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LORENZ EQUATIONS

9.0 Introduction

We begin our study of chaos with the Lorenz equations

X=0(y—Xx)
y=rx—y—xz
Z=xy—bz.

Here o, r, b > 0 are parameters. Ed Lorenz (1963) derived this three-dimensional
system from a drastically simplified model of convection rolls in the atmosphere.
The same equations also arise in models of lasers and dynamos, and as we’ll see
in Section 9.1, they exactly describe the motion of a certain waterwheel (you might
like to build one yourself).

Lorenz discovered that this simple-looking deterministic system could have
extremely erratic dynamics: over a wide range of parameters, the solutions oscil-
late irregularly, never exactly repeating but always remaining in a bounded region
of phase space. When he plotted the trajectories in three dimensions, he discov-

_ered that they settled onto a complicated set, now called a strange attractor. Unlike
stable fixed points and limit cycles, the strange attractor is not a point or a curve or
even a surface—it’s a fractal, with a fractional dimension between 2 and 3.

In this chapter we’ll follow the beautiful chain of reasoning that led Lorenz to
his discoveries. Our goal is to get a feel for his strange attractor and the chaotic
motion that occurs on it.

Lorenz’s paper (Lorenz 1963) is deep, prescient, and surprisingly readable—
Jook it up! It is also reprinted in Cvitanovic (1989a) and Hao (1990). For a capti-
vating history of Lorenz’s work and that of other chaotic heroes, see Gleick (1987).



9.1 A Chaotic Waterwheel

A neat mechanical model of the Lorenz equations was invented by Willem Malkus
and Lou Howard at MIT in the 1970s. The simplest version is a toy waterwheel
with leaky paper cups suspended from its rim (Figure 9.1.1).
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Figure 9.1.1

Water is poured in steadily from the top. If the flow rate is too slow, the top cups
never fill up enough to overcome friction, so the wheel remains motionless. For
faster inflow, the top cup gets heavy enough to start the wheel turning (Figure
9.1.1a). Eventually the wheel settles into a steady rotation in one direction or the
other (Figure 9.1.1b). By symmetry, rotation in either direction is equally possible;
the outcome depends on the initial conditions.

By increasing the flow rate still further, we can destabilize the steady rotation.
Then the motion becomes chaotic: the wheel rotates one way for a few turns, then
some of the cups get too full and the wheel doesn’t have enough inertia to carry
them over the top, so the wheel slows down and may even reverse its direction
(Figure 9.1.1¢). Then it spins the other way for a while. The wheel keeps chang-
ing direction erratically. Spectators have been known to place bets (small ones, of
course) on which way it will be turning after a minute.

Figure 9.1.2 shows Malkus’s more sophisticated set-up that is used nowadays
at MIT.
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Figure 9.1.2

The wheel sits on a table top. It rotates in a plane that is tilted slightly from the hor-
izontal (unlike an ordinary waterwheel, which rotates in a vertical plane). Water
is pumped up into an overhanging manifold and then sprayed out through dozens
of small nozzles. The nozzles direct the water into separate chambers around the
rim of the wheel. The chambers are transparent, and the water has food coloring




in it, so the distribution of water around the rim is easy to see. The water leaks out
through a small hole at the bottom of each chamber, and then collects underne.ath
the wheel, where it is pumped back up through the nozzles. This system provides
a steady input of water.

The parameters can be changed in two ways. A brake on the .wheel can _be
adjusted to add more or less friction. The tilt of the wheel can be varied kfy turning
a screw that props the wheel up; this alters the effective strength of gravity.

A sensor measures the wheel’s angular velocity w(?), and sends the data to a
strip chart recorder which then plots w(¢) in real time. Figure 9.1.3 shows.a record
of w(t) when the wheel is rotating chaotically. Notice once again the irregular
sequence of reversals.
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Figure 9.1.3

We want to explain where this chaos comes from, and to understand the bifur-
cations that cause the wheel to go from static equilibrium to steady rotation to
irregular reversals.

Notation

Here are the coordinates, variables and parameters that describe the wheel’s
motion (Figure 9.1.4):

(top view)

Figure 9.1.4

0 = angle in the lab frame (nof the frame attached to the wheel)
0 =0 < 12:00 in the lab frame

w(7) = angular velocity of the wheel (increases counterclockwise, as
does 0)

m{0, 1) =mass distribution of water around the rim of the wheel, defined

0,
such that the mass between 6, and 0,is M(r)= f() “m(0,1)dl

0(0) = inflow (rate at which water is pumped in by the nozzles above
position )

r = radius of the wheel

K =leakage rate

v = rotational damping rate

I = moment of inertia of the wheel

The unknowns are m(0, 1) and w(z). Our first task is to derive equations gov-
erning their evolution.

Conservation of Mass

To find the equation for conservation of mass, we use a standard argument.
You may have encountered it if you've studied fluids, electrostatics, or chemical
engineering. Consider any sector [0,, 0,] fixed in space (Figure 9.1.5).
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Figure 9.1.5
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The mass in that sector is M (t) = f(} “m(0,1)df. After an infinitesimal time A,
1

what is the change in mass A M? There are four contributions:

f ]”3 0do|Ar.

—L/;Ol Km df

1. The mass pumped in by the nozzles is

2. The mass that leaks out is At. Notice the factor of m in

the integral; it implies that leakage occurs at a rate proportional to the
mass of water in the chamber—more water implies a larger pressure




head and therefore faster leakage. Although this is plausible physically,
the fluid mechanics of leakage is complicated, and other rules are con-
ceivable as well. The real justification for the rule above is that it agrees
with direct measurements on the waterwheel itself, to a good approxi-
mation. (For experts on fluids: to achieve this linear relation between
outflow and pressure head, Malkus attached thin tubes to the holes at
the bottom of each chamber. Then the outflow is essentially Poiseuille
flow in a pipe.)

3. As the wheel rotates, it carries a new block of water into our observa-
tion sector. That block has mass m(f,)wAr, because it has angular
width wA¢ (Figure 9.1.5), and m(6,) is its mass per unit angle.

4. Similarly, the mass carried out of the sector is —m(6, )wAf.

Hence,

AM = Att 1) ]”2 0do - [ * km d@} (0, ) wit — m(8,) wAt. (1)

To convert (1) to a differential equation, we put the transport terms inside the inte-

143 a 1l - .
gral, using m(0,) —m(0,) = —fo —5%— df. Then we divide by Ar and let Ar — 0.

The result is

M _ [*(0 = Kim—wim)do.
dt 0
But by definition of M,
aMm _ r 8_”1610,
dt 0 Ot

Hence

foz_aﬂd():f():(Q-—Km—w%(’,i)d(-).
4 dr b

Since this holds for a/l 6, and 6,, we must have

om om 2
I Q- Km—w .
o 2 Rmme,

Equation (2) is often called the continuity equation. Notice that it is a partial ;
differential equation, unlike all the others considered so far in this book. We e

worry about how to analyze it later; we still need an equation that tells us how wlt
evolves.

Torque Balance

The rotation of the wheel is governed by Newton’s law F = ma, expressed as a
balance between the applied torques and the rate of change of angular momentum,
Let 7 denote the moment of inertia of the wheel. Note that in general / depends on
t, because the distribution of water does. But this complication disappears if we
wait long enough: as 7 — oo, one can show that /(7) — constant (Exercise 9.1.1).
Hence, after the transients decay, the equation of motion is

Iw = damping torque + gravitational torque.

There are two sources of damping: viscous damping due to the heavy oil in the
brake, and a more subtle “inertial” damping caused by a spin-up effect—the water
enters the wheel at zero angular velocity but is spun up to angular velocity w before
it leaks out. Both of these effects produce torques proportional to w, so we have

damping torque = —vw,

where v > 0. The negative sign means that the damping opposes the motion.
The gravitational torque is like that of an inverted pendulum, since water is
pumped in at the top of wheel (Figure 9.1.6).
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Figure 9.1.6

In an infinitesimal sector d6, the mass dM = md#6. This mass element produces a
torque

dr = (dM)gr sinf = mgr sinf do.

To check that the sign is correct, observe that when siné > 0 the torque tends to
increase w, just as in an inverted pendulum. Here g is the effective gravitational
constant, given by g = g, sin & where
—\ Wwheel g, is the usual gravitational constant
> (side view)  and « is the tilt of the wheel from hor-
izontal (Figure 9.1.7). Integration over

all mass elements yields

Figure 9.1.7



gravitational torque = gr fo " m(8,1)sin 0 do.
Putting it all together, we obtain the torque balance equation
Jo=—vw+gr f T m(6,1)sin 0 do. (3)
0

This is called an integro-differential equation because it involves both derivatives
and mtegrals.

Amplifude Equations

Equations (2) and (3) completely specify the evolution of the system. Given the
current values of m(0, 1) and w(?), (2) tells us how to update m and (3) tells us how
to update w. So no further equations are needed. .

If (2) and (3) truly describe the waterwheel’s behavior, there musAt be some pr'etty
complicated motions hidden in there. How can we extra'ct them? The equations
appear much more intimidating than anything we’ve s.tudled so far.

A miracle occurs if we use Fourier analysis to rewrite the system. Watch!

Since m (8, t) is periodic in 6, we can write it as a Fourier series

¢

m(0,1)="" |a,()sinnf +b,(t)cosnd]. (4)

n=0

By substituting this expression into (2) and (3), we’ll obtain a set of amp]itude equa-
tions, ordinary differential equations for the amplitudes @ , b, of the d1fferent har-
monics or modes. But first we must also write the inflow as a Fourier series:

g(0)= iqn cosnf. (5)

n=0

There are no sin n6 terms in the series because water is added symmetrically at the

top of the wheel; the same inflow occurs at # and —@. (In this respect, t'he water-

wheel is unlike an ordinary, real-world waterwheel where asymmetry is used to

drive the wheel in the same direction at all times.) :
Substituting the series for m and Q into (2), we get

0
—w—

i a,(t)sinnd +b,(t)cosnf

n=0

+i g, cosnf

n=0

-g— i a, (t)sinnd + b, (t)cos nd
t n=90

-X [i a, (t)sinnd + b, (t)cosnd

=0

Now carry out the differentiations on both sides, and collect terms. By orthogo-
nality of the functions sin nd, cos nb, we can equate the coefficients of each har-
monic separately. For instance, the coefficient of sin 70 on the left-hand side is ¢,
and on the right it is nwb, — Ka,. Hence

C.ln = Han - ]<a11 M (6)

Similarly, matching coefficients of cos 10 yields

b.” =—nwa, ~ Kb, +gq,. (7)

Both (6) and (7) hold foralln =0, 1, . . . .
Next we rewrite (3) in terms of Fourier series. Get ready for the miracle. When
we substitute (4) into (3), only one term survives in the integral, by orthogonality:

2T

Z a,(t)sinnf + b, (r)cosnd|sinh 4o

n=0

:—vw+gi‘f Wax sin® 6df (8)

[c&:—vw%—grj;

2
0
= —Vw+mwgra,.

Hence, only a, enters the differential equation for w . But then (6) and (7) imply

that a,b,, and w form a closed system—these three variables are decoupled from all
the other a , b ,n = 1! The resulting equations are

& = wh — Ka,
61 = —wd, — Kbl + q, (9)
w = (~vw+mgra,)/I.

(If you’re curious about the higher modes a,, b, n=1,see Exercise 9.1.2))

We've simplified our problem tremendously: the original pair of integro-partial
differential equations (2), (3) has boiled down to the three-dimensional system
). It turns out that (9) is equivalent to the Lorenz equations! (See Exercise 9.1.3)
Before we turn to that more famous system, let’s try to understand a little about
(9). No one has ever fi/ly understood it—its behavior is fantastically complex—but
we can say something,

Fixed Points

We begin by finding the fixed points of (9). For notational convenience, the
usual asterisks will be omitted in the intermediate steps.
Setting all the derivatives equal to zero yields

a]:UJb]/K (10)




wa, =gq,- Kb, (11)
a, = vwlmgr. (12)

Now solve for b, by eliminating a, from (10y and (11):

K
bl :-—*5*—%—,_,“
w +K

Equating (10) and (12) yields wb,/ K = vw/mgr. Hence w = 0 or

b,= Kv/mgr. (14)
Thus, there are two kinds of fixed point to consider:

1. Ifw=0, thena,=0and b, = ¢,/ K. This fixed point
(ab*w*)=(0, q,/K,0) (15)
corresponds to a state of no rotation; the wheel is at rest, with inflow
balanced by leakage. We're not saying that this state is stable, just that
it exists; stability calculations will come later.
2. If w = 0, then (13) and (14) imply b, = Kq,/(w* + K*) = KvImgr.
Since K = 0, we get q,/(w* + K?) = v/7mgr. Hence

(why? =28 _ g2, (16)
v

If the right-hand side of (16) is positive, there are two solutions, Tw*,
corresponding to steady rotation in either direction. These solutions
exist if and only if

LS (17)
Kv

The dimensionless group in (17) is called the Rayleigh number. 1t measures hoyv
hard we're driving the system, relative to the dissipation. More precisel)./, the ratio
in (17) expresses a competition between g and ¢, (gravity and inflow, which tend to
spin the wheel), and K and v (leakage and damping, which tend to stF)p the wheel?.
So it makes sense that steady rotation is possible only if the Rayleigh number is
large enough. .

The Rayleigh number appears in other parts of fluid mechanics, ngtably con-
vection, in which a layer of fluid is heated from below. There it is proportional t'o the
difference in temperature from bottom to top. For small temperature gradlel?ts,
heat is conducted vertically but the fluid remains motionless. When the Rayleigh
number increases past a critical value, an instability occurs—the hot fluid is less

dense and begins to rise, while the cold fluid on top begins to sink. This sets up
a pattern of convection rolls, completely analogous to the steady rotation of our
waterwheel. With further increases of the Rayleigh number, the rolls become wavy
and eventually chaotic.

The analogy to the waterwheel breaks down at still higher Rayleigh numbers,
when turbulence develops and the convective motion becomes complex in space
as well as time (Drazin and Reid 1981, Bergé et al. 1984, Manneville 1990). In con-
trast, the waterwheel settles into a pendulum-like pattern of reversals, turning
once to the left, then back to the right, and so on indefinitely (see Example 9.5.2).

9.2 Simple Properties of the Lorenz Equations

In this section we’ll follow in Lorenz’s footsteps. He took the analysis as far as pos-
sible using standard techniques, but at a certain stage he found himself confronted
with what seemed like a paradox. One by one he had eliminated all the known pos-
sibilities for the long-term behavior of his system: he showed that in a certain range
of parameters, there could be no stable fixed points and no stable limit cycles, yet
he also proved that all trajectories remain confined to a bounded region and are
eventually attracted to a set of zero volume. What could that set be? And how do
the trajectories move on it? As we’ll see in the next section, that set is the strange
attractor, and the motion on it is chaotic.

But first we want to see how Lorenz ruled out the more traditional possibilities.
As Sherlock Holmes said in The Sign of Four, “When you have eliminated the
impossible, whatever remains, however improbable, must be the truth.”

The Lorenz equations are

X=0(y—x)
y=rx—y—xz (1)
Z=xy—bz.

Here o, 1, b > 0 are parameters: o is the Prandt! number, r is the Rayleigh number,
and b has no name. (In the convection problem it is related to the aspect ratio of
the rolls.)

Nonlinearity

The system (1) has only two nonlinearities, the quadratic terms xy and xz. This
should remind you of the waterwheel equations (8.1.9), which had two nonlineari-
ties, wa, and wb,. See Exercise 9.1.3 for the change of variables that transforms the
waterwheel equations into the Lorenz equations.



Symmelry
There is an important spmmetry in the Lorenz equations. If we replace
(x,) — (=x~y) in (1), the equations stay the same. Hence, if (x(1), y(1), z(¢)) isa
solution, so is (—x{z), —y{(1), z(7)). In other words, all solutions are either symmet-
ric themselves, or have a symmetric partner.

Volume Contraction

The Lorenz system is dissipative: volumes in phase space contract under the
flow. To see this, we must first ask: how do volumes evolve?

Let’sanswer the question in general, for any three-dimensionalsystem % = f(x).
Pick an arbitrary closed surface S(¢) of volume V() in phase space. Think of the
points on S as initial conditions for trajectories, and let them evolve for an infini-
tesimal time dr. Then § evolves into a new surface S(¢ + dr); what is its volume
V(t+dty?

Figure 9.2.1 shows a side view of the volume.

Figure 9.2.1

Let n denote the cutward normal on S. Since f is the instantaneous velocity of the
points, f-n is the outward normal component of velocity. Therefore in time df a
patch of area d4 sweeps out a volume (f-n df )dA, as shown in Figure 9.2.2.

fnd {}

Figure 9.2.2

Hence

V(t+dt) = V(t) + (volume swept out by tiny patches of surface,
integrated over all patches),

so we obtain

V(t+dt)= V(t)+j;(f-ndz)d,4.

Hence

v V(z+dt)~V(t):f fondd.
dt s

Finally, we rewrite the integral above by the divergence theorem, and get
V:j;Vde. (2)
For the Lorenz system,

v.fzg;[a(y—-x)]+—a%[r~\‘~y—XZ]+§;{xy—b4

=—g—1-b<0.

Since the divergence is constant, (2) reduces to ¥V = —(o +1+ b)Y, which has solu-
tion V(#) = V(0)e=* '+ Thus volumes in phase space shrink exponentially fast.

Hence, if we start with an enormous solid blob of initial conditions, it eventually
shrinks to a limiting set of zero volume, like a balloon with the air being sucked
out of it. All trajectories starting in the blob end up somewhere in this limiting set;
later we’ll see it consists of fixed points, limit cycles, or for some parameter values,
a strange attractor.

Volume contraction imposes strong constraints on the possible solutions of the
Lorenz equations, as illustrated by the next two examples.

EXAMPLE 9.2.1:

Show that there are no quasiperiodic solutions of the Lorenz equations.

Solution: We give a proof by contradiction. If there were a quasiperiodic solu-
tion, it would have to lie on the surface of a torus, as discussed in Section 8.6, and
this torus would be invariant under the flow. Hence the volume inside the torus
would be constant in time. But this contradicts the fact that all volumes shrink
exponentially fast. m




EXAMPLE 9.2.2:

Show that it is impossible for the Lorenz system to have either repelling fixed points
or repelling closed orbits. (By repelling, we mean that a/l trajectories starting near
the fixed point or closed orbit are driven away from it.)

Solution: Repellers are incompatible with volume contraction because they
are sources of volume, in the following sense. Suppose we encase a repeller with
a closed surface of initial conditions nearby in phase space. (Specifically, pick a
small sphere around a fixed point, or a thin tube around a closed orbit.) A short
time later, the surface will have expanded as the corresponding trajectories are
driven away. Thus the volume inside the surface would increase. This contradicts
the fact that all volumes contract. &

By process of elimination, we conclude that all fixed points must be sinks or
saddles, and closed orbits (if they exist) must be stable or saddle-like. For the case
of fixed points, we now verify these general conclusions explicitly.

Fixed Points

Like the waterwheel, the Lorenz system (1) has two types of fixed points. The
origin (x*, y* z*) = (0,0, 0) is a fixed point for a// values of the parameters. It is like
the motionless state of the waterwheel. For r > 1, there is also a symmetric pair of
fixed points x* = y* = £,/b(r—1), z* =r—1. Lorenzcalled them C* and C~. They
represent left- or right-turning convection rolls (analogous to the steady rotations
of the waterwheel). As r — 1, C+ and C- coalesce with the origin in a pirchfork
bifurcation.

Linear Stability of the Origin
The linearization at the originis % = o (y~x), y=rx—y, z=-bz, obtained
by omitting the xy and xz nonlinearities in (1). The equation for z is decoupled and
shows that z(#) — 0 exponentially fast. The other two directions are governed by
the system
y k

x| -0 o
¥ e =1
with trace 7 = —o — 1 < 0 and determinant A = o(1—r). If r > 1, the originis a
saddle point because A < 0. Note that this is @ new type of saddle for us, since the

full system is three-dimensional. Including the decaying z-direction, the saddle
has one outgoing and two incoming directions. If < 1, all directions are incoming

and the origin is a sink. Specifically, since 7 —4A = (o + )*—4o(l-1) = (0~ D2

+ 4or > 0, the origin is a stable node for r < 1.

Global Stability of the Origin

Actually, for r < 1, we can show that every trajectory approaches the origin as
t—s 1oo; the origin is globally stable. Hence there can be no limit cycles or chaos for
r<l.

The proof involves the construction of a Liapunov function, a smooth, positive
definite function that decreases along trajectories. As discussed in Section 7.2, a
Liapunov function is a generalization of an energy function for a classical mechan-
ical system—in the presence of friction or other dissipation, the energy decreases
monotonically. There is no systematic way to concoct Liapunov functions, but
often it is wise to try expressions involving sums of squares.

Here, consider V' (x,y,z)=21x* + »* + z°. The surfaces of constant ¥ are con-
centric ellipsoids about the origin (Figure 9.2.3).

z

V= const

Figure 9.2.3

Theideais to show thatif r < 1 and (x,3,z) = (0,0,0), then ¥ < 0 along trajectories.
This would imply that the trajectory keeps moving to lower ¥, and hence pene-
trates smaller and smaller ellipsoids as 7 — co. But ¥ is bounded below by 0, so
V(x(t)) — 0 and hence x (1) — 0, as desired.

Now calculate:

1V =Llxt+yp+zz
=(yx =)+ (ryx = y* — xpz) + (2xy — bz*)
=(r+1Dxy—x* —y* —bz*.

Completing the square in the first two terms gives
V= —{x—rT“yr —[1—(%1)2]y2 — b2,

We claim that the right-hand side is strictly negative if r < 1 and (xy,z) = (0,0,0). It
is certainly not positive, since it is a negative sum of squares. But could ¥ = 0?



That would require each of the terms on the right to vanisl.1 separately. Hence
y =0, z = 0, from the second two terms on the right-hand side. (Because of the
assumption r < 1, the coefficient of y* is nonzero.) Thus the first term reduces to
—x2, which vanishes only if x = 0. o

The upshot is that V =0 implies (x, y, z) = (0, 0, 0). Otherwise V' < 0. Hence
the claim is established, and therefore the origin is globally stable for r < 1.

Stability of C* and C-

Now suppose r > 1, so that C* and C - exist. The calculation of their stability is
left as Exercise 9.2.1. It turns out that they are linearly stable for

(o +b+3)
l<r<ry z—g*_—b—_-l‘—

(assuming also that ¢ — b — 1 > 0). We use a subscript / because C* and C~ lose
stability in a Hopf bifurcation atr =r,,. A _ ‘ . ,
What happens immediately after the bifurcation, for r slightly greater than r,,?
You might suppose that C* and C - would each be surrounded b)./ a small stable
limit cycle. That would occur if the Hopf bifurcation were supercritical. But actt}—
ally it’s subcritical—the limit cycles are unstable and exist only for r < r,. -Th‘ls
requires a difficult calculation; see Marsden and McCracken (1976) or Drazin
8.2 onp. 277).
GQ?—I?&ZS’S the inrt)uitive): picture. For r < r,, the phase portrait near C* is shown sche-
matically in Figure 9.2.4.

sddle cycle

unstable manifold
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Figure 9.2.4

The fixed point is stable. It is encircled by a seddle cycle, a new t)./pe of. unstable'i
limit cycle that is possible only in phase spaces of three or more dimensions. Th’ek
cycle has a two-dimensional unstable manifold (the sheet in Figure 9.2.4), and
two-dimensional stable manifold (not shown). As r — r,, from below, the cycl

shrinks down around the fixed point. At the Hopf bifurcation, the fixed point
absorbs the saddle cycle and changes into a saddle point. For r > r, there are no
attractors in the neighborhood.

So for r > r, trajectories must fly away to a distant attractor. But what can it be?
A partial bifurcation diagram for the system, based on the results so far, shows no
hint of any stable objects for r > r,, (Figure 9.2.5).

unstable
cycle
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origin
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Figure 9.2.5

Could it be that all trajectories are repelled out to infinity? No; we can prove that all
trajectories eventually enter and remain in a certain large ellipsoid (Exercise 9.2.2).
Could there be some stable limit cycles that we’re unaware of? Possibly, but Lorenz
gave a persuasive argument that for r slightly greater than r, any limit cycles
would have to be unstable (see Section 9.4).

So the trajectories must have a bizarre kind of long-term behavior. Like balls in
a pinball machine, they are repelled from one unstable object after another. At the
same time, they are confined to a bounded set of zero volume, yet they manage to
move on this set forever without intersecting themselves or others.

In the next section we’ll see how the trajectories get out of this conundrum.

9.3 Chaos on a Strange Attractor

Lorenz used numerical integration to see what the trajectories would do in the

long run. He studied the particular case o = 10, b=4%, r=28. This value of r is just

past the Hopf bifurcation value ty=0(0c+b+3)/(c-b-1)~ 2474, so he knew
that something strange had to occur. Of course, strange things could occur for
another reason—the electromechanical computers of those days were unreliable
and difficult to use, so Lorenz had to interpret his numerical results with caution.
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He began integrating from the initial condition ©, 1, 0)_,’close to the saddle p
at the origin. Figure 9.3.1 plots y(¢) for the resulting solution.

Figure 9.3.1
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a butterfly pattern appears (Figure 9.3.2).

Figure 9.3.2

The trajectory appears to cross itself repeatedly, but that’s just an artifact of pro-
Jecting the three-dimensional trajectory onto a two-dimensional plane. In three
dimensions no self-intersections oceur.

Let’s try to understand Figure 9.3.2 in detail. The trajectory starts near the
origin, then swings to the right, and then dives into the center of a spiral on the
left. After a very slow spiral outward, the trajectory shoots back over to the right
side, spirals around a few times, shoots over to the left, spirals around, and so on
indefinitely. The number of circuits made on either side varies unpredictably from
one cycle to the next. In fact, the sequence of the number of circuits has many of
the characteristics of a random sequence. Physically, the switches between left and
right correspond to the irregular reversals of the waterwheel that we observed in
Section 9.1.

When the trajectory is viewed in all three dimensions, rather than in a
two-dimensional projection, it appears to settle onto an exquisitely thin set that
looks like a pair of butterfly wings. Figure 9.3.3 shows a schematic of this strange
attractor (a term coined by Ruelle and Takens (1971)). This limiting set is the
attracting set of zero volume whose existence was deduced in Section 9.2,

Figure 9.3.3 Abrahom and Shaw (1983}, p. 88

What is the geometrical structure of the strange attractor? Figure 9.3.3 suggests
that it is a pair of surfaces that merge into one in the lower portion of Figure 9.3.3.
But how can this be, when the uniqueness theorem (Section 6.2) tells us that tra-
Jectories can’t cross or merge? Lorenz (1963) gives a lovely explanation—the two
surfaces only appear to merge. The illusion is caused by the strong volume con-
traction of the flow, and insufficient numerical resolution. But watch where that
idea leads him:

It would seem, then, that the two surfaces merely appear to merge, and
remain distinct surfaces. Following these surfaces along a path parallel to
a trajectory, and circling C+and C ", we see that each surface is really a
pair of surfaces, so that, where they appear to merge, there are really four
surfaces. Continuing this process for another circuit, we see that there are



really eight surfaces, etc., and we finally conclude that there is an infinite
complex of surfaces, each extremely close to one or the other of two merg-
ing surfaces.

Today this “infinite complex of surfaces” would be called a fractal. It is a set of
points with zero volume but infinite surface area. In fact, numerical experiments
suggest that it has a dimension of about 2.05! (See Example 11.5.1) The amazing
geometric properties of fractals and strange attractors will be discussed in detail in
Chapters 11 and 12. But first we want to examine chaos a bit more closely.

nf]l

Exponential Divergence of Nearby Trajectories

The motion on the attractor exhibits sensitive dependence on initial conditions.
This means that two trajectories starting very close together will rapidly diverge
from each other, and thereafter have totally different futures. Color Plate 2 vividly
illustrates this divergence by plotting the evolution of a small red blob of 10,000
nearby initial conditions. The blob eventually spreads over the whole attractor.
Hence nearby trajectories can end up anywhere on the attractor! The practical
implication is that long-term prediction becomes impossible in a system like this,
where small uncertainties are amplified enormously fast.

Let’s make these ideas more precise. Suppose that we let transients decay, so
that a trajectory is “on” the attractor. Suppose x(7) is a point on the attractor at
time 7, and consider a nearby point, say x(¢) + 6(¢), where § is a tiny separation
vector of initial length |6, || = 107, say (Figure 9.3.4).

Figure 9.3.5

We need to add some qualifications:

1. The curve is never exactly straight. It has wiggles because the strength
of the exponential divergence varies somewhat along the attractor.

2. The exponential divergence must stop when the separation is compa-
rable to the “diameter” of the attractor—the trajectories obviously
can’t get any farther apart than that. This explains the leveling off or
saturation of the curve in Figure 9.3.5.

3. The number M is often called the Liapunov exponent, although this is a
sloppy use of the term, for two reasons:

lj"irst, there are actually # different Liapunov exponents for an
{z—dlrpensional system, defined as follows. Consider the evolution of an
1T1ﬁn1tesima1 sphere of perturbed initial conditions. During its evolu-
tion, the sphere will become distorted into an infinitesimal ellipsoid.

x(1)

8(7)

i Let 6,({1), k =1,..., n,denote the length of the kth principal axis of
the ellipsoid. Then 6, (t) ~6,(0)e™, where the A, are the Liapunov
exponents. For large ¢, the diameter of the ellipsoid is controlled by

e 0 the most positive A, Thus our X is actually the largest Liapunov

exponent.

Second, A depends (slightly) on which trajectory we study. We

should average over many different points on the same trajectory to
get the true value of \.

Now watch how 6(¢#) grows. In numerical studies of the Lorenz attractor, one finds
that
6O ~ 116l e
When a system has a positive Liapunov exponent, there is a time horizon beyond
w.h]ch -prediction breaks down, as shown schematically in Figure 9.3.6. (See
nghthlll' 1986 for a nice discussion.) Suppose we measure the initial conéii'tic.)ns of
an expenmental system very accurately. Of course, no measurement is perfect—
there is always some error l|6,]l between our estimate and the true initial state.

where N a 09. Hence neighboring trajectories separate exponentially fast.
Equivalently, if we plot In||6(¢) versus 7, we find a curve that is close to a straight
line with a positive slope of A (Figure 9.3.5).
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Figure 9.3.6

After a time 1, the discrepancy grows to ||§(2)]| ~ |6 ]le". Leta be‘ ameasure of our
tolerance, i.e., if a prediction is within a of the true state, we consider it acceptajble.
Then our prediction becomes intolerable when [|§(7)}| > a; this occurs after a time

1 a
bioion ~ Ol —I7—1.
horizo: [A H60 ”]

The logarithmic dependence on ||§,]| is what hurts us. No matter how hard we
work to reduce the initial measurement error, we can’t predict longer t.han a few
multiples of 1/\. The next example is intended to give you a quantitative feel for
this effect.

EXAMPLE 9.3.1:

Suppose we're trying to predict the future state of a ch'af)tic systt?m to Wit}:lill a
tolerance of ¢ = 10-. Given that our estimate of the initial state is uncertain Fo
within || ]| = 107, for about how long can we predict the state of Fhe system, w?nle
remaining within the tolerance? Now suppose we buy the finest mstrumenta@og,
recruit the best graduate students, etc., and somehow manage to measure the ini-
tial state a million times better, i.e., we improve our initial error to ||| = 107°. How
much longer can we predict?
Solution: The original prediction has

1, 107 1 s 4Inl0
L R — =—In(10") = —.
Zhorlzon )Y 1 10__7 by ( ) )\
The improved prediction has
1,107 1 __10In10

In In(10)

thorizon ~ ;\_ 10—13 = X

Thus, after a millionfold improvement in our initial uncertainty, we can predict
only 10/4 = 2.5 times longer! &®

Such calculations demonstrate the futility of trying to predict the detailed long-
term behavior of a chaotic system. Lorenz suggested that this is what makes long-
term weather prediction so difficult.

Defining Chaos

No definition of the term chaos is universally accepted yet, but almost everyone
would agree on the three ingredients used in the following working definition:

Chaos is aperiodic long-term behavior in a deterministic system that exhibits
sensitive dependence on initial conditions.

1. “Aperiodic long-term behavior” means that there are trajectories
which do not settle down to fixed points, periodic orbits, or quasipe-
riodic orbits as  — oo. For practical reasons, we should require that
such trajectories are not too rare. For instance, we could insist that
there be an open set of initial conditions leading to aperiodic trajecto-
ries, or perhaps that such trajectories should occur with nonzero prob-
ability, given a random initial condition.

2. “Deterministic” means that the system has no random or noisy
inputs or parameters. The irregular behavior arises from the system’s
nonlinearity, rather than from noisy driving forces.

3. “Sensitive dependence on initial conditions” means that nearby tra-
jectories separate exponentially fast, i.e., the system has a positive
Liapunov exponent.

EXAMPLE 9.3.2:

Some people think that chaos is just a fancy word for instability. For instance,
the system X = x is deterministic and shows exponential separation of nearby tra-
jectories. Should we call this system chaotic?

Solution: No. Trajectories are repelled to infinity, and never return. So infinity
acts like an attracting fixed point. Chaotic behavior should be aperiodic, and that
excludes fixed points as well as periodic behavior. &

Defining Attractor and Strange Atiractor

The term attractor is also difficult to define in a rigorous way. We want a defi-
nition that is broad enough to include all the natural candidates, but restrictive
enough to exclude the imposters. There is still disagreement about what the exact
definition should be. See Guckenheimer and Holmes (1983, p. 256), Eckmann and
Ruelle (1985), and Milnor (1985) for discussions of the subtleties involved.

Loosely speaking, an attractor is a set to which all neighboring trajectories con-
verge. Stable fixed points and stable limit cycles are examples. More precisely, we
define an attractor to be a closed set A with the following properties:




Thc?re is an important moral to Example 9.3.3. Even if a certain set attracts
all tra)ectgrles, it may fail to be an attractor because it may not be minimal—it
may contain one or more smaller attractors.

The same could be true for the Lorenz equations. Although all trajectories are
attracted to a bounded set of zero volume, that set is not necessar ily an attractor,
since it might not be minimal. Doubts about this delicate issue lingered for many
years, but were eventually laid to rest in 1999, as we’ll discuss in Section 9.4.

1. A is an invariant set: any trajectory x(z) that starts in 4 stays in A4 for
all time.

2. A attracts an open set of initial conditions: there is an open set U con-
taining 4 such that if x(0) € U, then the distance from x(r) to 4 tends
to zero as 1 — oo. This means that A4 attracts all trajectories that start
sufficiently close to it. The largest such U is called the basin of attrac-

tion of A.

3. A is minimal: there is no proper subset of A4 that satisfies conditions 1 Finally, we define a strange attractor to be an attractor that exhibits sensiti
. itive
and 2. dependence on initial conditions. Strange attractors were originally called strange

because they are often fractal sets. Nowadays this geometric property is regarded
as less important than the dynamical property of sensitive dependence on initial
conditions. The terms chaotic attractor and Jractal attractor are used when one
wishes to emphasize one or the other of those aspects.

EXAMPLE 9.3.3:
Consider the system %= x—x°, j=—y. LetIdenote the interval -1 <x <1,
y =0.Is Jan invariant set? Does it attract an open set of initial conditions? Is it an

9.4 Lorenz Map

attractor?
Solution: The phase portrait is shown in Figure 9.3.7. There are stable fixed

points at the endpoints (1,0) of 7 and a saddle point at the origin. Figure 937
shows that 7is an invariant set; any trajectory that starts in / stays in / forever. (In
fact the whole x-axis is an invariant set, since if y(0) = 0, then y(¢) = 0 for all .) So

condition 1 is satisfied.

N
Y

Lorenz (1963) found a beautiful way to analyze the dynamics on his strange attrac-
tor. He directs our attention to a particular view of the attractor (Figure 9.4.1),

N
NN

Moreover, [ certainly attracts an open set of initial conditions—it attracts all

trajectories in the xy plane. So condition 2 is also satisfied.
But 7is not an attractor because it is not minimal. The stable fixed points (£1, 0)

are proper subsets of 1 that also satisfy properties 1 and 2. These points are th
only attractors for the system. @

Figure 9.3.7

Figure 9.4.1

nd then he writes:




the trajectory apparently leaves one spiral only after exceeding some
critical distance from the center. Moreover, the extent to which this
distance is exceeded appears to determine the point at which the next
spiral is entered; this in turn seems to determine the number of cir-
cuits to be executed before changing spirals again. It therefore seems
that some single feature of a given circuit should predict the same fea-
ture of the following circuit.

The “single feature” that he focuses on is z,, the nth local maximum of z(z)
(Figure 9.4.2).

24l
“n

Figure 9.4.2

Lorenz’s idea is that z, should predict z, . To check this, he numerically integrated
the equations for a long time, then measured the local maxima of z(¢), and finally
plotted z,,, vs. z,. As shown in Figure 9.4.3, the data from the chaotic time series
appear to fall neatly on a curve—there is almost no “thickness” to the graph!
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Figure 9.4.3

By this ingenious trick, Lorenz was able to extract order from chaos. The func-
tionz, , =f(z,) shown in Figure 9.4.3 is now called the Lorenz map. It tells us a lot
about the dynamics on the attractor: given z,, we can predict z, by z, =f(z,), and
then use that information to predict z, = f(z,), and so on, bootstrapping our way
forward in time by iteration. The analysis of this iterated map is going to lead us to
a striking conclusion, but first we should make a few clarifications.

First, the graph in Figure 9.4.3 is not actually a curve. It does have some thick-
ness. So strictly speaking, f(z) is not a well-defined function, because there can be
more than one output z, , for a given input z . On the other hand, the thickness is
so small, and there is so much to be gained by treating the graph as a curve, that we
will simply make this approximation, keeping in mind that the subsequent analy-
sis is plausible but not rigorous.

Second, the Lorenz map may remind you of a Poincaré map (Section 8.7). In
both cases we're trying to simplify the analysis of a differential equation by reduc-
ing it to an iterated map of some kind. But there’s an important distinction: To
construct a Poincaré map for a three-dimensional flow, we compute a trajectory’s
successive intersections with a two-dimensional surface. The Poincaré map takes
a point on that surface, specified by rwo coordinates, and then tells us how those
two coordinates change after the first return to the surface. The Lorenz map is
different because it characterizes the trajectory by only one number, not two. This
simpler approach works only if the attractor is very “flat,” i.e., close to two-dimen-
sional, as the Lorenz attractor is.

Ruling Out Stable Limit Cycles

How do we know that the Lorenz attractor is not just a stable limit cycle in
disguise? Playing devil’s advocate, a skeptic might say, “Sure, the trajectories don’t
ever seem to repeat, but maybe you haven’t integrated long enough. Eventually
the trajectories will settle down into a periodic behavior—it just happens that the
period is incredibly long, much longer than you've tried in your computer. Prove
me wrong.”

Although he couldn’t come up with a rigorous refutation, Lorenz was able to
give a plausible counterargument that stable limit cycles do not, in fact, occur for
the parameter values he studied.

His argument goes like this: The key observation is that the graph in Figure 9.4.3
satisfies

F'(2)]>1 (1)

everywhere. This property ultimately implies that if any limit cycles exist, they are
necessarily unstable.

To see why, we start by analyzing the fixed points of the map /- These are points
z* such that f(z*) = z* in which case z =z, w=Z,,,=-... Figure 9.4.3 shows that

there is one fixed point, where the 45° diagonal intersects the graph. It represents a

- closed orbit that looks like that shown in Figure 9.4 4.
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Figure 9.4.4

To show that this closed orbit is unstable, consider a slightly perturbed trajec-
tory that has z = z*+ n , where n, is small. After linearization as usual, we find

i

N~ f1(z%)n,. Since| f/ (z*)| > 1, by the key property (1), we get

l77n+l| > lnlrl'
Hence the deviation 7, grows with each iteration, and so the original closed orbit

is unstable. '
Now we generalize the argument slightly to show that @/l closed orbits are

unstable.

EXAMPLE 9.4.1:

Given the Lorenz map approximation z,,, = f(z,), with |f'(z)| > 1 for all z,
show that all closed orbits are unstable.

Solution: Think about the sequence {z } corresponding to an arbitrary closed
orbit. It might be a complicated sequence, but since we know that the orbit e%ventu-
ally closes, the sequence must eventually repeat. Hence Zpip = 2o for some integer
p > 1. (Here p is the period of the sequence, and z, is a.perzod—p point.) .

Now to prove that the corresponding closed orbit is unstable, cons%der the fate
of a small deviation 7,, and look at it after p iterations, when the cycle is complete.
We'll show that |n, | > 17,|; which implies that the deviation has grown and the
closed orbit is unstable. ‘ . ' o

To estimate 7, , g0 one step at a time. .After' one iteration, 0, ., ~ f'(z,)7,, by
linearization about z . Similarly, after two iterations,

7711+2 ~ f.l(zlwl )nn—H
~ f‘/(zu—}-] ){.f/(zn )7711]
= [/ f Gl

Hence after p iterations,

p-l

77n+/: ~ [Hf/(zn-r/c) 77/!' (2)
k=0

In (2), each of the factors in the product has absolute value greater than 1, because

[f'(z)] > 1 for all z. Hence 1,.,l > In,l, which proves that the closed orbit is
unstable. @

Still, since the Lorenz map is not a well-defined function (because, as we’ve
seen, its graph has some thickness to it), this sort of argument wouldn’t convince
our hypothetical skeptic. The matter was finally laid to rest in 1999, when a grad-
uate student named Warwick Tucker proved that the Lorenz equations do, in fact,
have a strange attractor (Tucker 1999, 2002). See Stewart (2000) and Viana (2000)
for readable accounts of this milestone.

Why does Tucker’s proof matter? Because it dispels any lingering concerns that
our simulations are deceiving us. Those concerns are serious and Jjustified. After
all, how sure can we be of the trajectories we see in the computer, when any little
error in numerical integration is bound to grow exponentially fast? Tucker’s theo-
rem reassures us that, despite these inevitable numerical errors, the strange attrac-
tor and the chaotic motion that we see on it are genuine properties of the Lorenz
equations themselves.

9.5 Exploring Parameter Space

So far we have concentrated on the particular parameter values o = 10, b = 5,
r =28, as in Lorenz (1963). What happens if we change the parameters? It’s like a
walk through the jungle—one can find exotic limit cycles tied in knots, pairs of
limit cycles linked through each other, intermittent chaos, noisy periodicity, as
well as strange attractors (Sparrow 1982, Jackson 1990). You should do some
exploring on your own, perhaps starting with some of the exercises.

There is a vast three-dimensional parameter space to be explored, and much
remains to be discovered. To simplify matters, many investigators have kept o = 10
and b=2% while varying r. In this section we give a glimpse of some of the phe-
nomena observed in numerical experiments. See Sparrow (1982) for the definitive
treatment.

The behavior for small values of r is summarized in Figure 9.5.1.
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EXAMPLE 9.5.1:

Show numerically that the Lorenz equations can exhibit transient chaos when
r =21 (with o = 10and » = £ as usual).

Solution: After experimenting with a few different initial conditions, it is easy to
find solutions like that shown in Figure 9.5.2.
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Figure 9.5.1

Much of this picture is familiar. The origin is globally stable for r < 1. Atr=1the
origin loses stability by a supercritical pitchfork bifurcation, and a symmetric pair
of attracting fixed points is born (in our schematic, only one of the pair is shown).
Atr, = 2474 the fixed points lose stability by absorbing an unstable limit cycle in
a subcritical Hopf bifurcation.

Now for the new results. As we decrease r from r,,, the unstable limit cycles
expand and pass precariously close to the saddle point at the origin. At r ~ 13.926
the cycles touch the saddle point and become homoclinic orbits; hence we have a
homoclinic bifurcation. (See Section 8.4 for the much simpler homoclinic bifurca-
tions that occur in two-dimensional systems.) Below r = 13.926 there are no limit
cycles. Viewed in the other direction, we could say that a pair of unstable limit
cycles are created as r increases through r = 13.926.

This homoclinic bifurcation has many ramifications for the dynamics, but its
analysis is too advanced for us—see Sparrow’s (1982) discussion of “homoclinic
explosions.” The main conclusion is that an amazingly complicated invariant set
is born at r = 13.926, along with the unstable limit cycles. This set is a thicket of
infinitely many saddle-cycles and aperiodic orbits. It is not an attractor and isnot
observable directly, but it generates sensitive dependence on initial conditions in
jts neighborhood. Trajectories can get hung up near this set, somewhat like wan-
dering in a maze. Then they rattle around chaotically for a while, but eventually
escape and settle down to C* or C~. The time spent wandering near the set gets
Jonger and longer as r increases. Finally, at r = 24.06 the time spent wandering
becomes infinite and the set becomes a strange attractor (Yorke and Yorke 1979). ‘k

Figure 9.5.2

At first the trajectory seems to be tracing out a strange attractor, but eventually
it stays on the right and spirals down toward the stable fixed point C*. (Recall
that both C* and C- are still stable at » = 21.) The time series of y vs. t shows the

same result: an initially erratic solution ultimately damps down to equilibrium
(Figure 9.5.3).




Figure 9.5.3

Other names used for transient chaos are metastable chaos (Kaplan and Yorke
1979) or pre-turbulence (Yorke and Yorke 1979, Sparrow 1982). &

By our definition, the dynamics in Example 9.5.1 are not “chaotic,” because the
Jong-term behavior is not aperiodic. On the other hand, the dynamics do exhibit
sensitive dependence on initial conditions—if we had chosen a slightly different
initial condition, the trajectory could easily have ended up at C~ instead of C*.
Thus the system’s behavior is unpredictable, at least for certain initial conditions.

Transient chaos shows that a deterministic system can be unpredictable, even
if its final states are very simple. In particular, you don’t need strange attractors
to generate effectively random behavior. Of course, this is familiar from everyday
experience—many games of “chance” used in gambling are essentially demon-
strations of transient chaos. For instance, think about rolling dice. A crazily-roll-
ing die always stops in one of six stable equilibrium positions. The problem with
predicting the outcome is that the final position depends sensitively on the initial
orientation and velocity (assuming the initial velocity is large enough).

Before we leave the regime of small , we note one other interesting implica-
tion of Figure 9.5.1: for 24.06 < r < 2474, there are two types of attractors: fixed
points and a strange attractor. This coexistence means that we can have hystere-
sis between chaos and equilibrium by varying r slowly back and forth past these
two endpoints (Exercise 9.5.4). It also means that a large enough perturbation can
knock a steadily rotating waterwheel into permanent chaos; this is reminiscent (in

spirit, though not detail) of fluid flows that mysteriously become turbulent even

though the basic laminar flow is still linearly stable (Drazin and Reid 1981).
The next example shows that the dynamics become simple again when r is suf-
ficiently large.

EXAMPLE 9.5.2;

Describe the long-term dynamics for large values of r, for o = 10, b =%
Interpret the results in terms of the motion of the waterwheel of Section 9.1.

Solution: Numerical simulations indicate that the system has a globally attract-
ing limit cycle for all r > 313 (Sparrow 1982). In Figures 9.5.4 and 9.5.5 we plot a
typical solution for r = 350; note the approach to the limit cycle.

z
X
Figure 9.5.4
y
) |

Figure 9.5.5




This solution predicts that the waterwheel should ultimately rock back and forth
like a pendulum, turning once to the right, then back to the left, and so on. Thisis
observed experimentally. @

In the limit » — oo one can obtain many analytical results about the Lorenz
equations. For instance, Robbins (1979) used perturbation methods to character-
ize the limit cycle at Jarge r. For the first steps in her calculation, see Exercise 9.5.5.
For more details, see Chapter 7 in Sparrow (1982).

The story is much more complicated for r between 28 and 313. For most values
of r one finds chaos, but there are also small windows of periodic behavior inter-
spersed. The three largest windows are 99.524. .. < r < 100.795..; 145 <r <166;
and r > 214.4. The alternating pattern of chaotic and periodic regimes resembles
that seen in the logistic map (Chapter 10), and so we will defer further discussion
until then.

9.6 Using Chaos to Send Secret Messages

One of the most exciting recent developments in nonlinear dynamics is the real-
ization that chaos can be useful. Normally one thinks of chaos as a fascinating
curiosity at best, and a nuisance at worst, something to be avoided or engineered
away. But since about 1990, people have found ways to exploit chaos to do some
marvelous and practical things. For an introduction to this subject, see Vohra et
al. (1992).

One application involves “private communications.” Suppose you want to send
a secret message to a friend or business partner. Naturally you should use a code,
so that even if an enemy is eavesdropping, he will have trouble making sense of the
message. This is an old problem—people have been making (and breaking) codes
for as long as there have been secrets worth keeping.

Kevin Cuomo and Alan Oppenheim (1992, 1993) implemented a new approach
to this problem, building on Pecora and Carroll’s (1990) discovery of synchronized
chaos. Here’s the strategy: When you transmit the message to your friend, you also
“mask” it with much louder chaos. An outside listener only hears the chaos, which
sounds like meaningless noise. But now suppose that your friend has a magic
receiver that perfectly reproduces the chaos—then he can subtract off the chaotic
mask and listen to the message!

Cuomeo’s Demenstration

Kevin Cuomo was a student in my course on nonlinear dynamics, and at the
end of the semester he treated our class to a live demonstration of his approach.
First he showed us how to make the chaotic mask, using an electronic implemen-
tation of the Lorenz equations (Figure 9.6.1). The circuit involves resistors, capac-
itors, operational amplifiers, and analog multiplier chips.
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Figure 9.6.1 Cvomo and Oppenheim (1993), p. 66

The voltages u, v, w at three different points in the circuit are proportional to
Ijorenz’s x, , z. Thus the circuit acts like an analog computer for the Lorenz equa-
tions. Oscilloscope traces of u(r) vs. w(z), for example, confirmed that the circuit
was following the familiar Lorenz attractor. Then, by hooking up the circuit to
a loudspeaker, Cuomo enabled us to hear the chaos—it sounds like static on the
radio.

The _hard part is to make a receiver that can synchronize perfectly to the chaotic
Fransmlttel'. In Cuomo’s set-up, the receiver is an identical Lorenz circuit, driven
in a certain clever way by the transmitter. We’ll get into the details later ’but for
now let’s content ourselves with the experimental fact that synchronizejd chaos

does oceur. Figure 9.6.2 plots the receiver variables u (1) and v (¢) against their
transmitter counterparts u(z) and v(r). I
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Figure 9.6.2 Courtesy of Kevin Cuomo




The 45° trace on the oscilloscope indicates that the synchronization is nearly per-
fect, despite the fact that both circuits are running chaotically. The synchronization
is also quite stable: the data in Figure 9.6.2 reflect a time span of several minutes,
whereas without the drive the circuits would decorrelate in about 1 millisecond.

Cuomo brought the house down when he showed us how to use the circuits
to mask a message, which he chose to be a recording of the hit song “Emotions”
by Mariah Carey. (One student, apparently with different taste in music, asked
“Is that the signal or the noise?”) After playing the original version of the song,
Cuomo played the masked version. Listening to the hiss, one had absolutely no
sense that there was a song buried underneath. Yet when this masked message was
sent to the receiver, its output synchronized almost perfectly to the original chaos,
and after instant electronic subtraction, we heard Mariah Carey again! The song
sounded fuzzy, but easily understandable.

Figures 9.6.3 and 9.6.4 illustrate the system’s performance more quantitatively
on a test sentence from a different source. Figure 9.6.3a is a segment of speech from
the sentence “He has the bluest eyes,” obtained by sampling the speech waveform
at a 48 kHz rate and with 16-bit resolution. This signal was then masked by much
louder chaos. The power spectra in Figure 9.6.4 show that the chaos is about 20
decibels louder than the message, with coverage over its whole frequency range.
Finally, the unmasked message at the receiver is shown in Figure 9.6.3b. The orig-
inal speech is recovered with only a tiny amount of distortion (most visible as the
increased noise on the flat parts of the record).
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Figure 9.6.3 Cuomo and Oppenheim {1993}, p. 67
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Figure 9.6.4 Cuomo and Oppenheim (1993), p. 68

Proof of Synchronization

The signal-masking method discussed above was made possible by the concep-
tual breakthrough of Pecora and Carroll (1990). Before their work, many people
would have doubted that two chaotic systems could be made to synchronize. After
all, chaotic systems are sensitive to slight changes in initial condition, so one might
expect any errors between the transmitter and receiver to grow exponentially.
But Pecora and Carroll (1990) found a way around these concerns. Cuomo and
Oppenheim (1992, 1993) simplified and clarified the argument; we discuss their
approach now.

The receiver circuit is shown in Figure 9.6.5.

drive signal

Figure 9.6.5 Courfesy of Kevin Cuomo




It is identical to the transmitter, except that the drive signal u(r) replaces the
receiver signal u (¢) at a crucial place in the circuit (compare Figure 9.6.1). To see
what effect this has on the dynamics, we write down the governing equations for
both the transmitter and the receiver. Using Kirchhoff s laws and appropriate
nondimensionalizations (Cuomo and Oppenheim 1992), we get

n=oc(v—u)
v =ru—v—20uw (1)
W= Suv—bw

as the dynamics of the transmitter. These are just the Lorenz equations, written in
terms of scaled variables

- — 1 =
X, V‘—Eyv ]'V-—'—EA.

I_.

M—:l

<

(This scaling is irrelevant mathematically, but it keeps the variables in a more
favorable range for electronic implementation, if one unit is supposed to corre-
spond to one volt. Otherwise the wide dynamic range of the solutions exceeds typ-
ical power supply limits.)

The receiver variables evolve according to

u =o(v,—u,)
V= () —v, —20u(t)w, (2)
}ri,’r = Su(f)vl, — bW”,

where we have written u(¢) to emphasize that the receiver is driven by the chaotic
signal u(7) coming from the transmitter.

The astonishing result is that the receiver asymptotically approaches perfect syn-
chrony with the transmitter, starting from any initial conditions! To be precise, let

d = (u, v, w) = state of the transmitter or “driver”
r={(u,v,w,)=state of the receiver
e = d—r = error signal

The claim is that e(z) — 0 as # — oo, for all initial conditions.

Why is this astonishing? Because at each instant the receiver has only partial
information about the state of the transmitter—it is driven solely by u(z), yet
somehow it manages to reconstruct the other two transmitter variables v(t) and
w(t)as well

The proof'is given in the following example.

EXAMPLE 9.6.1:

By defining an appropriate Liapunov function, show that e(t) — 0 as ¢ — oo.

Solution: First we write the equations governing the error dynamics. Subtracting
(2) from (1) yields

é =o(e, —e¢)
€, = —e, —20u(t)e,
&, = 5u(t)e, — be,

This is a linear system for e(¢), but it has a chaotic time-dependent coefficient u(t)
in two terms. The idea is to construct a Liapunov function in such a way that the
chaos cancels out. Here’s how: Multiply the second equation by e, and the third by
de,and add. Then )

6, +4dese, = —e,” —20u(t)e,e, +20u(t)e,e, — 4be,’

)
=—e,” —4be,}

&

and so the chaotic term disappears!
The left-hand side of (3)is $ < (622 +4de,’ ) This suggests the form of a Liapunov

function. As in Cuomo and Oppenheim (1992), we define the function
E(e,t)=1(Le’ +e,” +4e).

E is certainly positive definite, since it is a sum of squares (as always, we assume
o > 0). To show E is a Liapunov function, we must show it decreases along trajec-
tories. We've already computed the time-derivative of the second two terms, so
concentrate on the first term, shown in brackets below:

E=[Leg]+e, e, +dee,
= _[e[z —elez]— e,’ —4be.’.

Now complete the square for the term in brackets:

Hence £ <0, with equality only if e = 0. Therefore Eis a Liapunov function, and
s0 e = 0 is globally asymptotically stable. m

A stronger result is possible: one can show that e() decays exponentially fast
(Cuomo, Oppenheim, and Strogatz 1993; see Exercise 9.6.1). This is important,
because rapid synchronization is necessary for the desired application.




We should be clear about what we have and haven’t proven. Example 9.6.1
shows only that the receiver will synchronize to the transmitter if the drive signal
is u(7). This does not prove that the signal-masking approach will work. For that
application, the drive is a mixture u(7) + m(t) where m(t) is the message and
u(#) >> m(t) is the mask. We have no proof that the receiver will regenerate u ()
precisely. In fact, it doesn’t—that’s why Mariah Carey sounded a little fuzzy. So it’s
still something of a mathematical mystery as to why the approach works as well as
it does. But the proof is in the listening!

In the years since the work of Pecora and Carroll (1990) and Cuomo and
Oppenheim (1992), many other researchers have looked at the pros and cons of
using synchronized chaos for communications. Some of the most intriguing devel-
opments include communication schemes based on synchronized chaotic lasers,
which allow much faster transmission rates than electronic circuits (Van Wiggeren
and Roy 1998, Argyris et al. 2005), and countermeasures for decrypting messages
cloaked in chaos (Short 1994, Short 1996, Geddes et al. 1999).

XERCISES FOR CHAPTER 9

9.1 A Chaotic Waterwheel

91.1  (Waterwheel’s moment of inertia approaches a constant) For the water-

wheel of Section 9.1, show that /() — constant as ¢ — oo, as follows:

a) The total moment of inertiaisasum /=1,  + 1, wherel  dependsonly
on the apparatus itself, and not on the distribution of water around the rim.

Express [ intermsof M = fo 7 m(0,1)d8.
b) Show that M satisfies M = O, — KM, where O, = fo " 0(6)do.

¢) Show that 7(#) — constant as r — oo, and find the value of the constant.

91.2  (Behavior of higher modes) In the text, we showed that three of the
waterwheel equations decoupled from all the rest. How do the remaining modes

behave?

a) If 0(0) = g, cosb, the answer is simple: show that for n =1, allmodesa,, b, — 0

as - oQ. o
b) What do you think happens for a more general Q(f) = Z q,cosnd?

n=0

Part (b) is challenging; see how far you can get. For the state of current knowl-

edge, see Kolar and Gumbs (1992).

91.3  (Deriving the Lorenz equations from the waterwheel) Find a change of

variables that converts the waterwheel equations

a, = wb, — Ka,

b, = —wa, +q, — Kb,

w=—wt+ g
I 7

into the Lorenz equations

X=0(y—x)
y=rx—xz—y
f=xy-—bz

where o, b, r > 0 are parameters. (This can turn into a messy calculation—it helps
to be thoughtful and systematic. You should find that x is like w, y is like ¢,, and z
is like b,.) Also, show that when the waterwheel equations are translated into the
Lorenz equations, the Lorenz parameter & turns out to be b = 1. (So the water-
wheel equations are not quite as general as the Lorenz equations.) Express the
Prandtl and Rayleigh numbers ¢ and r in terms of the waterwheel parameters.

91.4  (Laser model) As mentioned in Exercise 3.3.2, the Maxwell-Bloch equa-
tions for a laser are

E=k(P—E)
P=~(ED-p)
D=~ (\+1—-D—)\EP).

a) Show that the non-lasing state (the fixed point with E* = 0) loses stability above
a threshold value of A, to be determined. Classify the bifurcation at this laser
threshold.

b) Find a change of variables that transforms the system into the Lorenz system.
The Lorenz equations also arise in models of geomagnetic dynamos (Robbins
1977) and thermoconvection in a circular tube (Malkus 1972). See Jackson (1990,
vol. 2, Sections 7.5 and 7.6) for an introduction to these systems.

91.5  (Research project on asymmetric waterwheel) Our derivation of the
waterwheel equations assumed that the water is pumped in symmetrically at
the top. Investigate the asymmerric case. Modify Q(0) in (9.1.5) appropriately.
Show that a closed set of three equations is still obtained, but that (9.1.9) includes
4 new term. Redo as much of the analysis in this chapter as possible. You should
be able to solve for the fixed points and show that the pitchfork bifurcation is
replaced by an imperfect bifurcation (Section 3.6). After that, you're on your own!
_ This problem has not yet been addressed in the literature.




9.2 Simple Properties of the Lorenz Equations

9.2.1  (Parameter where Hopf bifurcation occurs) 4 .
a) For the Lorenz equations, show that the characteristic equation for the eigen-
values of the Jacobian matrix at C*, Cis

N (0 +b+ DN (7 +0)oA+2bo(r—1) = 0.

b) By seeking solutions of the form A = iw, where wis real, show that thereis a pair
o+b+3

o—b-1

of pure imaginary eigenvalues when r=r, = a[ ] Explain why we

need to assume o > b + L.
¢) Find the third eigenvalue.

9.2.2  (Anellipsoidal trapping region for the Lorenz equations) Show that there
is a certain ellipsoidal region E of the form rx? + oy* + o(z - 2r )'2 < Csuch that
all trajectories of the Lorenz equations eventually enter E'and stay in there ff)reve}‘.
For a much stiffer challenge, try to obtain the smallest possible value of C with this

property.

9.2.3 (A spherical trapping region) Show that all trajectories eventually enter
and remain inside a large sphere S of the form x>+ y* + (z—r—o = C, fgr C sgf-
ficiently large. (Hint: Show that x? + y? + (z —r — o) decreases along trajectories
for all (x,,z) outside a certain fixed ellipsoid. Then pick Clarge enough so that the
sphere S encloses this ellipsoid.)

9.2.4  (z-axisisinvariant) Show that the z-axis is an invariant line for the Lorenz
equations. In other words, a trajectory that starts on the z-axis stays on it forever.

9.2.5  (Stability diagram) Using the analytical results obtained abou.t bifur-
cations in the Lorenz equations, give a partial sketch of the stability diagram.
Specifically, assume b = 1 as in the waterwheel, and then plot the pitchfork and
Hopf bifurcation curves in the (o, ) parameter plane. As alwa?/s, assum.e o, r.z 0.
(For a numerical computation of the stability diagram, including chaotic regions,
see Kolar and Gumbs (1992).)

9.2.6 (Rikitake model of geomagnetic reversals) Consider the system

X=—-vXx-+zy
y=—vy+(z—a)x
f=1-xy

where ¢, v > 0 are parameters.

a) Show that the system is dissipative.

b) Show that the fixed points may be written in parametric form as x* = +k,
y* = £k, 2% = vk?, where v(k? k=) = a.

¢) Classify the fixed points.

These equations were proposed by Rikitake (1958) as a model for the self-gen-
eration of the Earth’s magnetic field by large current-carrying eddies in the core.
Computer experiments show that the model exhibits chaotic solutions for some
parameter values. These solutions are loosely analogous to the irregular reversals
of the Earth’s magnetic field inferred from geological data. See Cox (1982) for the
geophysical background.

9.3 Chaos on a Strange Attractor

9.3.1  (Quasiperiodicity = chaos) The trajectories of the quasiperiodic system
0 =w, 0, =w, (w,/w, irrational) are not periodic.

a) Why isn’t this system considered chaotic?

b) Without using a computer, find the largest Liapunov exponent for the system.

(Numerical experiments) For each of the values of r given below, use a computer to
explore the dynamics of the Lorenz system, assuming o = 10 and b = 8/3 as usual.
In each case, plot x(#), y(¢), and x vs. z. You should investigate the consequences
of choosing different initial conditions and lengths of integration. Also, in some

cases you may want to ignore the transient behavior, and plot only the sustained
long-term behavior.

932 r=10 9.3.3  r=22(transient chaos)

934 r=245 9.3.5  r=100 (surprise)
(chaos and stable point co-exist)

93.6 r=126.52 9.37  r=400

9.3.8  (Practice with the definition of an attractor) Consider the following famil-
iar system in polar coordinates: 7 = r(1—r?), § =1. Let D be the disk x>+ <L
a) Is D an invariant set?

b) Does D attract an open set of initial conditions?

©) Is D an attractor? If not, why not? If so, find its basin of attraction.

d) Repeat part (c) for the circle x* + y? = 1.

9.3.9  (Exponential divergence) Using numerical integration of two nearby tra-
jectories, estimate the largest Liapunov exponent for the Lorenz system, assuming
that the parameters have their standard values r = 28, o = 10, 5 = 8/3.

9.3.10  (Time horizon) To illustrate the “time horizon” after which prediction
becomes impossible, numerically integrate the Lorenz equations for r = 28,

o= 10, b =8/3. Start two trajectories from nearby initial conditions, and plot x( 1)
for both of them on the same graph.

9.4 Lorenz Map

941  (Computer work) Using numerical integration, compute the Lorenz map
forr=28,0=10, b=8§/3.




94.2  (Tent map, as model of Lorenz map) Consider the map

X

‘:
" 2-2x,, 1

as a simple analytical model of the Lorenz map.

a) Why is it called the “tent map™?

b) Find all the fixed points, and classify their stability.

¢) Show that the map has a period-2 orbit. Is it stable or unstable?

d) Can you find any period-3 points? How about period-4? If so, are the corre-
sponding periodic orbits stable or unstable?

9.5 Exploring Parameter Space
(Numerical experiments) For each of the values of r given below, use a computer

to explore the dynamics of the Lorenz system, assuming o = 10 and b =28/3 as

usual. In each case, plot x(¢), y(1), and x vs. z.

9.51  r=166.3 (intermittent chaos)

9.5.2 r =212 (noisy periodicity)

9.5.3  theinterval 145 < r < 166 (period-doubling)

9.5.4  (Hysteresis between a fixed point and a strange attractor) Consider the
Lorenz equations with ¢ = 10 and b = 8/3. Suppose that we slowly “turn the r
knob” up and down. Specifically, let r = 24.4 + sin wt, where w is small compared
to typical orbital frequencies on the attractor. Numerically integrate the equa-
tions, and plot the solutions in whatever way seems most revealing. You should see
a striking hysteresis effect between an equilibrium and a chaotic state.

9.5.5  (Lorenzequations for large r) Consider the Lorenz equations in the limit
r — 00. By taking the limit in a certain way, all the dissipative terms in the equa-

tions can be removed (Robbins 1979, Sparrow 1982).

a) Lete =2, so that r — oo corresponds to £ — 0. Find a change of variables

involving € such that as € — 0, the equations become

X=Y
Y =-XZ
Z'=XY.

b) Find two conserved quantities (i.e., constants of the motion) for the new system.
¢) Show that the new system is volume-preserving (i.e., the volume of an arbitrary
blob of “phase fluid” is conserved by the time-evolution of the system, even

though the shape of the blob may change dramatically.)

d) Explain physically why the Lorenz equations might be expected to show some

conservative features in the limit r — oc.

€) Solve the system in part (a) numerically. What is the long-term behavior? Does
it agree with the behavior seen in the Lorenz equations for large r?

9.5.6  (Transient chaos) Example 9.5.1 shows that the Lorenz system can exhibit
transient chaos forr =21, 0 =10, b= £. However, not all trajectories behave this
way. Using numerical integration, find three different initial conditions for which
there is transient chaos, and three others for which there isn’t. Give a rule of thumb
which predicts whether an initial condition will lead to transient chaos or not.

9.6 Using Chaos to Send Secret Messages

9.6.1  (Exponentially fast synchronization) The Liapunov function of Example9.6.1

shows that the synchronization error e(#) tends to zero as ¢ — oo, but it does not

provide information about the rate of convergence. Sharpen the argument to show

that the synchronization error e(#) decays exponentially fast.

a) Prove that V/ =1e,” +2¢,” decays exponentially fast, by showing V < —kV,
for some constant k& > 0 to be determined.

b) Show that part (a) implies that e,(7), e, () — 0 exponentially fast.

¢) Finally show that e (1) — 0 exponentfally fast.

9.6.2  (Pecora and Carroll’s approach) In the pioneering work of Pecora and
Carroll (1990), one of the receiver variables is simply set equal to the corresponding
transmitter variable. For instance, if x(#) is used as the transmitter drive signal,
then the receiver equations are

x(2) = x(1)
¥, = rx(t) =y, = x()z,
z, = x(t)y, — bz,

where the first equation is not a differential equation. Their numerical simulations
and a heuristic argument suggested that y (1) — y(¢) and z (1) —z(t)ast — oo,
even if there were differences in the initial conditions.

_ Hereis a simple proof of that result, due to He and Vaidya (1992).

a) Show that the error dynamics are

e =0
é, = —e, — x(t)e,

é, = x(t)e, —be,

where e, =x-Xx,e,=y-y,and ¢, =z—7z,.

_ b) Show that V = ¢; +¢] is a Liapunov function.

¢) What do you conclude?




9.6.3  (Computer experiments on synchronized chaos) Let x,,z be governed

by the Lorenz equations with r = 60, o = 10, b = 8/3. Let x , y,, z, be governed by

the system in Exercise 9.6.2. Choose different initial conditions for y and y, and

similarly for z and z , and then start integrating numerically. .

a) Plot y(r)and y (t)on the same graph. With any luck, the two time series should
eventually merge, even though both are chaotic.

b) Plot the (y,z) projection of both trajectories.

ONE-DIMENSIONAL MAPS

9.6.4  (Somedrivesdon’t work) Suppose z( 1) were the drive signal in Exercise 9.§.2,
instead of x (7). In other words, we replace z_by z(7) everywhere in the receiver
equations, and watch how x and y, evolve.

a) Show numerically that the receiver does not synchronize in this case.

b) What if y(¢) were the drive?

9.6.5 (Masking) In their signal-masking approach, Cuomo and Oppenheim
(1992, 1993) use the following receiver dynamics:

10.0 Infroduction

X}, = O-(yr - xr)
3, =rs(0) =, = s(0)z,
= S(l‘)y’, —bZ,‘

This chapter deals with a new class of dynamical systems in which time is discrete,
rather than continuous. These systems are known variously as difference equa-
tions, recursion relations, iterated maps, or simply maps.

For instance, suppose you repeatedly press the cosine button on your cal-
culator, starting from some number x,. Then the successive readouts are
X, = €08 X, X, =08 x,, and 5o on. Set your calculator to radian mode and try
it. Can you explain the surprising result that emerges after many iterations?
Therule x, | = cos x, isan example of a one-dimensional map, so-called because
the points v, belong to the one-dimensional space of real numbers. The sequence
Xg X5 X, - . . 15 called the orbit starting from X,

Maps arise in various ways:

[ S

where s(#) = x(t) + m(t), and m(z) is the low-power message added to the much
stronger chaotic mask x (7). If the receiver has synchronized with the drive, then
x(1) =~ x(¢) and so m(t) may be recovered as m(t)=s(7)—x,(¢). Test this
approach numerically, using a sine wave for m(z). How close is the estimate m(r)
to the actual message m(r)? How does the error depend on the frequency of the
sine wave?

9.6.6  (Lorenz circuit) Derive the circuit equations for the transmitter circuit

shown in Figures 9.6.1. 1. As tools for analyzing differential equations. We have already encoun-

tered maps in this role. For instance, Poincaré maps allowed us to
prove the existence of a periodic solution for the driven pendulum and
Josephson junction (Section 8.5), and to analyze the stability of peri-
odic solutions in general (Section 8.7). The Lorenz map (Section 9.4)
provided strong evidence that the Lorenz attractor is truly strange,
and is not just a Jong-period limit cycle.

2. As models of natural phenomena. In some scientific contexts it is natu-
ral to regard time as discrete. This is the case in digital electronics, in
parts of economics and finance theory, in impulsively driven mechani-
cal systems, and in the study of certain animal populations where suc-
cessive generations do not overlap.

3. As simple examples of chaos. Maps are interesting to study in their own
right, as mathematical laboratories for chaos. Indeed, maps are capable





