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Abstract

This paper describes the Knob & Switch Computer, a computer architecture simulator
designed to teach beginning students the basics of computer organization. ThisKnob &
Switch Computer differs from existing ssmulators in two significant ways. (1) it can be
presented one component at a time, starting with a ssimple interactive data path and
building incrementally to afull-featured stored program machine, and (2) it incorporates
"cognitive hooks' in the form of knobs and switches that encourage exploration and
discovery on the part of the student. Both of these features make it possible to engage
beginning students and effectively convey an understanding of how computerswork. The
simulator can also motivate the study of other computing topics such as data
representation, assembly language programming, and RISC vs. CISC architectures. In
addition to describing the simulator, experiences using the simulator in breadth-based
introductory courses both at Dickinson College and Creighton University will be
discussed.

1. Introduction

Educatorsin computer science have long debated therel ative advantages of breadth vs. programming
depth inintroductory computer science courses. The adoption of breadth-first coursesthat provide
broad perspectives on computer science was strongly advocated by the IEEE/ACM Computing
Curricula 1991 [Tucker 1992] and similar reports [Foley & Standish 1988] in the late 1980's and
early 1990's. Inrecent years, the breadth-first approach hasreceived renewed attention, partially due
to the emergence of the World Wide Web as a unifying theme [Gurwitz 1998, Reed 2001a, Reed
2001b] and also dueto the perceived need for all citizensto be fluent with computer technology and
its capabilities [NRC Committee on IT Literacy 1999]. As further evidence, the upcoming
IEEE/ACM Computing Curricula 2001 includes a breadth-first option in its proposed curricular
models, describing both a stand-alone non-majors course (commonly referred to as CS0) and a
breadth-first course that can be integrated into athree course introductory sequence [ CC2001 Task
Force 2001].

A potential drawback of the breadth-first approach isthat students may havelimited experiencewith
computers, and thus havelittle context in which to place computing concepts. Thisisespecialy true
with respect to hardware i ssues and the underlying organization of computers, asthese areasareleast



likely to be familiar to beginning students. Clearly, an understanding of the basic components of
computers(e.g., CPU, datapath, memory), aswell astheir capabilitiesand limitations, isessentia to
understanding the field of computer science and also serves students as consumers of computing
technology. However, the amount of technical detail involved is often overwhelming for students.
Even if they are able to memorize the components of a computer and their roles, a deeper
understanding of why modern computers are organized as they are is often elusive.

A promising approach to the presentation of computer organization at theintroductory level involves
the use of computer architecture simulators. Unlike their expensive and complex rea-world
counterparts, simulators are able to present cost-effective, smplified models of computers. In
addition, simulators encourage active learning by allowing students to interact with the simulated
components and observetheir behavior. Inrecent years, numerous breadth-first textshaveintegrated
computer architecture simulators with their presentation of hardware concepts, e.g., [Biermann
1997], [Decker & Hirshfield 1998]. Inaddition, educatorsand software devel opers have developed a
variety of simulatorsthat demonstrate theinternal workingsof computersand their components, e.g.,
[Sample and Arnold 1997], [Arias and Garcia 1999], [Pastor et a. 1999], and [Yurcik and
Brumbaugh 2001]. (See[Yurcik at al. 2001] for asurvey.) While these simulators may present the
layout of the CPU and other components and allow the student to visualize the flow of information
inside a computer, most have features that limit their effectiveness for beginning students. In
particular, they can still overwhelm students with complexity and often provide only minimal
capabilities for interaction and exploration.

In 1998, Grant Braught devel oped a series of computer architecture simulatorsfor usein abreadth-
first CSO course at Dickinson College [Braught 2001]. The Knob & Switch Computer Simulator
differsfrom existing simulatorsin two significant ways: (1) it can be presented one component at a
time, starting with asimpleinteractive data path and building incrementally to afull-featured stored
program machine, and (2) it incorporates "cognitive hooks' in the form of knobs and switches that
encourage exploration and discovery on the part of the student. Both of these features make it
possible to engage beginning students and effectively convey an understanding of how computers
work. Writtenin HTML and JavaScript, the Knob & Switch (K& S) Computer Simulator utilizesthe
intuitive Web interface and is readily accessible using any JavaScript-enabled browser. The
simulator has been successfully adopted in breadth-first introductory courses at Dickinson College,
Creighton University, and other institutions such as Wheaton College and the University of Northern
Colorado.

2. The Knob & Switch Computer Simulator

implementation details (HTML & JavaScript, buttons& boxes& sel ectmenus& images - portable &
machine indep.), uses frames to integrate components

incremental approach — avoids complexity overload, can study one component at atime
interactive using cognitive hook — encourages exploration

usein CS0 — provide exercises, student questions lead from one increment to the next (not just how
itislaid out, but why it is that way)



2.1 K&S Datapath Simulator

The first component of the Knob & Switch Computer is an interactive datapath simulator. The
datapath consists of a bank of four registers, asimple arithmetic logic unit (ALU), and buses that
connect thetwo. Students are able to enter decimal numbers directly into the registers and control
the flow of data from the registers, to the ALU, and back into a register using clickable knobs.
Clicking the mouse on theimage of aknob turnsit clockwise, allowing studentsto select thedesired
setting. For example, Figure 1 shows the datapath configured to add the value in register O (RO) to
thevalueinregister 1 (R1) and place the result into register 2 (R2).

SCREEN SHOT
Figure 1. K& S Datapath Simulator

Clicking the execute button within the datapath simulator causes one compl ete machine cycleto be
performed. Asthe datapath performsthe operation, it is animated to show how datamoves through
the computer (the speed of the animation can be controlled for more careful study). The knob
metaphor is a natural one to students, and provides an immediate "cognitive hook" for interacting
withthesimulation. Students are encouraged to experiment with the machine and are provided with
exercises such as the following.

= Describe settings that would result in the contents of R2 being doubled.

= Describe settings that would result in a0 being placed in R3.

= How many cycleswould be required to add the contents of RO, R1, and R2 and place the sum
in R3? Describe the settings for each cycle.

= How many cycles would be required to negate the contents of R1? Describe the settings for
each cycle.

One immediate consequence of experimentation with the datapath is that students develop asolid
understanding of clock speed. While many texts and articles describe clock speed in terms of the
number of "operations' per second that a computer can perform, the actual definition of an
"operation” isusually left vague. Students often have no idea exactly what is meant by theterm, or
else mistakenly assume that it includes any single computation. After experimenting with the
datapath, a definition of clock speed as number of datapath cycles per second is clear to students.
The fact that a 1 GHz processor can perform 1 billion such datapath cycles in a second is
understandable although still astounding to most students. Plus, the idea that clock speed is not
necessarily comparable with different CPUs can be understood by noting that different CPUs will
have different numbers of registers, bus sizes, and ALU operations, and thus provide different
capabilities in asingle datapath cycle.

Perhaps more noteworthy than what they |earn from the datapath simulation iswhat students observe
about its limitations. After experimenting with the smulator for a period of time and answering
guestions such as the ones above, students typically have two complaints. “It can only store 4
numbers!” and “It's not programmable!” The addition of components for external data storage
(Section 2.2) and microprogramming (Section 2.3) arethusdirectly motivated by student experience.

2.2 K&S Datapath Simulator with Main Memory

The next component that can be added to the Knob & Switch Computer is separate storage for more



data. Main memory consists of 32 memory locations, numbered from O to 31. Similar to the
registers in the datapath, students can enter numbers directly into the memory locations. A
read/write checkbox is provided to allow studentsto select aparticular memory location. Likewise,
switches (in the form of clickable images) are added to the datapath between the C Bus and main
memory, between the ALU and the C Bus and between the C Bus and the Register Bank control the
flow of data. By clicking on the switches, students can set the buses so that data is loaded from
memory into aregister, or so that the output of the ALU is stored directly in memory. For example,
Figure 2 shows the datapath and main memory configured to subtract RO from R1 and to store the
result in memory location 2.

SCREEN SHOT
Figure 2: K& S Datapath Simulator with Main Memory.

Once again, interaction with the simulator isintuitive and visually clear to the students. Clickingon
aswitch causesiit to open and close, and students are encouraged to try various settings to see how
memory can beintegrated with the datapath. In particular, exercisesthat involvethetransfer of data
between memory locations and the datapath itself, such as the ones listed below, are provided to
encourage exploration.

= Describe settings that would result in the contents of memory location 4 being copied into
register RO.

= |s it possible to copy the contents of RO into memory location O in a single cycle? If so,
describe the settings. If not, how many cycles would be required (using what settings)?

= How many cycles would be required to copy the contents of memory location 5 into memory
location 6? Describe the settings for each cycle.

= How many cycles would be required to add the contents of memory locations 0, 1, and 2 and
store the result in memory location 3? Describe the settings for each cycle.

The second question above, how to move a value from a register to a memory location, raises
interesting questionsfor the students. Typically, the knob and switch settings are easy enough, but
passing avalue through the ALU unchanged requires some thought. Most students will come upon
theideaof adding zero to the register (or perhaps subtracting zero), and may even suggest generating
the zero value by subtracting a register from itself. Those who have explored the behavior of the
bitwise AND (&) and OR (| ) operations may also propose these operations for passing a value
through the ALU unchanged.

Beyond introducing main memory, this second increment of the Knob & Switch Computer
introduces several other important ideas. First, it hasaload-and-store architecture in the tradition of
modern machines. Second, many thingsin the simulation happen in parallel and many operationsare
often performed even though their results are never used. For example, when reading a value from
memory the ALU performs an operation even though the result is discarded (due to the open switch
between the ALU and the C Bus). Similarly, memory isread on every machine cycle but its contents
areonly transferred into aregister if the switches are set appropriately. Theideathat computersdo a
significant amount of “unnecessary” work issurprising to most students. Finally, memory accessesin
the simulator takelonger than register accesses, with anoticeable delay inthe animation to reflect the
relative slowness of RAM vs. registers. This effectively plants the seeds for a discussion of caches
and the memory hierarchy.

The introduction of main memory in the simulator also makes this an appropriate time to discuss



data representation.  Although data in the memory locations is displayed in decimal notation by
default, apull-down menuis provided for each memory location that allowsit to beviewed in binary
notation. Similarly, an option is available for viewing numbers in the datapath in binary. Thus,
students may compare decimal and binary representations by entering data and switching back and
forth between the two views (a third option for unsigned decimal numbers is also provided). If
desired, algorithmsfor binary arithmetic may be discussed at this point, and students may experiment
with the ssmulator to observe the behavior of the ALU on binary numbers.

2.3 K&S Computer Simulator with Microprogramming

After repeated exercisesin which they must describe the settings of the datapath in English, students
are amenable to the idea of defining a more precise and concise notation. Students are asked to
“Describe how a sequence of 1's and O's could be used to instruct the Knob & Switch Computer to
perform multiple operations in sequence.” In other words students are asked to develop away to
write down a program for the machine. The nature of the Knob & Switch Computer leads many
students to develop ideas anal ogous to microprogramming. Microprogramming is usually seen as
difficult, arcane and complex, however the knobs and switches of the datapath provide a strong
intuitive feel for what the 1's and 0's mean. Students propose using 1's to represent closed switches
and O's to represent open switches, or vice versa. Common suggestions for representing knob
positionsare apositional notation (0001 = 1, 0010 = 2, 0100 = 3 etc.), astring length notation (1 =1,
11=2,111 = 3etc.), and apattern notation (00=0,01 =1, 10=2, 11 = 3 or some other ordering). If
binary number representation was discussed in conjunction with main memory, students generally
focus on the natural mapping of knob settings to binary numbers (00 for register O, 01 for register 1,
etc.).

Thethird increment of the Knob & Switch Computer adds aseparate control unit to the datapath and
main memory, with registersfor containing up to five microinstructions. The A Addr., B Addr, and
C Addr. fields of each microinstruction encode the Register Bank knob positions using the register
number represented as 2 bit unsigned binary integer. The ALU Op. isencoded usinga?2 bit unsigned
binary integer starting with the + operation as 00 and going clockwise. Switchesareencoded usinga
1 for aclosed switch and a0 for an open switch. The Switch pos. field of the microinstruction lists
the switches starting with the ALU output in the least significant bit and going clockwise. Finally,
the R/W Addr. field represents the memory address to be read or written and is encoded using the
unsigned binary representation of the memory address.

By entering the appropriate microinstructions corresponding to datapath settings, studentsare ableto
program the machine to carry out a series of datapath cycles. For example, Figure 3 shows the
simulator with microinstructionsfor adding the contents of memory locations 0 and 1 and storing the
resultin memory location 2. Thefirst two microinstructionsload the values from memory locations
Oand lintoregisters RO and R1, respectively. Thethird instruction addsthevauein ROtothevaue
in R1 and storestheresultin R2. Thefourth instruction storesthe valuein R2 into memory location
2.

SCREEN SHOT
Figure 3: K& S Computer Simulator with Microprogramming.
To visually connect the behavior of the microprogram control unit with the datapath, each

microinstruction is animated as it is executed. The microinstruction blinks in its register, and the
corresponding settings in the datapath are animated before the cycle begins. As such, students see



the direct connection between the microinstructions and the datapath cyclesthey manually controlled
in previous versions of the simulator. Utilizing this visual feedback, students may experiment by
entering bit patterns in the microinstruction registers and observe the resulting settings in the
datapath. To encourage experimentation, the simulator even allowsfor the automatic generation of
microinstructions. Students can manually set the knobs and switches of the datapath asin previous
versions of the simulator, then click on the arrow next to amicroinstruction register to automatically
load the corresponding microinstruction.

After having compl eted exercises where they must describe a series of cyclesthat complete agiven
task, the process of programming with microinstructionsisaready familiar to students. Additional
exercisesthat focus on the transition from manual manipulation to microprogramming are provided,
such as the following.

= Givethe microinstruction that subtracts R1 from RO and storestheresult in memory location 4.

= Write a microprogram that changes the sign of the number in memory location 4.

= Write a microprogram that stores 4 times the number in memory location 1 into memory
location 2.

= Write a microprogram that computes the sum of the numbersin memory locations O, 1 and 2
and stores the result in memory location 3.

2.4 K&S Computer Simulator with Machine Language Programming

The move from the two memory Harvard-like architecture of the microprogrammable Knob &
Switch Computer to a single memory stored-program version is a difficult step. There are two
conceptual changesthat take place simultaneoudly: (1) the program ismoved from the microprogram
memory to main memory, and (2) the representation of the program is changed from
microinstructions to machine language. The advantages of a single memory system are readily
understandabl e to the students (simpler architecture, more efficient use of shared memory, the ability
to load multiple programs in memory, etc). The less obvious transition from microinstructions to
machine language requires more motivation. First, students must recognize that in real computers,
the number of microprogrammable componentsin the datapath can be quite large, and many of the
configurations of those components are not useful in practice (e.g., simultaneously |oading datainto
aregister from the ALU and memory). In addition, other potentially useful instructions do not
correspond to datapath cycles, such as branch instructions that ater the program counter. All of
these factors suggest that a new set of instructionsis needed for stored-program computer.

Table 1 presents a machine language instruction set for the K& S Computer, utilizing opcodes and
general instruction formats. Whilethisinstruction set islimited, it isin fact Turing complete when
given the ability to manually pre-load constantsinto memory locations and/or registers. Thisability
to pre-load constant values was favored over theinclusion of immediate mode or I/O instructionsin
order to preserve the ssimple nature of the K& S Compulter.



Machi ne Language Assenbl y

Instruction Exanpl e Meani ng Language
1 000 0001 0 RR MVMVMW 1 000 0001 O 10 01101 R2 = MV 13] LOAD R2 13
1 000 0010 0 RR MVMVW 1 000 0010 O 11 01000 M8 = R3 STORE 8 R3
1 001 0001 0000 RR RR 1 001 0001 0000 10 00 R2 = RO MOVE R2 RO
1 010 0001 00 RR RR RR 1 010 0001 00 11 10 01 RB =R +RL ADD R3 R2 R1
1 010 0010 00 RRRRRR |1 010 0010 00 11 01 00 [R3 =Rl - RO [ SUB R3 R1 RO
1 010 0011 00 RR RR RR 1 010 0011 00 OO0 11 01 RO=R3 &RL AND RO R3 R1
1 010 0100 00 RRRRRR |1 010 0100 00 10 10 11 [RR =R | RB [ORR R R3
0 000 0001 000 MMVIVM 0 000 0001 000 01010 PC = 10 BRANCH 10
0 000 0010 000 MVMWM 0 000 0010 000 00010 if Zero Flag | BZERO 2
set, PC=2
0 000 0011 000 MVMVIVWM 0 000 0011 000 001112 if Neg. Flag BNEG 7
set, PC=7
0000 0000 0000 0000 no operation NOP
1111 1111 1111 1111 hal t _ HALT
execution

Table 1: The Machine and Assembly Language Instructions for the K& S Computer.

Since the control unit for the K& S Computer must fetch, interpret, and execute machine language
instructionsfrom memory, it is understandably more complex than the microprogram control unit. A
Program Counter (PC) must keep track of the next instruction to load, and an Instruction Register
(IR) is needed to load and interpret each instruction.  The Instruction Interpreter trandlates the
machine language instruction from the IR, displays he corresponding microinstruction, and executes
the datapath cycle using the specified settings. The PC is automatically incremented, or otherwise
updated in the case of branch instructions. For example, Figure 4 shows the K& S Computer with
machine language program that compares the contents of memory locations 10 and 11, and storesthe
larger of the two in memory location 12. The first two machine language instructions load the
contents of the memory locations 10 and 11 into registers RO and R1, respectively. The next
instruction subtracts R1 from RO and storestheresult in R2. Next, abranch-if-negative instruction
causes the PC to jump to location 6 in memory if the negative flag inthe ALU is set (i.e, if R1 >
RO). If thisoccurs, theinstruction at memory location 6 will store the value from R1 into memory
location 12, followed by a halt instruction. If a jump does not occur, the instruction in memory
location 4 will store the value from RO into memory location 12, followed by a halt instruction.

SCREEN SHOT

Figure 4. K& S Computer Simulator with Machine Language Programming.

Stepping through asmall example similar to the one shown in Figure 4 has proven to be an effective
way to illustrate how a program stored in main memory is executed. While stepping through the
exampletherole of the program counter (PC) and instruction register (IR) are explained. Based on
their experience with microprogramming, students have an intuitive understanding of the purpose of
the “Instruction Interpretation” part of the control unit. At this point the students are presented with
machine language programming tasks to complete.



If the number in memory location 13 islessthan zero, then add 1 to the number in memory
location 14, otherwise subtract 1 from the number in memory location 15.

If the number in memory location 13 is greater than zero, then add 1 to the number in
memory location 14, otherwise subtract 1 from the number in memory location 15.

Calculate the sum of all of the numbers between 1 and 100 and store the result in memory
location 15.

Multiply the number in memory location 14 by the number in memory location 15 and store
the result in memory location 13.

The distinction between RISC and CISC processors can be introduced at this point by noting that
each machine language instruction corresponds to at most one microinstruction. Whilethislimits
the complexity of machine languageinstructions, it doesensurethat each instruction can be executed
in a single datapath cycle, i.e, it is a Reduced Instruction Set Computer. If it were possible to
translate a single machine language instruction into multiple microinstructions, then a Complex
Instruction Set Computer would result.

SCREEN SHOT
Figure 5: K& S Computer Simulator with Assembly Language Programming.

The concept of assembly language programming can be motivated by introducing mnemonic names
for the machine languageinstructions. In Table 1, thelast column givesthe corresponding assembly
language instruction for each machine language instruction. For example, Figure 5 showsthe same
program as in Figure 4, but viewed as assembly code instead of binary machine language
instructions. Admittedly, the one-to-one correspondence of assembly language instructions to
machine language instructions in the K& S Computer blurs the distinction between the two. The
distinction can be reinforced by introducing the notion of a separate assembler that performs the
tranglation from assembly to machine language. Discussions of the assembler can include the
creation of pseudo-instructions such as BEQ (Branch Equal), BLE (Branch Less Than) and BGT
(Branch Greater Than). The job of the assembler then becomes trandating the single pseudo-
instruction into an equivalent sequence of machine language instructions. Depending on the
student’ s background a discussion of the job of the compiler may be appropriate at this point.

5. Discussion

Use at Dickinson (since F99): mixture of non-majors & potential majors. Devote 2 weeks, full
coverage

Use at Creighton (since FO1), non-mgjors. Devote 1-1.5 weeks, cover datapath + memory +
overview of rest.

Adopted at other schoals...
positive response of students, anecdotal evidence suggests better understanding of concepts. Ableto

ask deeper, more interesting questions on tests. At Dickinson, noticeabl e effect on performance of
students in sophomore level computer organization course.
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