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Chapter 14: Inside the Computer – The von Neumann 
Architecture 

 

Any sufficiently advanced technology is indistinguishable from magic.  
Arthur C. Clarke 

 
 
John von Neumann draws attention to what seemed to him a contrast. He 
remarked that for simple mechanisms, it is often easier to describe how they work 
than what they do, while for more complicated mechanisms, it is usually the other 
way around.  

Edsger Dijkstra 

 

As was discussed in Chapter 1, virtually all modern computers have the same basic layout, 
known as the von Neumann architecture. This layout divides the hardware of a computer into 
three main components: memory, a Central Processing Unit (CPU), and input/output devices. 
The first component, memory, provides storage for data and program instructions. The CPU is in 
charge of fetching instructions and data from memory, executing the instructions, and then 
storing the resulting values back in memory. Input devices (such as the keyboard, mouse, and 
microphone allow a person to interact with the computer by entering information and commands, 
whereas output devices (such as the screen, speakers and printer) are used to communicate  data, 
instructions, and the results of computations.  

This chapter explores the details of the von Neumann architecture by describing the inner 
workings of a computer. We develop our explanation incrementally, starting with a simple 
representation of the CPU datapath and then adding main memory and a Control Unit. When 
combined with input and output devices, these components represent an accurate (albeit 
simplified) model of a modern, programmable computer. Software simulators (originally 
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developed by Grant Braught at Dickinson College) are provided for each model to facilitate 
experimentation and hands-on learning. 

 

CPU Subunits and Datapath 

As we saw in Chapter 1, the CPU acts as the brain of the computer. It is responsible for obtaining 
data and instructions from memory, carrying out the instructions, and storing the results back in 
memory.  Each computer’s CPU can understand and execute a particular set of instructions, 
known as that computer’s machine language.  In Chapter 8, we explained that programmers can 
control a computer by defining instructions for its CPU— this is accomplished either by writing 
programs directly in machine language, or by writing programs in a high-level language and then 
translating them into machine language.  Even programs that exhibit complex behavior are 
specified to the CPU as sequences of simple machine-language commands, each performing a 
task no more complicated than adding two numbers or copying data to a new location.  However, 
the CPU can execute these instructions at such a high speed that complex programmatic behavior 
is achieved.  

 

CPU Subunits 

The CPU itself is comprised of several subunits, each playing a specific role in the processor’s 
overall operation. These subunits are the Arithmetic Logic Unit (ALU), the registers, and the 
Control Unit (Figure 14.1).  

• The Arithmetic Logic Unit (ALU) is the collection of circuitry that performs actual 
operations on data. Basic operations might include addition, subtraction, and bit 
manipulations (such as shifting or combining bits). 

• Registers are memory locations that are built into the CPU. Since registers are integrated 
directly into the CPU circuitry, data in registers can be accessed more quickly (as much 
as 5-10 times faster) than data in main memory can. However, due to the limited number 
of registers in the CPU (commonly 16 or 32), these memory locations are reserved for 
data that the CPU is currently using.  To function efficiently, the computer must 
constantly copy data back and forth between registers and main memory. These transfers 
occur across collections of wires called a bus, which connects the registers to main 
memory. A separate set of buses connect the registers to the ALU, allowing the ALU to 
receive data for processing and then store the results of computations back in the registers 

• The Control Unit (CU) can be thought of as “the brain within the brain,” in that it 
oversees the various functions of the CPU. The Control Unit is the circuitry in charge of 
fetching data and instructions from main memory, as well as controlling the flow of data 
from the registers to the ALU and back to the registers.   
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Figure 14. 1: Central Processing Unit (CPU) subunits.  Since ALU operations such as addition and 

subtraction operate on two values, there are two buses connecting the registers to the ALU.  The result of the 
ALU operation is passed back to the registers via a single bus.   

 

CPU Datapath Cycles 

The path that data follows within the CPU, traveling along buses from registers to the ALU and 
then back to registers, is known as the CPU datapath.   Every task performed by a computer, 
from formatting a document to displaying a page in a Web browser, is broken down into 
sequences of simple operations; the computer executes each individual operation by moving data 
from the registers to the ALU, performing computations on that data within the ALU, and then 
storing the result in the registers.   A single rotation around the CPU datapath is referred to as a 
CPU datapath cycle, or CPU cycle.  

Recall that, in Chapter 1, we defined CPU speed as measuring the number of instructions that a 
CPU can carry out in one second.  Since each instruction requires a single CPU cycle to execute, 
we can infer that a CPU’s speed will equal the number of CPU cycles that occur per second.  For 
example, an 800-MHz CPU can perform 800 million CPU cycles per second, whereas a 1.4-GHz 
CPU can perform 1.4 billion CPU cycles per second.  However, CPUs cannot be compared 
solely on the basis of their processor speeds.  This is because two machine languages might 
divide the same task into different sets of instructions, and one set might be more efficient than 
the other.  That is, one CPU might be able to complete a task in a single cycle, whereas another 
might require several cycles to complete the same task.  In order to accurately evaluate a CPU’s 
performance, you must consider the instruction set for that CPU, as well as the number of 
registers and the size of the buses that carry data between components. 

 
Datapath Simulator 

To help you visualize the behavior of the CPU datapath, a simple simulator has been designed to 
accompany the text. The CPU Datapath Simulator (accessible at 
http://www.creighton.edu/~csc107/Sims/datapath.html) models a simple CPU 
containing four registers. Using this simulator, you can follow the progress of data as it traverses 
the CPU datapath, from the registers to the ALU and back to the registers.   To keep things 
simple, we have avoided including an explicit Control Unit in this simulator.  Instead, the user 
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must serve as the Control Unit, selecting the desired input registers, ALU function, and output 
register by clicking the knob images.   Note that not all features of the simulator will be 
demonstrated in this chapter.  In particular, the ALU has two bit-manipulation operations, & and 
|, which involve combining individual bits in the two input values.  Likewise, there are status 
boxes within the ALU that identify when an operation results in a negative number, zero, or an 
overflow (a value too large to be represented).  You are free to experiment with these features, 
but all of the examples in this chapter will involve simple addition and subtraction. 

Figures 14.2 through 14.5 demonstrate using the simulator to add two numbers together—a task 
that can be completed during a single CPU cycle. 

• This simulator uses text boxes to represent registers, enabling the user to enter data by 
typing in the boxes.   The knobs, which allow the user to specify how data moves along 
the CPU datapath and what operations the ALU performs on the data, are images that 
change when the user clicks them. In Figure 14.2, the user has entered the numbers 43 
and -296 in registers R0 and R1, respectively.    After inputting these values, the user 
clicked the A Bus knob so that it selects R0 and the B Bus knob so that it selects R1.  
This will cause the numbers stored in these two registers to be transferred along the 
indicated buses to the ALU, which will perform an operation on them.  Since the user has 
set the ALU Operation knob to addition and the C Bus knob to R2, the ALU will add the 
two numbers together, and the result will travel along the C Bus to be stored back in 
register R2.    

• After entering the desired settings, the user initiates a CPU cycle within the simulator by 
clicking the button labeled "Execute".  Figure 14.3 depicts the state of the CPU as the 
values in R0 and R1 travel along the A and B buses to the ALU.  The arrows that 
represent the buses blink red, and the numbers being transferred are displayed in text 
boxes next to the buses. 

• Figure 14.4 illustrates the state of the CPU after the ALU has received the numbers and 
performed the specified operation.    Since the user set the ALU Operation knob to 
addition, the ALU adds the two numbers, 43 and –296.  The result, -253, is then sent out 
along the C Bus.   

• Finally, Figure 14.5 shows the end result of the CPU cycle.  Since the user set the C Bus 
knob to R2, the value –253 (which travels along the C Bus) is ultimately stored in register 
R2. 
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Figure 14. 2: Initial settings of the simulator.        Figure 14. 3: Data traveling from registers to the ALU. 
 
 

   
Figure 14. 4: Data traveling from ALU to registers. Figure 14. 5: Final result of the CPU cycle. 
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HANDS-ON EXERCISES:  Experiment with this simulator until you are familiar with the CPU 
datapath and the events that occur within a CPU cycle. Then, use the simulator to answer the 
following questions:  

14.1. What would happen if you placed the number 100 in R0, then set the knobs so that A 
Bus = R0, B Bus = R0, ALU = A-B, and C Bus = R0?  

14.2. Describe the settings that would cause the value stored in R2 to be doubled.  

14.3. How many cycles are required to add the contents of R0, R1, and R2 and then place 
the sum in R3? Describe the settings for each cycle.  

 

 

CPU and Main Memory 

Although the CPU datapath describes the way in which a computer manipulates data stored in 
registers, we have not yet explained how data gets into the registers in the first place, or how the 
results of ALU operations are accessed outside the CPU. Both these tasks involve connections 
between the CPU and main memory. Recall from Chapter 1 that all active programs and data are 
stored in the main memory of a computer.  We can think of main memory as a large collection of 
memory locations, in which each location is accessible via an address. Similar to the way in 
which a street address (e.g., 27 Maple Drive) allows a mail carrier to find and access a mailbox, a 
memory address (e.g., memory location 27) allows the CPU to find and access a particular piece 
of main memory. A bus connects main memory to the CPU, enabling the computer to copy data 
and instructions to registers and then copy the results of computations back to main memory.  
Figure 14.6 illustrates the interaction between a computer’s main memory and CPU; the darker 
arrows represent the CPU datapath, whereas the lighter arrow represents the bus that connects 
main memory to the registers.  

 

 
Figure 14. 6: A bus connects Main Memory to the CPU. 
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Transferring Data to and from Main Memory 

As a program is executed, the Control Unit processes the program instructions and identifies 
which data values are needed to carry out the specified tasks.  The required values are then 
fetched from main memory along the main memory bus, loaded into registers, and utilized in 
ALU operations.    

As a concrete example, imagine that you had a file containing 1,000 numbers and needed to 
compute the sum of those numbers. To begin, the computer would need to load the data from the 
file into main memory—for example, at memory locations 500 through 1499. Then, the Control 
Unit would carry out the following steps to add the numbers and store the resulting sum back in 
main memory. 

1. Initialize one of the registers, say R0, to 0. This register will store the running 
total of the numbers.  

2. For each number stored at memory addresses 500 through 1499:  
a. Copy the number from main memory to another register, say R1.  
b. During one cycle around the CPU datapath, add the contents of R0 and R1 

and store the result back in R0.  
3. When all the numbers in the file have been processed, the value in R0 will 

represent their sum. This value can then be copied back to a main memory 
location. 

Note that each number must be transferred into a register before it can be added to the 
sum.  In practice, transferring data between main memory and the CPU takes much 
longer than executing a single CPU cycle.  This is mainly due to the fact that the 
electrical signals must travel a greater distance—for example, from a separate RAM chip 
to the CPU chip.  In the time it takes for data to traverse the main memory bus and reach 
the registers, several CPU cycles may actually occur.  Modern processors compensate for 
this delay with special hardware that allows multiple instructions to be fetched at once.  
By fetching several instructions ahead, the processor can often identify instructions that 
are not dependent on the current one, and execute them while the current data transfer is 
in progress.   Thus, the CPU can perform useful computations as opposed to sitting idle 
while an instruction waits for data to be copied from main memory to the registers. 

Datapath with Memory Simulator 

Our next version of the CPU DataPath Simulator has been augmented so that it illustrates the 
relationship between the CPU and main memory.  The main memory incorporated in this 
extended simulator (accessible at 
http://www.creighton.edu/~csc107/Sims/dpandmem.html) can store up to 32 16-bit 
numbers, with addresses 0 through 31.  A new bus, labeled "Main Memory Bus," connects the 
main memory to the CPU, allowing data and computation results to be transferred between the 
main memory and the registers.  As in our previous example, this version of the simulator does 
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not contain an explicit Control Unit.  The user must serve as the Control Unit, selecting the 
desired settings on the Main Memory Bus and C Bus to control the data flow.   Note that these 
buses can move data either between main memory and the registers or from the ALU to main 
memory, depending on how the user sets the switches. The user can open and close these bus 
switches by clicking them, effectively disconnecting and connecting the buses. 

Figures 14.7 through 14.9 demonstrate using the simulator to add two numbers stored in main 
memory. 

• When the CPU must add two numbers stored in main memory, the first step is to copy 
one of the numbers into a register.  In Figure 14.7, the user has selected the first number 
to be added, currently in main memory location 0, by clicking the R/W button next to that 
location (R/W refers to the fact that the button selects which memory location will be read 
from or written to). The user has also configured the arrows surrounding the Main 
Memory Bus so that they connect main memory to the registers.  Once inside the CPU, 
the Main Memory Bus connects to the C Bus, which loads the number into register R0 
(since the C Bus knob is set to R0).   

• Figure 14.8 illustrates the next step in our example, which involves copying the second 
number into a register.  Since the user has highlighted the R/W button next to main 
memory location 1 and set the C Bus knob to R1, the contents of location 1 are fetched 
and stored in register R1. 

• Figure 14.9 depicts the CPU cycle during which the ALU adds the contents of R0 and 
R1.  Note that the A Bus, B Bus, and ALU Operation knob settings are the same as those 
in Figures 14.3 through 14.6; this is because the two examples portray the same task (i.e., 
adding the numbers stored in R0 and R1).  In Figure 14.9, however, the switches on the 
Main Memory bus are set so that the result of the addition is sent to main memory, rather 
than to the registers. 
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Figure 14. 7: First, 43 is loaded from memory into R0. 

 

 
Figure 14. 8: Second, -296 is loaded from main memory into R1. 
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Figure 14. 9: Finally, the values are added, and their sum is stored back in main memory. 

Two interesting observations can be made concerning the behavior of the simulator.  First, the 
simulator requires more time to transfer data between main memory and the CPU than it does to 
perform a CPU datapath cycle.  This delay is meant to simulate the slower access times 
associated with main memory.  In a real computer, as many as 10 CPU cycles might occur in the 
time it takes to transfer data between the CPU and main memory.  The second observation is 
that, even while data is being fetched from main memory, operations are still performed on the 
CPU datapath.  For example, in Figure 14.8, the number in R0 (43) is sent along both the A and 
B Buses to the ALU, yielding the sum 86.   This might seem wasteful, since the result of the 
ALU operation is ignored (due to the disconnected C Bus).  Surprisingly, this is an accurate 
reflection of a CPU’s internal workings. It is more efficient for the ALU to perform needless 
computations while data is being transferred to or from main memory than it would be to add 
extra circuitry to recognize whether the C Bus is connected.  

HANDS-ON EXERCISES:  Experiment with this simulator until you are familiar with the 
interactions between main memory and the CPU datapath.  Then, use the simulator to answer the 
following questions:  

14.4. What settings would result in the sum of registers R0 and R3 being stored in memory 
location 4?  

14.5. What settings would cause the contents of memory address 4 to be copied into 
register R0?  

14.6. Assuming that data can be copied to and from main memory in a single CPU cycle, 
how many cycles are required to add the contents of memory addresses 5 and 6 and 
then store the result in memory address 7? Describe the settings for each cycle.  
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Stored-Program Computer 

Now that we have explored how main memory works, we are ready to focus on the last 
component of the CPU: a fully functioning, automatic Control Unit.  To understand the role of 
the Control Unit, recall the tasks that you performed while using the simulators.  When you 
experimented with the Datapath Simulator (Exercises 14.1 – 14.3), you defined the computation 
carried out during a CPU cycle by selecting the registers and ALU operation via knobs.  In the 
datapath and main memory simulator (Exercises 14.4 – 14.6), you controlled the flow of 
information between the datapath and main memory via switches on the buses.  The key idea 
behind a stored-program computer is that tasks such as these can be represented as instructions, 
stored in main memory along with data, and then carried out by the Control Unit.   

Machine Languages 

As we explained in Chapter 8, a machine language is a set of binary codes corresponding to the 
basic tasks that a CPU can perform.  In essence, each machine-language instruction specifies 
how various hardware components must be configured in order for a CPU cycle to perform a 
particular computation.  Thus, we could define machine-language instructions for our simulator 
by enumerating all the physical settings of the knobs and switches.  For example, the settings: 

 
A Bus = R0      ALU Switch = closed         
B Bus = R1  MMIn Switch = open             
ALU = A+B   MMOut Switch = open              
C Bus = R2  C Switch = closed 

would define a configuration in which the contents of R0 and R1 are added and stored back in 
R2.    This notation might suffice to control the behavior of a very simple machine, such as the 
one represented in our simulator; however, real-world CPUs contain an extremely large number 
of physical components, and specifying the status of all these parts during every CPU cycle 
would be impossible.  Furthermore, since machine-language instructions are stored in memory 
along with data, the instructions must ultimately be represented as bit patterns.    

Figure 14.10 describes a simple machine language that has been designed for our simulator.  
Since the main memory locations in our simulator can hold a maximum of 16 bits, our language 
represents each instruction as a 16-bit pattern.  The initial bits indicate the type of task that the 
CPU must perform, whereas the subsequent bits indicate the registers and/ or memory locations 
involved in the task.  Since there are only four registers, two bits suffice to represent a register 
number; since there are 32 main memory locations, five bits suffice to represent a memory 
address. For instance, all instructions that involve adding the contents of two registers begin with 
the bit pattern:  1010000100. The final six bits of an addition instruction represent the destination 
register (i.e., the register where the result will be stored) and the source registers (i.e., the 
registers whose contents will be added by the ALU), respectively.  As an example, suppose that 
you wanted to add the contents of R0 and R1 and then store the result in R2—i.e., R2 = R0 + R1.  
The bit patterns for R2 (2 = 102), R0 (0 = 002), and R1 (1 = 012) would be appended to the initial 
bit pattern for addition (1010000100), yielding the machine-language instruction:  
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1010000100100001.  Similarly, if the intent were R3 = R0 + R1, then the bit pattern for R3 (3 = 
112) would replace that of R2:  1010000100110001.   

Operation Machine-Language 
Instruction Example 

add contents of two 
registers, store result 
in another register 
 
e.g., R0 = R1 + R2 
 

1010000100 RR RR RR 
 

1010000100 00 01 10 
 
will add contents of R1 (01) 
and R2 (10), then store the 
result in R0 (00) 

subtract contents of two 
registers, store result 
in another register 
 
e.g., R0 = R1 – R2 

1010001000 RR RR RR 
 

1010001000 00 01 10 
 
will take contents of R1 (01), 
subtract R2 (10), then store 
the result in R0 (00) 

load contents of memory 
location into register 
 
e.g., R3 = M[5] 

100000010 RR MMMMM 
 

100000010 11 00101 
 
will load contents of memory 
location 5 (00101) into R3 (11) 

store contents of 
register in memory 
location 
 
e.g., M[5] = R3 

100000100 RR MMMMM 
 

100000100 11 00101 
 
will store contents of memory 
location 7 (00101) in R3 (11) 

move contents of one 
register into another 
register 
 
e.g., R1 = R0 

100100010000 RR RR 
 

100100010000 01 00 
 
will move contents of R0 (00) 
to R1 (01) 

halt the machine 1111111111111111 N/A 

Figure 14. 10:  Machine Language for Computer Simulator 

The first two machine-language instructions in Figure 14.10 correspond to tasks that users can 
perform with the CPU Datapath simulator—i.e., selecting an ALU operation to be executed and 
the registers to be operated on during a CPU cycle.  The next three instructions correspond to 
tasks that users can perform with the datapath and memory version of the simulator—i.e., 
controlling the flow of information between the main memory and the datapath.  The last 
instruction, HALT, tells the Control Unit when a sequence of instructions terminates.  Of course, 
a real CPU would require many more instructions than these.  For example, if a CPU executes 
programs that include conditional statements (such as JavaScript if statements and while loops), 
its machine language must support branching instructions that allow the CPU to jump from one 
instruction to another.  However, Figure 14.10’s limited instruction set is sufficient to 
demonstrate the workings of a basic CPU and its Control Unit. 

 

Control Unit 

Once a uniform machine language for a particular CPU is established, instructions can be stored 
in main memory along with data.  It is the job of the Control Unit to obtain each machine-
language instruction from memory, interpret its meaning, carry out the specified CPU cycle, and 
then move on to the next instruction.  Since instructions and data are both stored in the same 
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memory, the Control Unit must be able to recognize where a sequence of instructions begins and 
ends.  In real computers, this task is usually performed by the operating system, which maintains 
a list of each program in memory and its location.  For simplicity, our simulator assumes that the 
first instruction is stored in memory location 0.  The end of the instruction sequence is explicitly 
identified using the HALT bit pattern.   

In order to track the execution of an instruction sequence, the Control Unit maintains a Program 
Counter (PC), which stores the address of the next instruction to be executed.  Since we are 
assuming that all programs start at address 0, the PC’s value is initialized to 0 before program 
execution begins.  When the Control Unit needs to fetch and execute an instruction, it accesses 
the PC and then obtains the instruction stored in the corresponding memory location.  After the 
Control Unit fetches the instruction, the PC is incremented so that it identifies the next 
instruction in the sequence. 

The steps carried out by the Control Unit can be defined as a general algorithm, in which 
instructions are repeatedly fetched and executed: 

Fetch-Execute Algorithm carried out by the Control Unit: 

1. Initialize PC = 0. 
2. Fetch the instruction stored at memory location PC, and set PC = PC + 1. 
3. As long as the current instruction is not the HALT instruction: 

a. Decode the instruction – that is, determine the CPU hardware settings required 
to carry it out. 

b. Configure the CPU hardware to match the settings indicated in the instruction. 
c. Execute a CPU datapath cycle using those settings. 
d. When the cycle is complete, fetch the next instruction from memory location 

PC, and set PC = PC + 1. 

 

For example, suppose that main memory contained the program and data shown in Figure 14.11.  

 

0: 1000000100000101  // load memory location 5 into R0 
1: 1000000100100110  // load memory location 6 into R1 
2: 1010000100100001  // add R0 and R1, store result in R2 
3: 1000001001000111  // copy R2 to memory location 7 
4: 1111111111111111  // halt 
5: 0000000000001001  // data to be added: 9 
6: 0000000000000001  // data to be added: 1 
7: 0000000000000000  // location where sum is to be stored 

Figure 14.11: Machine-language program for adding two numbers in memory. 
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The first five memory locations (addresses 0 through 4) contain machine-language instructions 
for adding two numbers and storing their sum back in memory.  The numbers to be added are 
stored in memory locations 5 and 6.  To execute this program, the Control Unit would carry out 
the following steps: 

1. First, the Program Counter is initialized:  PC = 0. 
2. The instruction at memory location 0 (corresponding to the current value of PC) is 

fetched, and the PC is incremented: PC = 0 + 1 = 1. 
3. Since this instruction (1000000100000101) is not a HALT instruction, it is decoded: 

the CPU hardware is configured so that it will load the contents of memory location 5 
into register R0, and a CPU cycle is executed. 

4. The next instruction (at memory location 1, corresponding to the current value of PC) 
is fetched, and the PC is incremented: PC = 1 + 1 = 2. 

5. Since this instruction (1000000100100110) is not a HALT instruction, it is decoded: 
the CPU hardware is configured  so that it will load the contents of memory location 
6 into register R1, and a CPU cycle is executed. 

6. The next instruction (at memory location 2, corresponding to the current value of PC) 
is fetched, and the PC is incremented: PC = 2 + 1 = 3. 

7. Since this instruction (1010000100100001) is not a HALT instruction, it is decoded: 
the CPU hardware is configured so that it will add the contents of registers R0 and R1 
and store the result in register R2, and a CPU cycle is executed. 

8. The next instruction (at memory location 3, corresponding to the current value of PC) 
is fetched, and the PC is incremented: PC = 3 + 1 = 4. 

9. Since this instruction (1000001001000111) is not a HALT instruction, it is decoded: 
the CPU hardware is configured so that it will copy the contents of register R2 to 
memory location 7, and a CPU cycle is executed. 

10. The next instruction (at memory location 4, corresponding to the current value of PC) 
is fetched, and the PC is incremented: PC = 4 + 1 = 5. 

11. Since this instruction (1111111111111111) is a HALT instruction, the Control Unit 
recognizes the end of the program and stops executing. 

 

Stored-Program Computer Simulator 

The Stored-Program Computer Simulator (accessible at 
http://www.creighton.edu/~csc107/Sims/computer.html) models the behavior of a 
complete, stored-program computer.  Instructions and data can be entered into memory, with the 
first instruction assumed to be at memory location 0.  The Control Unit is responsible for 
fetching and interpreting the machine-language instructions, as well as carrying out the tasks 
specified by those instructions.   

The simulator contains several display boxes to illustrate the Control Unit’s inner workings.  As 
we described in the previous section, the Program Counter (PC) lists the address of the next 
instruction to be executed.  In addition to the PC, CPUs also maintain an Instruction Register 
(IR), which lists the instruction that the Control Unit is currently executing.  The IR is displayed 

Reed (2004) Chapter 14 14



in the simulator as an additional text box.  Above these boxes, the simulator exhibits the actual 
knob and switch settings defined by the current instruction – this makes the correspondence 
between the machine-language instruction and the CPU hardware settings more obvious.  Knob 
settings are specified as 2-bit binary numbers: 00 represents a knob pointing straight up, 01 
represents a knob pointing to the right, 10 represents a knob pointing down, and 11 represents a 
knob pointing to the left.  The four switch settings are represented by a four-bit pattern, with a 1 
bit indicating a closed switch and a 0 bit indicating an open switch (the topmost switch in the 
simulator, the C Bus, corresponds to the first bit, followed by the three remaining switches from 
left to right).   

Figures 14.12 through 14.17 demonstrate using the simulator to execute the example machine-
language program from Figure 14.11. 

• Figure 14.12 depicts the initial state of the simulator.  The machine-language instructions 
are stored in main memory, starting at address 0.  The data required to execute the 
instructions is also stored in memory, at addresses 5 and 6, immediately following the last 
instruction.  Within the Control Unit, the Program Counter (PC) is initialized to 0, so the 
instruction at address 0 will be the first to be loaded and executed.  To assist the user, the 
page includes a link to a reference page that summarizes all of the machine and assembly 
language instructions, labeled "Machine/Assembly Language Instructions." 

• Figure 14.13 portrays the simulator after the first instruction has been executed.  Within 
the Control Unit, the instruction from address 0 has been loaded into the Instruction 
Register and translated into the knob and switch settings required to carry out the 
specified CPU datapath cycle.  Once the Control Unit determines the correct knob and 
switch settings, it carries out the corresponding CPU datapath cycle.  In this case, the 
value from memory location 5, the number 9, is loaded into register R0.  Note that the PC 
is automatically incremented after the instruction has been executed, so the next 
instruction to be fetched and executed will be the instruction at address 1. 

• Figure 14.14 shows the simulator after the next instruction, from memory location 1, has 
been executed.  Here, the value from memory location 6, the number 1, is loaded into 
register R1.  

• Figure 14.15 depicts the result of executing the next instruction, from memory location 2, 
which adds the contents of registers R0 and R1 and stores the result in register R2. 

• Figure 14.16 portrays the result of executing the next instruction, from memory location 
3, which copies the result of the addition, stored in R2, into memory location 7.   

• Finally, Figure 14.17 shows the computer after the program terminates.  Recall that the 
HALT instruction 1111111111111111 tells the Control Unit to stop processing.  Since no 
datapath cycle is executed once the HALT instruction is recognized by the Control Unit, 
the knob and switch settings within the datapath are not changed from the previous cycle. 
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Figure 14. 12: Initial state of the simulator, with program stored in main memory. 

 

 
Figure 14. 13: Simulator after the first instruction has been executed (R0 = MM5). 
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Figure 14. 14: Simulator after the second instruction has been executed (R1 = MM6). 

 

 
Figure 14. 15: Simulator after the third instruction has been executed (R2 = R0 + R1). 
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Figure 14. 16: Simulator after the fourth statement has been executed (MM7 = R2). 

 

 
Figure 14. 17: Simulator after the fifth statement has been executed (HALT). 
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The simulator is designed so that the user can enter values in main memory as either decimal or 
binary numbers.   By default, values entered by the user are assumed to be decimal numbers.  
However, the user can always select 2 from the View As box to the left of a memory location in 
order to view the contents in binary.  Before entering a machine-language instruction in a 
memory cell, the user must first set the value of the View As box to 2, since machine-language 
instructions are represented in binary. 
 

HANDS-ON EXERCISES: Experiment with this simulator until you are familiar with its 
behavior. Then, use the simulator to answer the following questions:  

14.7. What task would the following machine-language program perform? 

0: 1010001000000000   
1: 1000001000000011   
2: 1111111111111111   

14.8. What sequence of machine-language instructions would cause the contents of the four 
registers to be copied into memory locations 7, 8, 9, and 10, respectively?  

14.9. What sequence of machine-language instructions would cause the simulator to add 
the contents of memory locations 10, 11, and 12 and then store the result in memory 
location 13? 

14.10. What do you think would happen if you forgot to place a HALT instruction at the end 
of a machine-language program?  How would the Control Unit react?  Use the 
simulator to test your prediction, then report the results. 

 

The Role of Input/Output Devices 

To complete our description of the stored-program computer, we must at least briefly discuss the 
role of input and output devices.  Input devices such as keyboards, mice, and scanners allow the 
user to communicate with the computer by entering data and instructions, which are then stored 
in memory and accessed by the CPU.  Likewise, output devices such as display screens, 
speakers, and printers allow the user to view the current status of the computer and access 
computation results that are stored in memory.     

Computers that are designed to run one program at a time, such as the first programmable 
computers (introduced in the 1950s) and the first personal computers (introduced in the 1970s), 
provide relatively straightforward methods of user interaction.  The user enters program 
instructions and data directly into main memory locations via input devices such as keyboards or 
tape readers.  Then, by flipping a switch or entering a specific command, the user instructs the 
CPU to fetch the program instructions from memory and execute them in sequential order.  Once 
a particular computation has been completed, the user can view its result by sending the contents 
of memory to a printer or display screen.  This process is closely modeled by our simulator, in 
which the user enters instructions and data by typing them in main memory boxes, then initiates 
execution by clicking a button.  In the case of the simulator, however, the final step of sending 
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results to an output device is not necessary – the contents of the registers and main memory are 
already visible.   

As we discussed in Chapters 6 and 10, most modern computers allow for multitasking, meaning 
that multiple programs can be loaded in main memory and be active simultaneously.  When 
multiple programs are to be executed, user interactions and the computations that result from 
those interactions become more complex.  In particular, the instructions and data associated with 
each program must be loaded into separate portions of main memory.  When the user switches 
from one program to another (say by clicking on a different window in the graphical user 
interface), the CPU must save the state of the current program and be able to locate the portion of 
memory associated with the new program.  These tasks, and many others involving the 
coordination of programs and CPU processing, are managed by the operating system. 

 

Machine v. Assembly Languages  

It is important to note that the machine language and hardware configurations associated with 
our simulator are much simpler than those of any actual computer.  A real machine language 
might encompass tens or hundreds of instructions, and a real CPU might contain hundreds or 
thousands of configurable components.  However, our model is sufficient to demonstrate 
computer behavior at its lowest level.   
 
The simulator is also useful in representing the difficulty and tedium of programming in a 
machine language.  As you learned in Chapter 8, writing, debugging, and understanding bit-
sequence instructions can be mind-numbing work. Over the past fifty years, computer 
programming has advanced significantly, and most modern programmers are able to avoid direct 
machine-language programming.  Some of the earliest programmer tools were assembly 
languages, which substitute words for bit patterns, allowing the programmer to write: 
 

ADD R0 R1 R2 
 
instead of the machine-language instruction: 
 

1010000100000110 
  
It is much easier for programmers to remember and understand assembly-language instructions 
than patterns of 0s and 1s.  Furthermore, most assembly languages support the use of variable 
names, enabling programmers to specify memory locations by descriptive names, rather than by 
numerical addresses.  This greatly simplifies the programmer's task, since she no longer needs to 
worry about the physical location of data and how locations might shift as new instructions are 
inserted into memory.   
 
Figure 14.18 lists one possible set of assembly-language instructions that correspond to the 
machine-language instructions from Figure 14.11.   
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Operation Machine-Language 

Instruction 
Assembly-Language 

Instruction 
add contents of two 
registers, then store 
result in another register 
 
e.g., R0 = R1 + R2 
 

1010000100 RR RR RR 
 
e.g., 1010000100 00 01 10 

ADD [REG] [REG] [REG] 
 
e.g., ADD R0 R1 R2 

subtract contents of two 
registers, then store 
result in another register 
 
e.g., R0 = R1 – R2; 

1010001000 RR RR RR 
 
e.g., 1010001000 00 01 10 

SUB [REG] [REG] [REG] 
 
e.g., SUB R0 R1 R2 

load contents of memory 
location into register 
 
e.g., R3 = MM5 

100000010 RR MMMMM 
 
e.g., 100000010 11 00101 

LOAD [REG] [MEM] 
 
e.g., LOAD R3 5 

store contents of register 
into memory location 
 
e.g., MM5 = R3 

100000100 RR MMMMM 
 
e.g., 100000100 11 00101 

STORE [MEM] [REG] 
 
e.g., STORE 5 R3 

move contents of one 
register into another 
register 
 
e.g., R1 = R0 

100100010000 RR RR 
 
e.g., 100100010000 01 00 

MOVE [REG] [REG] 
 
e.g., MOVE R1 R0 

halt the machine 1111111111111111 HALT 

 
Figure 14. 18: Assembly-language instructions. 

 
 
Within the Stored Program Computer Simulator, the user may enter assembly-language 
instructions directly in memory.  The default mode for displaying the contents of memory 
locations, labeled "Auto" in the View As box, will automatically recognize assembly-language 
instructions and will display them as text (changing the label to "Inst" to acknowledge that they 
are instructions).  After inputting the instructions, the user can switch between viewing the 
instruction in assembly- or machine-language form by selecting Inst (for assembly-language 
instructions) or 2 (for machine-language instructions in binary form) in the View As box to the 
left of the instruction.   For example, Figure 14.19 depicts the same program that is pictured in 
Figure 14.12, but here the instructions are formatted as Inst.   
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Figure 14. 19: Assembly-language program displayed in computer simulator. 

 
 
 

HANDS-ON EXERCISES: Experiment with the simulator until you are comfortable with the 
correspondence between machine-language and assembly-language instructions.  Then, use the 
simulator to answer the following questions:  

14.11. What sequence of assembly-language instructions corresponds to the machine-
language instruction set from Exercise 14.7? 

14.12. What sequence of assembly-language instructions corresponds to the machine-
language instruction set you wrote in Exercise 14.9?  

14.13. Write a sequence of assembly-language instructions that multiplies the contents of 
memory location 10 by four.  For example, if the number 10 were stored in memory 
location 10, executing your instructions would cause the simulator to store 40 there.  
Note: although the ALU Operation knob does not provide a multiplication setting, a 
number can be multiplied via repeated additions (e.g., 10* 4 = 10+10+10+10). 
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Looking Ahead… 
 
In this chapter, you studied the internal workings of computers, focusing on the CPU, main 
memory, and their interactions.  By experimenting with the various simulators, you saw how the 
CPU breaks up even the most complex computing tasks into sequences of very simple 
instructions, each of which can be executed during a single CPU datapath cycle.  Although buses 
that connect the CPU to main memory enable the manipulation of large amounts of data, the 
computer must transfer each data value into a CPU register, perform operations on the value 
within the ALU, and then store the result of the computation back in main memory.  The 
combination of a Control Unit and main memory allows computers to process stored programs.  
This behavior was modeled by our most sophisticated simulator, in which programs consisting of 
machine-language instruction sequences were stored in memory, fetched and decoded by the 
Control Unit, then executed in a series of CPU datapath cycles. 
 
Building upon your general understanding of computer components and their organization, 
Chapter 16 will delve deeper into the details of their design and construction.  In particular, you 
will study the construction and behavior of transistors and integrated circuits.  However, before 
you consider how these technologies are used to build the hardware components of computer, 
Chapter 15 will describe a general methodology for designing and implementing software 
components.  The object-oriented approach to software development attempts to simplify the 
task of designing and testing software systems by focusing on programming structures that 
model real-world objects.  For example, a JavaScript string is an object that models a word or 
phrase, with useful operations on a string (such as capitalizing it or extracting a substring) 
provided as part of the language.  Chapter 15 will describe the JavaScript string type, and explore 
applications that involve storing and manipulating text 
 

Reed (2004) Chapter 14 23



Review Questions 

1. TRUE or FALSE?  Any piece of memory that is used to store the sum of numeric values 
is known as a register.  

2. TRUE or FALSE?  The path that data follows within the CPU, traveling along buses 
from registers to the ALU and then back to registers, is known as the CPU datapath. 

3. TRUE or FALSE?  All modern CPUs provide the same set of basic operations that can be 
executed in a single CPU cycle.  

4. TRUE or FALSE?  The size of main memory is generally measured in MHz or GHz. 
5. TRUE or FALSE?  Suppose you wish to add two numbers that are stored in memory.  

Before the Arithmetic Logic Unit (ALU) can add the numbers, they must first be 
transferred to registers within the CPU.   

6. TRUE or FALSE?  In real computers, it takes roughly the same amount of time to 
transfer data from main memory to registers as it does to add two numbers in registers.    

7. TRUE or FALSE?  Within the CPU, the Control Unit is responsible for fetching 
machine-language instructions from memory, interpreting their meaning, and carrying 
out the specified CPU cycles. 

8. TRUE or FALSE?  Suppose a CPU contains eight registers.  Within a machine-language 
instruction, at least three bits would be required to uniquely identify one of the registers.  

9. TRUE or FALSE?  In a multitasking computer, the Program Counter keeps track of how 
many programs are currently loaded into main memory. 

10. TRUE or FALSE?  In a stored-program computer, both machine-language instructions 
and the data operated on by those instructions can reside in main memory at the same 
time. 

 
11. Name the three subunits of the CPU, and describe the role of each subunit in carrying out 

computations. 
12. Describe how data values move around the CPU datapath and what actions occur during 

a single CPU cycle.  How does the datapath relate to CPU speed? 
13. Consider two computer systems that are identical except for their CPUs.  System 1 

contains a 1.8 GHz Pentium 4, whereas System 2 contains a 1.8 GHz PowerPC processor.  
Will these two systems always require the same amount of time to execute a given 
program?  Justify your answer. 

14. Consider the following tasks: (1) adding 100 numbers stored in main memory, and (2) 
adding a number to itself 100 times.  Although both tasks require 100 additions, the 
second would be executed much more quickly than the first would.  Why? 

15. Machine languages are machine-specific, meaning that each type of computer has its own 
machine language.  Explain why this is the case. 

16. Within the Control Unit, what is the role of the Program Counter (PC)?  That is, how is 
the PC used in fetching and executing instructions? 

17. In a stored-program computer, both instructions and data are stored in main memory.  
How does the Control Unit know where the program instructions begin?  How does it 
know where the instructions end?  

18. Describe two advantages of assembly languages over machine languages.   

Reed (2004) Chapter 14 24



References 

Brain, Marshall.  "How Microprocessors Work."  HowStuffWorks, January 2003. 
   Online at http://www.howstuffworks.com/microprocessor.htm 
 
Braught, G. "Computer Organization in the Breadth First Course."  Journal of Computing in 

Small Colleges 16(4), 2001.  
 
Braught, Grant, and David Reed.  "The Knob & Switch Computer: A Computer Architecture 

Simulator for Introductory Computer Science."  ACM Journal of Educational Resources in 
Computing 1(4), 2001. 

 
Malone, Michael.  The Microprocessor: A Biography. New York, NY: Springer Verlag, 1995. 
 
"The PC Technology Guide – Components/Processors".  PCTechGuide, December 2002. 
   Online at http://www.pctechguide.com/02procs.htm 
 
Stallings, William.  Computer Organization and Architecture: Designing for Performance, 6th 

Edition. Upper Saddle River, NJ: Prentice Hall, 2003. 
 
Tanenbaum, Andrew S.  Structured Computer Organization, 4th Edition.  Upper Saddle River, 

NJ: Prentice Hall, 1999. 
 

Reed (2004) Chapter 14 25


