates for pro- 
tein 20 (hemoglobin). The reference set is reordered according to dis- 
tance 6, relative to the test protein. (a) 6, (circles) and 6, (squares, 
right ordinate) of reordered reference proteins. (b) 8,~ for the differ- 
ent models as a function of N,, (abscissa). The solid lines indicate N. 
= 1 (starting at the left) and N. = 7 (starting near the middle!, 
whereas the dotted lines represent the intermediate N. values. (c) C fk 
and (d) g(C f,J, both according to the format of (b). 
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FIG. 6. Overview of the results of the locally linearized model with 
the selection of 22: fk nearest to one (see text). Format as in Fig. 3. 

S,,i is found, compare Figs. 3c and 6c. The largest im- 
provements are found with proteins 20, 22, and 19, 
which were proteins with large CD spectra because of 
their a-helix fraction being larger than 70%. The selec- 
tion procedure does not take into account the quality of 
the fit of the CD spectrum. The differences in 8c,d be- 
tween Figs. 3d and 6d indicate that in the majority of the 
cases an estimate with N, < 5 is selected. Although this 
deteriorates the fit of the CD spectrum, it reduces the 
noise in St because less singular values-are taken into 
account. The correlation coefficients rr,,f, are larger for 
f2, f,, and f5 (A, P, and 0)-compare the diagonals of 
Figs. 3e and 6e. But there are still differences in rows 
two to five when we compare Figs. If and 6e. The rms 
residual in Fig. 6f is also appreciably smaller for classes 
A, T, and 0 (compare Fig. 3f). Like before the f;, = fk 
hypothesis is rejected for classes A and P (cf. the circles 
and triangles below the dotted lines in Fig. 6a). 

COMPARISON OF DIFFERENT METHODS 

In this section we compare the residuals of the models 
presented in this paper with those of two methods well 
known from the literature. All methods are applied to 
the data set of Fig. 1. Manavalan and Johnson (13) ex- 
tended the generalized inverse method (i.e., the linear 
model without noise) with a variable selection proce- 
dure. They deleted triplets of reference proteins from 
the reference set and selected the estimates which ful- 
filled the following criteria: 0.9 < C, fk < 1.1, fk 3 -0.05, 
and 8e,E < 9.22At (the measurement error). They applied 
brute force, testing removal of up to three reference 
proteins (1562 combinations when N,, = 21). The final 
estimate is the average of all estimates that fulfill the 

criteria. Provencher and Glockner (14) applied a 
damped least-squares method (also called ridge regres- 
sion (19)) in which they directly fitted the CD spectrum 
with the spectra of the reference set. With zero damp- 
ing, and N, = 5, their method is equivalent to the linear 
model without noise but with the constraints of Eq. [2]. 
With damping the method is biased toward reference 
proteins whose CD spectra resemble the test spectrum, 
and thus the method resembles more the locally linear- 
ized model. 

The first row of Table 1 represents the linear model 
(cf. Fig. 3f). The second and third row summarize the 
improvements which can be achieved with the locally 
linearized model and the two different selection proce- 
dures. The greatest gain in accuracy is found with 
classes 0, A, and T. The variable selection method of 
Manavalan and Johnson (13) failed to produce esti- 
mates that fulfill the criteria with proteins 6,19,20, and 
22. When we retained for these proteins the estimate of 
the linear model (row one), this method showed only a 
minor improvement (row four). Apart from these four 
proteins the method is about equal to that of row two. 
The damped least-squares method of Provencher and 
Glijckner (14) produces a series of solutions which de- 
pend on the damping parameter. Selection according to 
their criteria results in row five, which is not better than 
the linear model. As pointed out by Manavalan and 
Johnson (13) the best results with this method are 
reached when the estimate with five degrees of freedom 
is chosen (row six). Then the rms residuals are between 
those of rows two and three. 

With all methods, except for row five, the linear hy- 
pothesis fk = fk had to be rejected for classes A and P. 
With the improved damped least-squares method the 
hypothesis was also rejected for class H, because it pro- 

TABLE 1 

Comparison of Root Mean Square Residuals 6,~ (X100) of the 
Five Classes for Different Analysis Methods 

Secondary structure class 

Method H A P T 0 

Linear model” 9 16 7 11 17 
Locally linearized model 

Ib 9 12 8 7 9 

II’ 7 12 7 7 8 

Variable selection (13) 9 14 7 11 14 
Damped least squares (14) 

Id 12 21 6 11 8 

II 9 13 6 7 8 

b Selection of estimate with C & nearest to 1. 
c Selection of estimate with C fk near 1 and smallest i (2 f,). 
d Selection of estimate according to criteria of (14). 
e Selection of estimate with five degrees of freedom (13). 
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duced a slight but significant underestimation. Regard- 
ing the amount of computation time we found that the 
linear model required 1 s per protein on a SUN 4/280 
minicomputer. The locally linearized model and the 
damped least-squares method consumed 10 s, whereas 
the brute force variable selection method required 
1000 s. 

DISCUSSION 

The basis for the estimation of protein secondary 
structure from the CD spectrum is expressed in the lin- 
ear relations of Eqs. [l] and [5]. In Figs. lc and Id we 
noted that in general, similar structures produce similar 
CD spectra. Still there is a large scatter in these figures. 
Part of this scatter is due to nonlinear effects, like the 
chain length dependence of the CD spectra of a-helix 
and P-sheet (Figs. 39, 40, and 43 in Ref. (11)) and the 
contribution of aromatic side chains to the CD spectrum 
(4-6,12). These reasons for the scatter contribute to the 
inadequacy of the linear model. The local linearization 
circumvents this problem, by restricting the set of refer- 
ence proteins to those with small A,, which provided an 
appreciable improvement, especially with the proteins 
with more than 70% a-helix. We expect that the locally 
linearized model will benefit from a larger set of refer- 
ence proteins, thus providing a sophisticated interpola- 
tion method which leaves out inappropriate informa- 
tion. 

Still there remains the problem which criteria should 
be used for the selection of a solution. The fit of the CD 
spectrum indicated by small b,+ is not a good predictor 
for small S,f (cf. Figs. 2a, 2b, 3c, 3d, 6c, and 6d). The 
criteria of Manavalan and Johnson (13) provide an al- 
ternative. We found that next to the selection of the 
estimate with C fa near 1, the refined selection accord- 
ing to small G( C fk) produced the best results in Table 1. 
But we observe in Figs. 3a-and 6a that the error bars 
often do not cross the line fk - fk = 0. On the one hand 
the refined selection produced the smallest r-ms resid- 
uals, by selecting an estimate with small s( C fk). On the 
other hand, the residuals are larger than the estimated 
errors, w-hich pleads against selecting an estimate with a 
small c(f,). Since with both-selection methods the resid- 
uals are larger than the G(fk) we conclude that the error 
estimate L?(i,) is only a lower bound. 

With the selection according to C ik near 1 the inde- 
pendence of the estimates of the different fk disappears. 
It was discussed already under Explorations that the 
constraint is sometimes questionable. Furthermore, 
when the CD spectrum contains experimental errors, 
the use of the constraint can lead to failure (10). To deal 
with errors in the protein concentration we suggest to 
select those estimates whose C fk is within 1 plus or 
minus the error bounds of the concentration estimate. 

Since all improvements upon the linear model use the 
constraint C fk equal (14) or near to 1 (Ref. (13) and the 
locally linearized model) accurate determination of the 
concentration is of paramount importance. 

The model measure that is used most in the litera- 

ture, rfkjk.jh P ooled over all test proteins (the diagonals in 
Figs. 3e and 6e), seems to us an inappropriate measure. 
The aim of the model is not to produce a linear relation 
between fk and fk, but to find an unbiased estimate equal 
to fk (Eq. [18]). With class A (antiparallel P-sheet) a 
significant correlation coefficient rf2,i2 is found (Fig. 6e) 
but the hypothesis f̂  = f, had to be rejected. It is clear 
from the circles in Fig. 6a that f, - f, is negatively corre- 
lated with f,, especially with the larger f, values. From 
the estimates of the basis CD spectra-b,(X) one might 
infer the reasons for the inaccuracy off,. b,(X) and b2(X) 
show a large resemblance, with b,(X) being about three 
times as large as b,(X) (Fig. 4b). Since f, and fi are nega- 
tively correlated (Fig. If), one expects that: (i) with large 
f, and small f, the CD spectrum will be large and a small 
f, is easily overestimated (cf. the left group of circles 
above the dotted line in Fig. 6a); (ii) with small f, and 
large f, the CD spectrum will be small and a small f, may 
account for a large part of the CD spectrum, thereby 
causing underestimation of fi (cf. the right group of cir- 
cles below the dotted line in Fig. 6a). 

Thus the resemblance of b,(X) and b,(X) together with 
their chain length dependence is responsible for the in- 
adequacy of the antiparallel P-sheet estimate. 

Regarding the underestimation of f3 one must keep in 
mind that only a small range of f3 is represented in the 
reference set (cf. the distribution of the triangles in Fig. 
6a) including many f3 equal to zero. Thus it is not sur- 
prising that with so little information about f, available 
its estimate is inaccurate. 

From the comparison of the different methods we 
conclude that with the standard linear model only the 
a-helix class can be estimated accurately. The locally 
linearized model estimates also the P-turn and the other 
class adequately. But the estimation of the antiparallel 
and parallel P-sheet class remains unsatisfactory. Fur- 
thermore the residuals of about 0.08 (Table 1) warn 
against overinterpretation of the estimates. The 
method of Manavalan and Johnson (13) failed with 4 of 
the 22 proteins. With the other proteins the residuals 
were comparable to the locally linearized model. The 
method of Provencher and Glockner (14) with the selec- 
tion of the estimate with five degrees of freedom (13) 
was as good as the locally linearized model. However, 
the advantage of the latter is the estimation of the stan- 
dard deviations s(&). This error estimate is useful for 
the appreciation of the secondary structure estimate of 
an unknown protein. Furthermore it facilitates the 
quantitative interpretation of differences between pro- 
tein CD spectra which result from temperature, pH, or 
solvent variation. 
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APPENDIX: GLOSSARY ACKNOWLEDGMENTS 

UN 

B, 

B 
4v, c 
c 

NC, 
NEf 
NA 
NS 
V 

r 

u 
USVT 
Xk 

X 
z+ 
1 

iT 

CD spectrum belonging to secondary structure 
class k 

Row vector which describes the coupling be- 
tween C, and F 

Matrix consisting of rows B, and columns bk( X) 
CD spectrum 
Matrix whose columns contain the CD spectra 

of the reference proteins 
Row of matrix C 
Covariance matrix 
Degrees of freedom 
Root mean square difference (Eq. [3]) 
Fraction of secondary structure class k 
Row vector consisting of the fk of the reference 

proteins 
Matrix whose columns contain secondary 

structure classification of the reference pro- 
teins 

Number of secondary structure classes 
Number of proteins in the reference set 
Number of wavelengths of CD spectrum 
Number of significant singular values 
Gaussian white noise with zero mean and stan- 

dard deviation u,, N(0, a:) 
Pearson product-moment correlation coeffi- 

cient (Eq. [4]) 
Standard deviation 
Singular value decomposition (Eq. [S]) 
Row vector which describes the coupling be- 

tween Fk and C 
Matrix consisting of rows X, 
(Moore-Penrose) generalized inverse of 2 
Estimate of z 
Transpose of 2 

Secondary Structure Classes 

H, k = 1 a-helix 
A, k = 2 antiparallel P-sheet 
P, k = 3 parallel P-sheet 
T, k = 4 B-turn 
0, k = 5 other 
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