
This chapter utilizes narrative,
hands-on experimentation, and
review questions to introduce
computer science and technology
concepts.

A Balanced Introduction to Computer Science
David Reed ©Prentice Hall, 2004

Chapter 14: Inside the Computer – The von Neumann
Architecture

Any sufficiently advanced technology is indistinguishable from magic.
Arthur C. Clarke

John von Neumann draws attention to what seemed to him a contrast. He
remarked that for simple mechanisms, it is often easier to describe how they work
than what they do, while for more complicated mechanisms, it is usually the other
way around.

Edsger Dijkstra

As was discussed in Chapter 1, virtually all modern computers have the same basic layout,
known as the von Neumann architecture. This layout divides the hardware of a computer into
three main components: memory, a Central Processing Unit (CPU), and input/output devices.
The first component, memory, provides storage for data and program instructions. The CPU is in
charge of fetching instructions and data from memory, executing the instructions, and then
storing the resulting values back in memory. Input devices (such as the keyboard, mouse, and
microphone allow a person to interact with the computer by entering information and commands,
whereas output devices (such as the screen, speakers and printer) are used to communicate data,
instructions, and the results of computations.

This chapter explores the details of the von Neumann architecture by describing the inner
workings of a computer. We develop our explanation incrementally, starting with a simple
representation of the CPU datapath and then adding main memory and a Control Unit. When
combined with input and output devices, these components represent an accurate (albeit
simplified) model of a modern, programmable computer. Software simulators (originally

Reed (2004) Chapter 14 1

developed by Grant Braught at Dickinson College) are provided for each model to facilitate
experimentation and hands-on learning.

CPU Subunits and Datapath

As we saw in Chapter 1, the CPU acts as the brain of the computer. It is responsible for obtaining
data and instructions from memory, carrying out the instructions, and storing the results back in
memory. Each computer’s CPU can understand and execute a particular set of instructions,
known as that computer’s machine language. In Chapter 8, we explained that programmers can
control a computer by defining instructions for its CPU— this is accomplished either by writing
programs directly in machine language, or by writing programs in a high-level language and then
translating them into machine language. Even programs that exhibit complex behavior are
specified to the CPU as sequences of simple machine-language commands, each performing a
task no more complicated than adding two numbers or copying data to a new location. However,
the CPU can execute these instructions at such a high speed that complex programmatic behavior
is achieved.

CPU Subunits

The CPU itself is comprised of several subunits, each playing a specific role in the processor’s
overall operation. These subunits are the Arithmetic Logic Unit (ALU), the registers, and the
Control Unit (Figure 14.1).

• The Arithmetic Logic Unit (ALU) is the collection of circuitry that performs actual
operations on data. Basic operations might include addition, subtraction, and bit
manipulations (such as shifting or combining bits).

• Registers are memory locations that are built into the CPU. Since registers are integrated
directly into the CPU circuitry, data in registers can be accessed more quickly (as much
as 5-10 times faster) than data in main memory can. However, due to the limited number
of registers in the CPU (commonly 16 or 32), these memory locations are reserved for
data that the CPU is currently using. To function efficiently, the computer must
constantly copy data back and forth between registers and main memory. These transfers
occur across collections of wires called a bus, which connects the registers to main
memory. A separate set of buses connect the registers to the ALU, allowing the ALU to
receive data for processing and then store the results of computations back in the registers

• The Control Unit (CU) can be thought of as “the brain within the brain,” in that it
oversees the various functions of the CPU. The Control Unit is the circuitry in charge of
fetching data and instructions from main memory, as well as controlling the flow of data
from the registers to the ALU and back to the registers.

Reed (2004) Chapter 14 2

Figure 14. 1: Central Processing Unit (CPU) subunits. Since ALU operations such as addition and

subtraction operate on two values, there are two buses connecting the registers to the ALU. The result of the
ALU operation is passed back to the registers via a single bus.

CPU Datapath Cycles

The path that data follows within the CPU, traveling along buses from registers to the ALU and
then back to registers, is known as the CPU datapath. Every task performed by a computer,
from formatting a document to displaying a page in a Web browser, is broken down into
sequences of simple operations; the computer executes each individual operation by moving data
from the registers to the ALU, performing computations on that data within the ALU, and then
storing the result in the registers. A single rotation around the CPU datapath is referred to as a
CPU datapath cycle, or CPU cycle.

Recall that, in Chapter 1, we defined CPU speed as measuring the number of instructions that a
CPU can carry out in one second. Since each instruction requires a single CPU cycle to execute,
we can infer that a CPU’s speed will equal the number of CPU cycles that occur per second. For
example, an 800-MHz CPU can perform 800 million CPU cycles per second, whereas a 1.4-GHz
CPU can perform 1.4 billion CPU cycles per second. However, CPUs cannot be compared
solely on the basis of their processor speeds. This is because two machine languages might
divide the same task into different sets of instructions, and one set might be more efficient than
the other. That is, one CPU might be able to complete a task in a single cycle, whereas another
might require several cycles to complete the same task. In order to accurately evaluate a CPU’s
performance, you must consider the instruction set for that CPU, as well as the number of
registers and the size of the buses that carry data between components.

Datapath Simulator

To help you visualize the behavior of the CPU datapath, a simple simulator has been designed to
accompany the text. The CPU Datapath Simulator (accessible at
http://www.creighton.edu/~csc107/Sims/datapath.html) models a simple CPU
containing four registers. Using this simulator, you can follow the progress of data as it traverses
the CPU datapath, from the registers to the ALU and back to the registers. To keep things
simple, we have avoided including an explicit Control Unit in this simulator. Instead, the user

Reed (2004) Chapter 14 3

must serve as the Control Unit, selecting the desired input registers, ALU function, and output
register by clicking the knob images. Note that not all features of the simulator will be
demonstrated in this chapter. In particular, the ALU has two bit-manipulation operations, & and
|, which involve combining individual bits in the two input values. Likewise, there are status
boxes within the ALU that identify when an operation results in a negative number, zero, or an
overflow (a value too large to be represented). You are free to experiment with these features,
but all of the examples in this chapter will involve simple addition and subtraction.

Figures 14.2 through 14.5 demonstrate using the simulator to add two numbers together—a task
that can be completed during a single CPU cycle.

• This simulator uses text boxes to represent registers, enabling the user to enter data by
typing in the boxes. The knobs, which allow the user to specify how data moves along
the CPU datapath and what operations the ALU performs on the data, are images that
change when the user clicks them. In Figure 14.2, the user has entered the numbers 43
and -296 in registers R0 and R1, respectively. After inputting these values, the user
clicked the A Bus knob so that it selects R0 and the B Bus knob so that it selects R1.
This will cause the numbers stored in these two registers to be transferred along the
indicated buses to the ALU, which will perform an operation on them. Since the user has
set the ALU Operation knob to addition and the C Bus knob to R2, the ALU will add the
two numbers together, and the result will travel along the C Bus to be stored back in
register R2.

• After entering the desired settings, the user initiates a CPU cycle within the simulator by
clicking the button labeled "Execute". Figure 14.3 depicts the state of the CPU as the
values in R0 and R1 travel along the A and B buses to the ALU. The arrows that
represent the buses blink red, and the numbers being transferred are displayed in text
boxes next to the buses.

• Figure 14.4 illustrates the state of the CPU after the ALU has received the numbers and
performed the specified operation. Since the user set the ALU Operation knob to
addition, the ALU adds the two numbers, 43 and –296. The result, -253, is then sent out
along the C Bus.

• Finally, Figure 14.5 shows the end result of the CPU cycle. Since the user set the C Bus
knob to R2, the value –253 (which travels along the C Bus) is ultimately stored in register
R2.

Reed (2004) Chapter 14 4

Figure 14. 2: Initial settings of the simulator. Figure 14. 3: Data traveling from registers to the ALU.

Figure 14. 4: Data traveling from ALU to registers. Figure 14. 5: Final result of the CPU cycle.

Reed (2004) Chapter 14 5

HANDS-ON EXERCISES: Experiment with this simulator until you are familiar with the CPU
datapath and the events that occur within a CPU cycle. Then, use the simulator to answer the
following questions:

14.1. What would happen if you placed the number 100 in R0, then set the knobs so that A
Bus = R0, B Bus = R0, ALU = A-B, and C Bus = R0?

14.2. Describe the settings that would cause the value stored in R2 to be doubled.

14.3. How many cycles are required to add the contents of R0, R1, and R2 and then place
the sum in R3? Describe the settings for each cycle.

CPU and Main Memory

Although the CPU datapath describes the way in which a computer manipulates data stored in
registers, we have not yet explained how data gets into the registers in the first place, or how the
results of ALU operations are accessed outside the CPU. Both these tasks involve connections
between the CPU and main memory. Recall from Chapter 1 that all active programs and data are
stored in the main memory of a computer. We can think of main memory as a large collection of
memory locations, in which each location is accessible via an address. Similar to the way in
which a street address (e.g., 27 Maple Drive) allows a mail carrier to find and access a mailbox, a
memory address (e.g., memory location 27) allows the CPU to find and access a particular piece
of main memory. A bus connects main memory to the CPU, enabling the computer to copy data
and instructions to registers and then copy the results of computations back to main memory.
Figure 14.6 illustrates the interaction between a computer’s main memory and CPU; the darker
arrows represent the CPU datapath, whereas the lighter arrow represents the bus that connects
main memory to the registers.

Figure 14. 6: A bus connects Main Memory to the CPU.

Reed (2004) Chapter 14 6

Transferring Data to and from Main Memory

As a program is executed, the Control Unit processes the program instructions and identifies
which data values are needed to carry out the specified tasks. The required values are then
fetched from main memory along the main memory bus, loaded into registers, and utilized in
ALU operations.

As a concrete example, imagine that you had a file containing 1,000 numbers and needed to
compute the sum of those numbers. To begin, the computer would need to load the data from the
file into main memory—for example, at memory locations 500 through 1499. Then, the Control
Unit would carry out the following steps to add the numbers and store the resulting sum back in
main memory.

1. Initialize one of the registers, say R0, to 0. This register will store the running
total of the numbers.

2. For each number stored at memory addresses 500 through 1499:
a. Copy the number from main memory to another register, say R1.
b. During one cycle around the CPU datapath, add the contents of R0 and R1

and store the result back in R0.
3. When all the numbers in the file have been processed, the value in R0 will

represent their sum. This value can then be copied back to a main memory
location.

Note that each number must be transferred into a register before it can be added to the
sum. In practice, transferring data between main memory and the CPU takes much
longer than executing a single CPU cycle. This is mainly due to the fact that the
electrical signals must travel a greater distance—for example, from a separate RAM chip
to the CPU chip. In the time it takes for data to traverse the main memory bus and reach
the registers, several CPU cycles may actually occur. Modern processors compensate for
this delay with special hardware that allows multiple instructions to be fetched at once.
By fetching several instructions ahead, the processor can often identify instructions that
are not dependent on the current one, and execute them while the current data transfer is
in progress. Thus, the CPU can perform useful computations as opposed to sitting idle
while an instruction waits for data to be copied from main memory to the registers.

Datapath with Memory Simulator

Our next version of the CPU DataPath Simulator has been augmented so that it illustrates the
relationship between the CPU and main memory. The main memory incorporated in this
extended simulator (accessible at
http://www.creighton.edu/~csc107/Sims/dpandmem.html) can store up to 32 16-bit
numbers, with addresses 0 through 31. A new bus, labeled "Main Memory Bus," connects the
main memory to the CPU, allowing data and computation results to be transferred between the
main memory and the registers. As in our previous example, this version of the simulator does

Reed (2004) Chapter 14 7

not contain an explicit Control Unit. The user must serve as the Control Unit, selecting the
desired settings on the Main Memory Bus and C Bus to control the data flow. Note that these
buses can move data either between main memory and the registers or from the ALU to main
memory, depending on how the user sets the switches. The user can open and close these bus
switches by clicking them, effectively disconnecting and connecting the buses.

Figures 14.7 through 14.9 demonstrate using the simulator to add two numbers stored in main
memory.

• When the CPU must add two numbers stored in main memory, the first step is to copy
one of the numbers into a register. In Figure 14.7, the user has selected the first number
to be added, currently in main memory location 0, by clicking the R/W button next to that
location (R/W refers to the fact that the button selects which memory location will be read
from or written to). The user has also configured the arrows surrounding the Main
Memory Bus so that they connect main memory to the registers. Once inside the CPU,
the Main Memory Bus connects to the C Bus, which loads the number into register R0
(since the C Bus knob is set to R0).

• Figure 14.8 illustrates the next step in our example, which involves copying the second
number into a register. Since the user has highlighted the R/W button next to main
memory location 1 and set the C Bus knob to R1, the contents of location 1 are fetched
and stored in register R1.

• Figure 14.9 depicts the CPU cycle during which the ALU adds the contents of R0 and
R1. Note that the A Bus, B Bus, and ALU Operation knob settings are the same as those
in Figures 14.3 through 14.6; this is because the two examples portray the same task (i.e.,
adding the numbers stored in R0 and R1). In Figure 14.9, however, the switches on the
Main Memory bus are set so that the result of the addition is sent to main memory, rather
than to the registers.

Reed (2004) Chapter 14 8

Figure 14. 7: First, 43 is loaded from memory into R0.

Figure 14. 8: Second, -296 is loaded from main memory into R1.

Reed (2004) Chapter 14 9

Figure 14. 9: Finally, the values are added, and their sum is stored back in main memory.

Two interesting observations can be made concerning the behavior of the simulator. First, the
simulator requires more time to transfer data between main memory and the CPU than it does to
perform a CPU datapath cycle. This delay is meant to simulate the slower access times
associated with main memory. In a real computer, as many as 10 CPU cycles might occur in the
time it takes to transfer data between the CPU and main memory. The second observation is
that, even while data is being fetched from main memory, operations are still performed on the
CPU datapath. For example, in Figure 14.8, the number in R0 (43) is sent along both the A and
B Buses to the ALU, yielding the sum 86. This might seem wasteful, since the result of the
ALU operation is ignored (due to the disconnected C Bus). Surprisingly, this is an accurate
reflection of a CPU’s internal workings. It is more efficient for the ALU to perform needless
computations while data is being transferred to or from main memory than it would be to add
extra circuitry to recognize whether the C Bus is connected.

HANDS-ON EXERCISES: Experiment with this simulator until you are familiar with the
interactions between main memory and the CPU datapath. Then, use the simulator to answer the
following questions:

14.4. What settings would result in the sum of registers R0 and R3 being stored in memory
location 4?

14.5. What settings would cause the contents of memory address 4 to be copied into
register R0?

14.6. Assuming that data can be copied to and from main memory in a single CPU cycle,
how many cycles are required to add the contents of memory addresses 5 and 6 and
then store the result in memory address 7? Describe the settings for each cycle.

Reed (2004) Chapter 14 10

Stored-Program Computer

Now that we have explored how main memory works, we are ready to focus on the last
component of the CPU: a fully functioning, automatic Control Unit. To understand the role of
the Control Unit, recall the tasks that you performed while using the simulators. When you
experimented with the Datapath Simulator (Exercises 14.1 – 14.3), you defined the computation
carried out during a CPU cycle by selecting the registers and ALU operation via knobs. In the
datapath and main memory simulator (Exercises 14.4 – 14.6), you controlled the flow of
information between the datapath and main memory via switches on the buses. The key idea
behind a stored-program computer is that tasks such as these can be represented as instructions,
stored in main memory along with data, and then carried out by the Control Unit.

Machine Languages

As we explained in Chapter 8, a machine language is a set of binary codes corresponding to the
basic tasks that a CPU can perform. In essence, each machine-language instruction specifies
how various hardware components must be configured in order for a CPU cycle to perform a
particular computation. Thus, we could define machine-language instructions for our simulator
by enumerating all the physical settings of the knobs and switches. For example, the settings:

A Bus = R0 ALU Switch = closed
B Bus = R1 MMIn Switch = open
ALU = A+B MMOut Switch = open
C Bus = R2 C Switch = closed

would define a configuration in which the contents of R0 and R1 are added and stored back in
R2. This notation might suffice to control the behavior of a very simple machine, such as the
one represented in our simulator; however, real-world CPUs contain an extremely large number
of physical components, and specifying the status of all these parts during every CPU cycle
would be impossible. Furthermore, since machine-language instructions are stored in memory
along with data, the instructions must ultimately be represented as bit patterns.

Figure 14.10 describes a simple machine language that has been designed for our simulator.
Since the main memory locations in our simulator can hold a maximum of 16 bits, our language
represents each instruction as a 16-bit pattern. The initial bits indicate the type of task that the
CPU must perform, whereas the subsequent bits indicate the registers and/ or memory locations
involved in the task. Since there are only four registers, two bits suffice to represent a register
number; since there are 32 main memory locations, five bits suffice to represent a memory
address. For instance, all instructions that involve adding the contents of two registers begin with
the bit pattern: 1010000100. The final six bits of an addition instruction represent the destination
register (i.e., the register where the result will be stored) and the source registers (i.e., the
registers whose contents will be added by the ALU), respectively. As an example, suppose that
you wanted to add the contents of R0 and R1 and then store the result in R2—i.e., R2 = R0 + R1.
The bit patterns for R2 (2 = 102), R0 (0 = 002), and R1 (1 = 012) would be appended to the initial
bit pattern for addition (1010000100), yielding the machine-language instruction:

Reed (2004) Chapter 14 11

1010000100100001. Similarly, if the intent were R3 = R0 + R1, then the bit pattern for R3 (3 =
112) would replace that of R2: 1010000100110001.

Operation Machine-Language
Instruction Example

add contents of two
registers, store result
in another register

e.g., R0 = R1 + R2

1010000100 RR RR RR

1010000100 00 01 10

will add contents of R1 (01)
and R2 (10), then store the
result in R0 (00)

subtract contents of two
registers, store result
in another register

e.g., R0 = R1 – R2

1010001000 RR RR RR

1010001000 00 01 10

will take contents of R1 (01),
subtract R2 (10), then store
the result in R0 (00)

load contents of memory
location into register

e.g., R3 = M[5]

100000010 RR MMMMM

100000010 11 00101

will load contents of memory
location 5 (00101) into R3 (11)

store contents of
register in memory
location

e.g., M[5] = R3

100000100 RR MMMMM

100000100 11 00101

will store contents of memory
location 7 (00101) in R3 (11)

move contents of one
register into another
register

e.g., R1 = R0

100100010000 RR RR

100100010000 01 00

will move contents of R0 (00)
to R1 (01)

halt the machine 1111111111111111 N/A

Figure 14. 10: Machine Language for Computer Simulator

The first two machine-language instructions in Figure 14.10 correspond to tasks that users can
perform with the CPU Datapath simulator—i.e., selecting an ALU operation to be executed and
the registers to be operated on during a CPU cycle. The next three instructions correspond to
tasks that users can perform with the datapath and memory version of the simulator—i.e.,
controlling the flow of information between the main memory and the datapath. The last
instruction, HALT, tells the Control Unit when a sequence of instructions terminates. Of course,
a real CPU would require many more instructions than these. For example, if a CPU executes
programs that include conditional statements (such as JavaScript if statements and while loops),
its machine language must support branching instructions that allow the CPU to jump from one
instruction to another. However, Figure 14.10’s limited instruction set is sufficient to
demonstrate the workings of a basic CPU and its Control Unit.

Control Unit

Once a uniform machine language for a particular CPU is established, instructions can be stored
in main memory along with data. It is the job of the Control Unit to obtain each machine-
language instruction from memory, interpret its meaning, carry out the specified CPU cycle, and
then move on to the next instruction. Since instructions and data are both stored in the same

Reed (2004) Chapter 14 12

memory, the Control Unit must be able to recognize where a sequence of instructions begins and
ends. In real computers, this task is usually performed by the operating system, which maintains
a list of each program in memory and its location. For simplicity, our simulator assumes that the
first instruction is stored in memory location 0. The end of the instruction sequence is explicitly
identified using the HALT bit pattern.

In order to track the execution of an instruction sequence, the Control Unit maintains a Program
Counter (PC), which stores the address of the next instruction to be executed. Since we are
assuming that all programs start at address 0, the PC’s value is initialized to 0 before program
execution begins. When the Control Unit needs to fetch and execute an instruction, it accesses
the PC and then obtains the instruction stored in the corresponding memory location. After the
Control Unit fetches the instruction, the PC is incremented so that it identifies the next
instruction in the sequence.

The steps carried out by the Control Unit can be defined as a general algorithm, in which
instructions are repeatedly fetched and executed:

Fetch-Execute Algorithm carried out by the Control Unit:

1. Initialize PC = 0.
2. Fetch the instruction stored at memory location PC, and set PC = PC + 1.
3. As long as the current instruction is not the HALT instruction:

a. Decode the instruction – that is, determine the CPU hardware settings required
to carry it out.

b. Configure the CPU hardware to match the settings indicated in the instruction.
c. Execute a CPU datapath cycle using those settings.
d. When the cycle is complete, fetch the next instruction from memory location

PC, and set PC = PC + 1.

For example, suppose that main memory contained the program and data shown in Figure 14.11.

0: 1000000100000101 // load memory location 5 into R0
1: 1000000100100110 // load memory location 6 into R1
2: 1010000100100001 // add R0 and R1, store result in R2
3: 1000001001000111 // copy R2 to memory location 7
4: 1111111111111111 // halt
5: 0000000000001001 // data to be added: 9
6: 0000000000000001 // data to be added: 1
7: 0000000000000000 // location where sum is to be stored

Figure 14.11: Machine-language program for adding two numbers in memory.

Reed (2004) Chapter 14 13

The first five memory locations (addresses 0 through 4) contain machine-language instructions
for adding two numbers and storing their sum back in memory. The numbers to be added are
stored in memory locations 5 and 6. To execute this program, the Control Unit would carry out
the following steps:

1. First, the Program Counter is initialized: PC = 0.
2. The instruction at memory location 0 (corresponding to the current value of PC) is

fetched, and the PC is incremented: PC = 0 + 1 = 1.
3. Since this instruction (1000000100000101) is not a HALT instruction, it is decoded:

the CPU hardware is configured so that it will load the contents of memory location 5
into register R0, and a CPU cycle is executed.

4. The next instruction (at memory location 1, corresponding to the current value of PC)
is fetched, and the PC is incremented: PC = 1 + 1 = 2.

5. Since this instruction (1000000100100110) is not a HALT instruction, it is decoded:
the CPU hardware is configured so that it will load the contents of memory location
6 into register R1, and a CPU cycle is executed.

6. The next instruction (at memory location 2, corresponding to the current value of PC)
is fetched, and the PC is incremented: PC = 2 + 1 = 3.

7. Since this instruction (1010000100100001) is not a HALT instruction, it is decoded:
the CPU hardware is configured so that it will add the contents of registers R0 and R1
and store the result in register R2, and a CPU cycle is executed.

8. The next instruction (at memory location 3, corresponding to the current value of PC)
is fetched, and the PC is incremented: PC = 3 + 1 = 4.

9. Since this instruction (1000001001000111) is not a HALT instruction, it is decoded:
the CPU hardware is configured so that it will copy the contents of register R2 to
memory location 7, and a CPU cycle is executed.

10. The next instruction (at memory location 4, corresponding to the current value of PC)
is fetched, and the PC is incremented: PC = 4 + 1 = 5.

11. Since this instruction (1111111111111111) is a HALT instruction, the Control Unit
recognizes the end of the program and stops executing.

Stored-Program Computer Simulator

The Stored-Program Computer Simulator (accessible at
http://www.creighton.edu/~csc107/Sims/computer.html) models the behavior of a
complete, stored-program computer. Instructions and data can be entered into memory, with the
first instruction assumed to be at memory location 0. The Control Unit is responsible for
fetching and interpreting the machine-language instructions, as well as carrying out the tasks
specified by those instructions.

The simulator contains several display boxes to illustrate the Control Unit’s inner workings. As
we described in the previous section, the Program Counter (PC) lists the address of the next
instruction to be executed. In addition to the PC, CPUs also maintain an Instruction Register
(IR), which lists the instruction that the Control Unit is currently executing. The IR is displayed

Reed (2004) Chapter 14 14

in the simulator as an additional text box. Above these boxes, the simulator exhibits the actual
knob and switch settings defined by the current instruction – this makes the correspondence
between the machine-language instruction and the CPU hardware settings more obvious. Knob
settings are specified as 2-bit binary numbers: 00 represents a knob pointing straight up, 01
represents a knob pointing to the right, 10 represents a knob pointing down, and 11 represents a
knob pointing to the left. The four switch settings are represented by a four-bit pattern, with a 1
bit indicating a closed switch and a 0 bit indicating an open switch (the topmost switch in the
simulator, the C Bus, corresponds to the first bit, followed by the three remaining switches from
left to right).

Figures 14.12 through 14.17 demonstrate using the simulator to execute the example machine-
language program from Figure 14.11.

• Figure 14.12 depicts the initial state of the simulator. The machine-language instructions
are stored in main memory, starting at address 0. The data required to execute the
instructions is also stored in memory, at addresses 5 and 6, immediately following the last
instruction. Within the Control Unit, the Program Counter (PC) is initialized to 0, so the
instruction at address 0 will be the first to be loaded and executed. To assist the user, the
page includes a link to a reference page that summarizes all of the machine and assembly
language instructions, labeled "Machine/Assembly Language Instructions."

• Figure 14.13 portrays the simulator after the first instruction has been executed. Within
the Control Unit, the instruction from address 0 has been loaded into the Instruction
Register and translated into the knob and switch settings required to carry out the
specified CPU datapath cycle. Once the Control Unit determines the correct knob and
switch settings, it carries out the corresponding CPU datapath cycle. In this case, the
value from memory location 5, the number 9, is loaded into register R0. Note that the PC
is automatically incremented after the instruction has been executed, so the next
instruction to be fetched and executed will be the instruction at address 1.

• Figure 14.14 shows the simulator after the next instruction, from memory location 1, has
been executed. Here, the value from memory location 6, the number 1, is loaded into
register R1.

• Figure 14.15 depicts the result of executing the next instruction, from memory location 2,
which adds the contents of registers R0 and R1 and stores the result in register R2.

• Figure 14.16 portrays the result of executing the next instruction, from memory location
3, which copies the result of the addition, stored in R2, into memory location 7.

• Finally, Figure 14.17 shows the computer after the program terminates. Recall that the
HALT instruction 1111111111111111 tells the Control Unit to stop processing. Since no
datapath cycle is executed once the HALT instruction is recognized by the Control Unit,
the knob and switch settings within the datapath are not changed from the previous cycle.

Reed (2004) Chapter 14 15

Figure 14. 12: Initial state of the simulator, with program stored in main memory.

Figure 14. 13: Simulator after the first instruction has been executed (R0 = MM5).

Reed (2004) Chapter 14 16

Figure 14. 14: Simulator after the second instruction has been executed (R1 = MM6).

Figure 14. 15: Simulator after the third instruction has been executed (R2 = R0 + R1).

Reed (2004) Chapter 14 17

Figure 14. 16: Simulator after the fourth statement has been executed (MM7 = R2).

Figure 14. 17: Simulator after the fifth statement has been executed (HALT).

Reed (2004) Chapter 14 18

The simulator is designed so that the user can enter values in main memory as either decimal or
binary numbers. By default, values entered by the user are assumed to be decimal numbers.
However, the user can always select 2 from the View As box to the left of a memory location in
order to view the contents in binary. Before entering a machine-language instruction in a
memory cell, the user must first set the value of the View As box to 2, since machine-language
instructions are represented in binary.

HANDS-ON EXERCISES: Experiment with this simulator until you are familiar with its
behavior. Then, use the simulator to answer the following questions:

14.7. What task would the following machine-language program perform?

0: 1010001000000000
1: 1000001000000011
2: 1111111111111111

14.8. What sequence of machine-language instructions would cause the contents of the four
registers to be copied into memory locations 7, 8, 9, and 10, respectively?

14.9. What sequence of machine-language instructions would cause the simulator to add
the contents of memory locations 10, 11, and 12 and then store the result in memory
location 13?

14.10. What do you think would happen if you forgot to place a HALT instruction at the end
of a machine-language program? How would the Control Unit react? Use the
simulator to test your prediction, then report the results.

The Role of Input/Output Devices

To complete our description of the stored-program computer, we must at least briefly discuss the
role of input and output devices. Input devices such as keyboards, mice, and scanners allow the
user to communicate with the computer by entering data and instructions, which are then stored
in memory and accessed by the CPU. Likewise, output devices such as display screens,
speakers, and printers allow the user to view the current status of the computer and access
computation results that are stored in memory.

Computers that are designed to run one program at a time, such as the first programmable
computers (introduced in the 1950s) and the first personal computers (introduced in the 1970s),
provide relatively straightforward methods of user interaction. The user enters program
instructions and data directly into main memory locations via input devices such as keyboards or
tape readers. Then, by flipping a switch or entering a specific command, the user instructs the
CPU to fetch the program instructions from memory and execute them in sequential order. Once
a particular computation has been completed, the user can view its result by sending the contents
of memory to a printer or display screen. This process is closely modeled by our simulator, in
which the user enters instructions and data by typing them in main memory boxes, then initiates
execution by clicking a button. In the case of the simulator, however, the final step of sending

Reed (2004) Chapter 14 19

results to an output device is not necessary – the contents of the registers and main memory are
already visible.

As we discussed in Chapters 6 and 10, most modern computers allow for multitasking, meaning
that multiple programs can be loaded in main memory and be active simultaneously. When
multiple programs are to be executed, user interactions and the computations that result from
those interactions become more complex. In particular, the instructions and data associated with
each program must be loaded into separate portions of main memory. When the user switches
from one program to another (say by clicking on a different window in the graphical user
interface), the CPU must save the state of the current program and be able to locate the portion of
memory associated with the new program. These tasks, and many others involving the
coordination of programs and CPU processing, are managed by the operating system.

Machine v. Assembly Languages

It is important to note that the machine language and hardware configurations associated with
our simulator are much simpler than those of any actual computer. A real machine language
might encompass tens or hundreds of instructions, and a real CPU might contain hundreds or
thousands of configurable components. However, our model is sufficient to demonstrate
computer behavior at its lowest level.

The simulator is also useful in representing the difficulty and tedium of programming in a
machine language. As you learned in Chapter 8, writing, debugging, and understanding bit-
sequence instructions can be mind-numbing work. Over the past fifty years, computer
programming has advanced significantly, and most modern programmers are able to avoid direct
machine-language programming. Some of the earliest programmer tools were assembly
languages, which substitute words for bit patterns, allowing the programmer to write:

ADD R0 R1 R2

instead of the machine-language instruction:

1010000100000110

It is much easier for programmers to remember and understand assembly-language instructions
than patterns of 0s and 1s. Furthermore, most assembly languages support the use of variable
names, enabling programmers to specify memory locations by descriptive names, rather than by
numerical addresses. This greatly simplifies the programmer's task, since she no longer needs to
worry about the physical location of data and how locations might shift as new instructions are
inserted into memory.

Figure 14.18 lists one possible set of assembly-language instructions that correspond to the
machine-language instructions from Figure 14.11.

Reed (2004) Chapter 14 20

Operation Machine-Language

Instruction
Assembly-Language

Instruction
add contents of two
registers, then store
result in another register

e.g., R0 = R1 + R2

1010000100 RR RR RR

e.g., 1010000100 00 01 10

ADD [REG] [REG] [REG]

e.g., ADD R0 R1 R2

subtract contents of two
registers, then store
result in another register

e.g., R0 = R1 – R2;

1010001000 RR RR RR

e.g., 1010001000 00 01 10

SUB [REG] [REG] [REG]

e.g., SUB R0 R1 R2

load contents of memory
location into register

e.g., R3 = MM5

100000010 RR MMMMM

e.g., 100000010 11 00101

LOAD [REG] [MEM]

e.g., LOAD R3 5

store contents of register
into memory location

e.g., MM5 = R3

100000100 RR MMMMM

e.g., 100000100 11 00101

STORE [MEM] [REG]

e.g., STORE 5 R3

move contents of one
register into another
register

e.g., R1 = R0

100100010000 RR RR

e.g., 100100010000 01 00

MOVE [REG] [REG]

e.g., MOVE R1 R0

halt the machine 1111111111111111 HALT

Figure 14. 18: Assembly-language instructions.

Within the Stored Program Computer Simulator, the user may enter assembly-language
instructions directly in memory. The default mode for displaying the contents of memory
locations, labeled "Auto" in the View As box, will automatically recognize assembly-language
instructions and will display them as text (changing the label to "Inst" to acknowledge that they
are instructions). After inputting the instructions, the user can switch between viewing the
instruction in assembly- or machine-language form by selecting Inst (for assembly-language
instructions) or 2 (for machine-language instructions in binary form) in the View As box to the
left of the instruction. For example, Figure 14.19 depicts the same program that is pictured in
Figure 14.12, but here the instructions are formatted as Inst.

Reed (2004) Chapter 14 21

Figure 14. 19: Assembly-language program displayed in computer simulator.

HANDS-ON EXERCISES: Experiment with the simulator until you are comfortable with the
correspondence between machine-language and assembly-language instructions. Then, use the
simulator to answer the following questions:

14.11. What sequence of assembly-language instructions corresponds to the machine-
language instruction set from Exercise 14.7?

14.12. What sequence of assembly-language instructions corresponds to the machine-
language instruction set you wrote in Exercise 14.9?

14.13. Write a sequence of assembly-language instructions that multiplies the contents of
memory location 10 by four. For example, if the number 10 were stored in memory
location 10, executing your instructions would cause the simulator to store 40 there.
Note: although the ALU Operation knob does not provide a multiplication setting, a
number can be multiplied via repeated additions (e.g., 10* 4 = 10+10+10+10).

Reed (2004) Chapter 14 22

Looking Ahead…

In this chapter, you studied the internal workings of computers, focusing on the CPU, main
memory, and their interactions. By experimenting with the various simulators, you saw how the
CPU breaks up even the most complex computing tasks into sequences of very simple
instructions, each of which can be executed during a single CPU datapath cycle. Although buses
that connect the CPU to main memory enable the manipulation of large amounts of data, the
computer must transfer each data value into a CPU register, perform operations on the value
within the ALU, and then store the result of the computation back in main memory. The
combination of a Control Unit and main memory allows computers to process stored programs.
This behavior was modeled by our most sophisticated simulator, in which programs consisting of
machine-language instruction sequences were stored in memory, fetched and decoded by the
Control Unit, then executed in a series of CPU datapath cycles.

Building upon your general understanding of computer components and their organization,
Chapter 16 will delve deeper into the details of their design and construction. In particular, you
will study the construction and behavior of transistors and integrated circuits. However, before
you consider how these technologies are used to build the hardware components of computer,
Chapter 15 will describe a general methodology for designing and implementing software
components. The object-oriented approach to software development attempts to simplify the
task of designing and testing software systems by focusing on programming structures that
model real-world objects. For example, a JavaScript string is an object that models a word or
phrase, with useful operations on a string (such as capitalizing it or extracting a substring)
provided as part of the language. Chapter 15 will describe the JavaScript string type, and explore
applications that involve storing and manipulating text

Reed (2004) Chapter 14 23

Review Questions

1. TRUE or FALSE? Any piece of memory that is used to store the sum of numeric values
is known as a register.

2. TRUE or FALSE? The path that data follows within the CPU, traveling along buses
from registers to the ALU and then back to registers, is known as the CPU datapath.

3. TRUE or FALSE? All modern CPUs provide the same set of basic operations that can be
executed in a single CPU cycle.

4. TRUE or FALSE? The size of main memory is generally measured in MHz or GHz.
5. TRUE or FALSE? Suppose you wish to add two numbers that are stored in memory.

Before the Arithmetic Logic Unit (ALU) can add the numbers, they must first be
transferred to registers within the CPU.

6. TRUE or FALSE? In real computers, it takes roughly the same amount of time to
transfer data from main memory to registers as it does to add two numbers in registers.

7. TRUE or FALSE? Within the CPU, the Control Unit is responsible for fetching
machine-language instructions from memory, interpreting their meaning, and carrying
out the specified CPU cycles.

8. TRUE or FALSE? Suppose a CPU contains eight registers. Within a machine-language
instruction, at least three bits would be required to uniquely identify one of the registers.

9. TRUE or FALSE? In a multitasking computer, the Program Counter keeps track of how
many programs are currently loaded into main memory.

10. TRUE or FALSE? In a stored-program computer, both machine-language instructions
and the data operated on by those instructions can reside in main memory at the same
time.

11. Name the three subunits of the CPU, and describe the role of each subunit in carrying out

computations.
12. Describe how data values move around the CPU datapath and what actions occur during

a single CPU cycle. How does the datapath relate to CPU speed?
13. Consider two computer systems that are identical except for their CPUs. System 1

contains a 1.8 GHz Pentium 4, whereas System 2 contains a 1.8 GHz PowerPC processor.
Will these two systems always require the same amount of time to execute a given
program? Justify your answer.

14. Consider the following tasks: (1) adding 100 numbers stored in main memory, and (2)
adding a number to itself 100 times. Although both tasks require 100 additions, the
second would be executed much more quickly than the first would. Why?

15. Machine languages are machine-specific, meaning that each type of computer has its own
machine language. Explain why this is the case.

16. Within the Control Unit, what is the role of the Program Counter (PC)? That is, how is
the PC used in fetching and executing instructions?

17. In a stored-program computer, both instructions and data are stored in main memory.
How does the Control Unit know where the program instructions begin? How does it
know where the instructions end?

18. Describe two advantages of assembly languages over machine languages.

Reed (2004) Chapter 14 24

References

Brain, Marshall. "How Microprocessors Work." HowStuffWorks, January 2003.
 Online at http://www.howstuffworks.com/microprocessor.htm

Braught, G. "Computer Organization in the Breadth First Course." Journal of Computing in

Small Colleges 16(4), 2001.

Braught, Grant, and David Reed. "The Knob & Switch Computer: A Computer Architecture

Simulator for Introductory Computer Science." ACM Journal of Educational Resources in
Computing 1(4), 2001.

Malone, Michael. The Microprocessor: A Biography. New York, NY: Springer Verlag, 1995.

"The PC Technology Guide – Components/Processors". PCTechGuide, December 2002.
 Online at http://www.pctechguide.com/02procs.htm

Stallings, William. Computer Organization and Architecture: Designing for Performance, 6th

Edition. Upper Saddle River, NJ: Prentice Hall, 2003.

Tanenbaum, Andrew S. Structured Computer Organization, 4th Edition. Upper Saddle River,

NJ: Prentice Hall, 1999.

Reed (2004) Chapter 14 25

