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Dit is materiaal voor de cursus Modelleren, Simuleren en Programmeren
(MSP), voor tweedejaars natuurkunde studenten, en wel voor het Modelleren
gedeelte van de cursus. De bedoeling is om een idee te geven van hoe (stelsels)
differentiaalvergelijkingen (DV’s) en dynamische systemen een rol spelen bij
het modelleren en begrijpen van natuurwetenschappelijke verschijnselen. We
gebruiken daarbij het recente artikel Sniffers, buzzers, toggles and blinkers: dy-
namics of regulatory and signaling pathways in the cell, van Tyson, Chen en
Novak als kapstok, aangevuld met materiaal dat eerder is gebruikt voor master
studenten systeem biologie, die vrijwel geen voorkennis hadden over DV’s, maar
goed bekend waren met alle biologische termen en al wisten wat ATP was etc.

Differentiaalvergelijkingen dateren natuurlijk van lang voor de systeembi-
ologie. DV’s en de differentiaalrekening zijn door Newton geintroduceerd en
ontwikkeld om de wetten van Kepler te verklaren, en werden pas (veel later)
daarna ook voor het modelleren van chemische reacties gebruikt. Denk bijvoor-
beeld aan een irreversibele reactie als A + B → C, die in termen van de con-
centraties a, b, c van de moleculen A, B en C vaak gemodelleerd wordt met een
reactiesnelheid v1 die evenredig is met de concentraties. Dit geeft v1 = k1ab
met k1 een (positieve) reactieconstante, en leidt tot het stelsel

dc

dt
= k1ab = −da

dt
= −db

dt
,

waarin k1 ook gezien kan worden als een parameter, die bijvoorbeeld kan afhangen
van de concentratie van een enzym, dat de reactie benvloedt. Maken we de re-
actie reversibel, dan is er een tweede reactie C → A + B met reactie snelheid
v2 = k2c, en wordt het stelsel

dc

dt
= k1ab− k2c = −da

dt
= −db

dt
,

met twee positieve parameters k1 en k2. In de systeembiologie worden reac-
tienetwerken gemodelleerd met stelsels van dit soort DV’s.

In het Sniffers artikel staat de zin “The temptation is irresistible to ask
whether physiological regulatory systems can be understood in mathematical
terms, in the same way an electrical engineer would model a radio.” In dit
gedeelte van de cursus MSP zetten we hiertoe de eerste stappen waar het gaat
om uit de eigenschappen van oplossingen van door biologen voorgestelde stelsels
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DV’s te begrijpen en verklaren wat er in levende cellen gebeurt. Dat doen we
zoveel mogelijk eerst met pen en papier, zonder Mathematica of andere software,
met formules en zelf geschetste grafieken.

Het gaat dus meer om de eigenschappen van oplossingen dan om oplossings-
formules. Ter illustratie: veel eenvoudige lineaire DV’s hebben als oplossingen
formules waarin de welbekende transcendente functies voorkomen, in het bijzon-
der die functies zelf, zoals cos, sin en exp. De eigenschappen die deze functies
hebben komen uitgebreid aan de orde in zowel het schoolcurriculum als de cal-
culus vakken in het eerste jaar van universitaire studies, maar over het algemeen
niet vanuit het perspectief dat deze functies oplossingen zijn van differentiaal-
vergelijkingen. Het is instructief om in deze cursus daar bij stil te staan. Dat
doen we/jullie met behulp van dit materiaal (over DV’s, oscillaties en planeet-
banen)

http://www.few.vu.nl/~jhulshof/nawdec270.pdf

eerder gebruikt voor een zomercursus voor leraren, en materiaal gemaakt voor
een onderwijssymposium over differentiaalvergelijkingen:

http://www.few.vu.nl/~jhulshof/echtebrrrwiskunde.pdf

Deze tweede pdf bevat een eerste kennismaking met vergelijkingen als

x′ =
dx

dt
= 0,

dx

dt
=

1

t
,

dx

dt
= x,

dx

dt
= F (x),

de laatste voor algemene functies F waarvan de grafiek makkelijk te schetsen is.
Hoe bepaalt de grafiek van F het gedrag van oplossingen en hoe verandert dat
gedrag als we F veranderen? In het bijzonder, wat zijn de stabiele evenwichten
van het systeem? Evenwichten zijn oplossingen van F (x) = 0.

Het antwoord op deze vraag helpt ons om Figuur 1 op pagina 222 van
het Sniffers verhaal te begrijpen, want deze figuur heeft betrekking op reac-
tienetwerkjes waarvoor het stelsel DV’s herleid kan worden tot één DV van het
type x′ = F (x), met in F nog een parameter, meestal het “signaal”, de concen-
tratie van een molecuul dat de reactie beinvloedt (e.g. activation/inhibition).

In het Sniffers verhaal gaan de auteurs ervan uit dat de lezer vertrouwd is
met Michaelis-Menten kinetics. Google deze term. Hieronder leggen we niet uit
waar deze kinetica vandaan komt (dat komt wel op het college aan de orde),
maar wel hoe deze kinetica leidt tot veel van de zelfstandige naamwoorden in
de titel van het Sniffers artikel. Voor een belangrijk deel betreft dit het vinden
van evenwichten.

Evenwichtsoplossingen van differentiaalvergelijkingen zijn oplossingen van
“gewone” vergelijkingen, in het algemeen vergelijkingen met parameters. De
vraag hoe oplossingen van parameters afhangen komt uitgebreid aan de orde.
Een veelgebruikte methode hierbij is het verwisselen van de rollen van oplossin-
gen en parameters. Bijvoorbeeld, de vergelijking

ax2 = bx+ c

voor x heeft drie parameters a, b, c. Hoe oplossingen van a afhangen zien we
sneller aan de hand van

a =
bx+ c

x2
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dan aan de hand van een oplossingsformule voor x. Merk hierbij op dat we
parameters zoveel mogelijk positief kiezen, en dat oplossingen heel vaak positief
moeten zijn. Concentraties zijn nu eenmaal nooit negatief.

Vaak zullen we concentraties schalen om het aantal parameters te vermin-
deren. Het veel voorkomende evenwicht bij fosforylatie door ATP betreft zo
uiteindelijk oplossingen (x, y) van

ux

J + x
=

vy

K + y
, x+ y = 1.

Dit is een stelsel met 4 positieve parameters u, v, J,K, waarin onbekenden en
parameters dimensieloos zijn, zie de afleiding (1.10) hieronder. Hoe ziet de
grafiek van x versus u eruit, afhankelijk van de andere 3 parameters? Zie Sectie
1.5 en Sectie 3 hieronder voor een stukje praktische wiskunde dat in de calculus
vakken wat verborgen zit.

Bij de differentiaalvergelijkingen zelf kunnen we ook de tijdschaal aanpassen.
In de DV

dx

dt
= ax

kan een positieve a zo wel in een 1 veranderd kan worden, of in een −1, als a
negatief is. Er dus eigenlijk maar drie gevallen: a = 1, a = −1 en ...?

We besluiten de cursus met een vrije behandeling van Figuur 2 in het Sniffers
verhaal en variaties daarop. Figuur 2b en 2c zijn te begrijpen als oplossingen
van stelsels van de vorm

dx

dt
= F (x, y),

dy

dt
= G(x, y),

waarbij in F en G nog een parameter zit. Sectie 2 hieronder, die nog niet
uitgewerkt is, bevat vast wat aantekeningen.

Natuurlijk zijn de meeste systemen veel hoger-dimensionaal, maar soms kun-
nen ze onder de aanname dat een deel van het systeem in evenwicht versimpeld
worden. Een mooi voorbeeld daarvan is de afleiding van de Michaelis-Menten
reaction rates bij enzymkinetica. Zie Sectie 4.

1 Sniffers, buzzers, toggles, blinkers

In these notes I discuss some of the simple reaction networks in the paper
Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling
pathways in the cell, by John Tyson, Katherine Chen and Bela Novak. This
paper is online available from

http://www.mriedel.ece.umn.edu/wiki/images/6/6c/

Make sure you print it and have it at hand. Throughout this handout SBTB
refers to this paper. Essentially this handout explains what is behind Figure 1
and part of Figure 2 in SBTB, introduces some notation which is a bit more
systematic, and corrects some of the misprints in the formulas.

The basic math knowledge required is differential calculus. In particular you
need to know about the first and the second derivative of (simple) functions and
how you use them to find maxima, minima and inflection points. You need to
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know how to solve a quadratic equation, and how the discriminant of a quadratic
tells you if there are solutions. Most important, you need to be able to apply
these techniques to functions and equations which involve parameters, and be
flexible in interchanging the role of unknowns and parameters.

Your main tools below will first be paper, pen and pencil (PPP).
You will draw the relevant diagrams yourself. Print this file one-
sided, staple it, so that when you open it, you can draw diagrams
on the blank pages on the left. Beginning in Section 1.3 these diagrams
will be used to analyse the behaviour of solutions of ODE’s, Ordinary Differ-
ential Equations. Numerical solution methods (with Mathematica or Maple)
complement this PPP-analysis of simple reaction networks. The nouns in the
title of SBTB actually correspond to bifurcation diagrams, which you will learn
to appreciate and understand. Exercise 5 in Section 1.6 describes the first fun-
damental example: the one-way switch. Bifurcation diagrams always involve
parameters which are varied in the analysis. As a rule we stick to positive pa-
rameters, which sometimes are set equal to zero. We avoid negative parameters.
At several points you can jump to the appendix for more detailed analysis. Most
exercises are PPP-exercises, some of them require a bit of (computer) algebra,
that you may take for granted on first reading.

You have seen or will see that (de-)phosphorylation blocks like

R
↓

E � EP
(1.1)

occur frequently in cell regulating reaction networks, and they will be analysed
in some detail here . Throughout SBTB the Goldbeter-Koshland function (GK-
function for short) is used. It solves equations (1.10) below, and the equilibrium
state of (1.1) is defined in terms of the GK-function, a dimensionless function
of four dimensionless parameters, see (1.5) below. For a certain parameter
regime, discussed in Section 1.5, the GK-function has properties that allow for
the phenomena in the title of the STBT paper to occur.

In (1.1) R is some (signal) protein which stimulates the phosporylation of
some other protein E, EP being the phosphorylated form of E. Figure 1 in
SBTB examines what happens if you combine such a GK-block1 with a simple
signal-response block, which by itself, has a reaction diagram

S
↓
→ R →

(1.2)

This simple block corresponds to Figure 1a of SBTB. It leads to a linear response
curve. The simple combinations are Figures 1e, 1f and 1g. The first combination
of (1.2) in Figure 1 with another block however is Figure 1d, where S signals
both R and X and X inhibits R. This small reaction network does not involve a
GK-block and is discussed in Section 1.10.

1I call them GK-blocks after Goldbeter-Koshland.
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1.1 Goldbeter-Koshland blocks

In SBTB you will see GK-blocks with different letters. Figure 1c for instance is
essentially

S
↓

R � RP
(1.3)

The reaction in (1.3) goes both ways. In SBTB, the reaction rates for phospory-
lation and dephosporylation are modelled with Michaelis-Menten kinetics2

k1SR

Km1 +R
(for phosporylation, also called synthesis)

and
k2RP

Km2 +RP
(for dephosporylation, also called degradation),

in which k1, Km1, k2, Km2 are the (positive) MM-constants3, and the concen-
trations of R and RP are written as R and RP , under the assumption that the
total concentration RT is constant4:

R+RP = RT . (1.4)

Throughout SBTB, the concentration S of the signal S appears only in the
phosporylation rate in (de)phosporylation blocks like (1.3). In Figure 1 of SBTB
all such GK-blocks5 are assumed to be in (thermodynamic) equilibrium, that is

k1SR

Km1 +R
=

k2RP

Km2 +RP
. (1.5)

The ODE’s6
dRP

dt
=

k1SR

Km1 +R
− k2RP

Km2 +RP
= −dR

dt
, (1.6)

are not yet used otherwise.
Given the MM-constants k1, Km1, k2, Km2, the signal concentration S and

the total concentration RT , the two equations (1.4,1.5) for the two unknowns
R and RP can be solved to produce one unique positive steady state7

R = Rss, RP = RP,ss.

If RP drives another reaction, a solution for RP,ss is needed. In SBTB it is
written as

RP,ss

RT
= G(k1S, k2,

Km1

RT
,
Km2

RT
) (1.7)

where G is the Goldbeter-Koshland function, a function of 4 variables, written
as

G = G(u, v, J,K) or G = G(u1, u2, J1, J2),

2As opposed to the reaction rates used in Figure 1b.
3From now on MM refers to Michaelis-Menten.
4In formula (c) in SBTB the concentration R of R has been replaced by RT −RP .
5This statement actually concerns the blocks with E and EP.
6Really only one equation: you can eliminate R or RP , as you like, using R+RP = RT .
7The subscript ss refers to steady state.
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in which

u = u1 = k1S, v = u2 = k2, J = J1 =
Km1

RT
, K = J2 =

Km2

RT
(1.8)

are dimensionless reaction parameters. Early on the SBTB paper uses u, v, J,K,
later on, when more GK-blocks are involved, also u1, u2, J1, J2 and u3, u4, J3, J4,
etc8. The last diagram in Figure 1c in SBTB shows the response curve of
(vertically) RP,ss versus the signal concentration S, in which it is assumed that
J and K are both small9. This diagram is to be contrasted with the one in
Figure 1b just above, which is based on equilibrium k1SR = k2RP for standard
linear reaction rates10.

If it is R that drives or inhibits another reaction, a solution formula for R is
needed. Since, as you will see below,

G(u, v, J,K) +G(v, u,K, J) = 1, (1.9)

we have

Rss

RT
= 1− RP,ss

RT
= 1−G(k1S, k2,

Km1

RT
,
Km2

RT
) = G(k2, k1S,

Km2

RT
,
Km1

RT
).

By now you may have some experience with checking physical dimensions. Ob-
serve that G(u, v, J,K) is dimensionless. It defines

the fraction y =
RP,ss

RT
of phosphorylated RP,

which, together with

the fraction x =
Rss

RT
of unphosphorylated R,

ads up to 1. The GK-function tells you what y is in terms of the dimensionless
reaction parameters, in particular the signal parameter u = k1S. As you might
expect, y runs up from 0 to 1 if you let the signal u go from 0 all the way
up to infinity. To get x you simply take 1 − y, so x runs down from 1 to 0.
Note carefully that while above x and y relate to R and RP, with the signal S
contained in u, below x and y relate to E and EP, with u containing the signal
R. We shall often write x and y as

x = x(u) and y = y(u),

but sometimes it will be convenient to think of u as determined by x or y. We
always assume that

x ≥ 0, y ≥ 0, x+ y = 1,

because x and y are the fractions of respectively the unphosphorylated and
phosphorylated form of a certain protein.

8I will stick to u, v, J,K as I explain the GK-function.
9And that RT = 1, apparently.

10Limit case of MM-rates, k1,Km,1, k2,Km,2 large, bounded ratios k1
Km,1

, k2
Km,2

.
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1.2 Derivation of the GK-function

To derive the GK-function, consider the reaction balance, written in terms of x
and y, as11

ux

J + x
=

vy

K + y
, to be solved subject to x+ y = 1, (1.10)

and the restriction that x ≥ 0 and y ≥ 0. You should think of a representation
of the GK-block (1.1) in terms of the dimensionless fractions x and y, controlled
by the dimensionless signal u. That is, we have put

S
↓

E � EP
in dimensionless form

u
↓

x � y
(1.11)

The (first) equation in (1.10) corresponds to the steady state equation for

dy

dτ
=

ux

J + x
− vy

K + y
= −dx

dτ
, (1.12)

in which τ is a scaled12 time variable.
This first equation in (1.10) looks simpler than (1.5) because we did away

with all indices, but we still have 4 parameters: u, v, J,K. Observe the sym-
metry: interchanging x and y, u and v, J and K, you get the same equations.
This explains (1.9). Keep in mind that it is the parameter u which contains the
varying signal concentration, as is exhibited in (1.11).

Exercise 1. GK-formula from solving a quadratic: assume all parameters
u, v, J,K positive, substitute x = 1−y in the reaction balance in (1.10), and de-
rive a quadratic equation for y. Find a solution formula for y and compare it to
the expression in SBTB (page 223). You will probably get frustrated. Actually
it seems like they first wrote an equation for 1

y , and used the solution formula

for 1
y upside down to get a formula for y. Your result should be the same of

course, but it takes some rewriting. Maple or Mathematica may be able to help
you. Still, you get 2 solutions, while there is only one physical solution in the
relevant window 0 ≤ y ≤ 1. You have to pick the right sign13 to get it right.
This has been done for you in SBTB.

Exercise 1 shows that you can solve equations and get complicated solutions
formulas14, from which it is still hard to get the information you need, unless
you plot everything, varying all 4 parameters. Below you will learn how you
can get by without such formulas, with details discussed in the appendix.

1.3 Bifurcation diagrams: switches?

If the phosphorylated form drives another reaction, it is important how the
response y varies from 0 to 1 as the signal parameter u is increased: what
is the shape of the corresponding graph obtained by plotting the response y

11Have to use x and y somewhere: they may relate to R and RP, E and EP, X and XP, etc.
12Check that τ = t

RT
.

13In front of the square root in the solution formula.
14Perhaps earning your name to such a formula.
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versus the signal u? What you will observe in the larger system, depends on the
shape of this graph. Of importance are questions like: can a line have multiple
intersections with this graph? Such intersections appear in Figure 1 of SBTB
as equilibria of the small reaction networks in which a GK-block for E and EP
is involved15. Except for Figure 1d, you see on the right bifurcation diagrams,
with vertically the possible responses against horizontally a signal. Unstable
equilibria are dotted. You need to understand these diagrams: how you get
them and what they say.

The first small network with a GK-block, corresponding to Figure 1e in
SBTB, is schematically given as

S
↓
→ R →
↑ ↓

EP � E

or, in dimensionless form

s
↓
→ u →
↑ ↓
y � x

(1.13)

In terms of the dimensionless form, s is some other signal (input) which stim-
ulates u. In turn, u stimulates y, and y stimulates u. This is called mutual
activation between u and x. It is the relation between s as input/signal and
u as output/response which is of interest16. The remaining arrow to explain
in (1.13) is the single arrow to the right of u. This arrow corresponds to the
negative term −ku in

du

dτ
= s+ y(u)− ku, (1.14)

the ODE for u. The two positive terms correspond to the signals s and y, and
are written without constants, see Exercise 3 below for the appropriate scalings.

There are no ODE’s for x and y because of the assumption of equilibrium
for the GK-block17. Note that here, while still being a signal itself for the GK-
block, u is considered as output(response) and s as signal parameter. In s we
have absorbed a constant18 which possibly appears in the synthesis rate of y.

The coefficient k is kept fixed as we vary s. You will see how this small
network functions as a one-way switch, but only in case of a sigmoidal GK-
curve y = y(u) for the GK-response fraction y versus the signal u, see (1.22)
below. All conclusions follow by looking at the intersections of the graphs of
y(u) and s− ku versus u. Equivalently, you may simply set the right hand side
of (1.14) equal to zero, and write this as

s = ku− y(u), (1.15)

which you can plot with u vertically and s horizontally19. This mathematical
trick, writing the input in terms of the output20 is very useful: it gives you the
bifurcation diagram. In this bifurcation diagram you can see for a given input

15With x as the fraction of E, y as the fraction of EP.
16With u as the fraction of R in Figure 1 of SBTB.
17In Figure 2 of SBTB you will see examples with ODE’s for the GK-blocks.
18Not relevant now, from STBT it is not clear this constant is considered to occur.
19The diagram you get is essentially the third diagram in Figure 1e.
20Not what you would be inclined to do first.
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(signal) s what the possible outputs (responses) are. It then remains to figure
out which of the possible outputs you will see as you vary initial data and/or
the signal.

You observe that in (1.15) the synthesis rate s + y(u) and the degradation
rate ku have been blended in the formula. This does not happen if you use the
same trick in the second example presented next:

du

dτ
= s− ux(u)− ku. (1.16)

You can think of (1.16) as the ODE corresponding to

s
↓
→ u →

↓ ↑
y � x

(1.17)

Can you see why? In this block s is still good for u, but u is bad for x and x
is bad for u. This is called mutual inhibition between u and x, see Figure 1f in
SBTB. For x = x(u) as a function of u you get the same graph as for y(u), but
turned upside down21: x(u) runs from 1 down to 0 as u is increased from 0 to
infinity. The qualitative analysis will show that for k > 0 this block functions
as a two-way switch, provided that ux(u) has a (single) maximum22, see (1.35)
below. In this case the conclusions follow by examining the intersections of the
graphs of ux(u) and s− ku, starting from the k = 0 case, or directly by setting
the right hand side of (1.16) equal to zero, and write this as

s = ux(u) + ku, (1.18)

which you can again plot with u vertically and s horizontally, as above.
These two switch examples contrast this example:

s
↓

→ u →
↑ ↓
x � y

See Figure 1g in SBTB. Here s is bad for u, u is bad for x, x is good for u. The
corresponding ODE is

du

dτ
= k + x(u)− su. (1.19)

In this case switch-like behaviour does not occur23. A similar example24 would
be

s
↓

→ u →
↓ ↑

x � y

21I will call this a reversed GK-curve.
22ux(u) increases from 0 to a maximum, then decreases to positive limit.
23Note that k = 0 in Figure 1g of SBTB.
24Not included in SBTB.
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Here s is bad for u, u is good for y, y is bad for u, and the ODE for u is

du

dτ
= k − (y(u) + s)u. (1.20)

In both these nonmutual cases it is relatively easy25 to see that the signal-
response curve (u versus s) is monotone, once you know that the GK-curve is
monotone, and that it has a large flat region if the (sigmoidal) GK-curve has a
sharp transition. As we shall see below this is the case for small J and K. The
switch-behaviour in the first two examples is then also quickly recognised.

All this requires a solid undertanding of the GK-blocks by themselves. They
are called buzzers in SBTB, as is explained next.

1.4 The GK-function as a buzzer

Often both K and J in the GK-function are small, at least in the examples in
SBTB. The graph of the (fractional) response y versus the (scaled) signal u is
then sigmoidal, with, as observed in Exercise 24 below, a rather swift transition
near u = v from y ≈ 0 to y ≈ 1. Refering to Figure 1c in SBTB, with R and
RP signaled by S, this GK-block is called a buzzer, in view of the resulting
signal-response curve for RP,ss versus S. You have to keep feeding with S (press
the button) to get and maintain a response. Releasing the button (meaning
no more S) you lose the response. The GK-analysis below, which explains
the dependence of the equilibrium state of (1.6) on the signal concentration S,
given the total concentration RT , implies that, whatever the initial data are,
the solution of the ODE for RP ,

dRP

dt
=

k1S(RT −RP )

Km1 +RT −RP
− k2RP

Km2 +RP
, (1.21)

quickly converges to the unique steady state. Although what you see eventu-
ally26 is independent of the initial concentration of R, this does of course depend
on S, through the GK-formula (1.7), but there are no surprises: turning the sig-
nal up, you turn up the response, turning the signal down again, you turn down
the response again.

1.5 Sigmoidal GK-functions

Switch behaviour is different in that it does come with a surprise: turning the
signal up, you turn up the response, turning the signal down again, you may
keep the response. To understand how this works, you need to know more of
the GK-response curve of y(u) versus u than just its monotonicity. The GK-
response curves in SBTB are convex (curved upwards) for small u and then
concave (curved downwards), with only one inflection point. It is important to
know for sure when this is the case, because although the GK-response curve of
y versus u can very well have a sigmoidal convex-concave shape27, it may also
be globally concave28. It is instructive to spend some time on the precise shape

25Maybe not by writing s in terms of u.
26Almost immediately if the time scale is fast.
27The curve in the last diagram in Figure 1c of SBTB.
28Like the hyperbolic curve in the last diagram in Figure 1b of SBTB.
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of the GK-curve. The simple criterium you will find or believe is:

JK < 1 + J ⇔ y versus u is a convex-concave sigmoidal graph (1.22)

Thus, if J and K are small, the GK-curve is certainly sigmoidal, and quite steep
in fact, see Exercise 24 in the appendix (Section 3).

To discover this criterium (1.22) from the GK-formula is not so easy. Solution
formulas are rarely transparent. Understanding the graph of a solution formula
versus a control parameter is not impossible29, but often a qualitative analysis
of the original equations30, here

ux

J + x
=

vy

K + y
; x+ y = 1; x ≥ 0; y ≥ 0, (1.23)

turns out to be easier and more clarifying. This kind of analysis, and the way of
thinking it introduces, is a stepping stone to understanding the SBTB paper, in
particular some of its bifurcation diagrams. This is done in a series of exercises
in the appendix (Section 3).

1.6 The one-way switch in qualitative detail

An important message of the SBTB paper is that combining a GK-block with a
simple signal-response block, this signal-response may change completely. Below
you will see how a short injection with S can account for turning on a response
which can persist after the signal S is gone. Such systems are called switches.
They have in common that they exhibit, depending on S, a varying number of
multiple steady states.

You will now examine in detail what happens if you combine the GK-block
(1.1),

R
↓

E � EP

with a simple signal-response block (1.2),

S
↓
→ R →

with only one synthesis rate and one degradation rate. The presentation below
includes again how to nondimensionalise the equations.

Look at the signal-response block (1.2) first. Except for the MM-reaction
rates in GK-blocks, all degradation rates in SBTB are proportional to concen-
tration. The degradation rate of R in (1.2) is simply

vdegradation = vd = k2R,

and the synthesis rate of R is a linear function

vsynthesis = vs = k0 + k1S.

29Begin by picking explicit numerical values of the parameters and (computer)plot.
30Completely ignoring the solution formula.
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of signal strength. Without any other signals, the time dependent concentration
R = R(t) of R satisfies

dR

dt
= vs − vd = k0 + k1S − k2R, (1.24)

and a stationary balance is given by

R = Rss =
k0 + k1S

k2
.

Thus, the signal response of (1.2) by itself is just a linear function of S.

Exercise 2. Easy but instructive (PPP): sketch the graph of (vertically) the
linear response Rss versus (horizontally) the signal concentration S, with both
k0 and k1 positive, and with k0 = 0 < k1. Compare with Figure 1a in SBTB.

One possibility to combine a signal-response block with a GK-block is to let
the response R in (1.2) act a signal in the GK-block (1.1), and, simultaneously,
have EP enhance31 the synthesis of R by changing vs to

vs = k0 + k′0EP + k1S.

The new term in vs is proportional to the concentration EP of EP. Now both
S and EP stimulate synthesis (in a similar fashion). In nondimensional form,
this case of mutual activation32 is the first example in Section 1.3 above. The
reaction diagram is

S
↓
→ R →
↑ ↓

EP � E

or, in dimensionless form

s
↓
→ u →
↑ ↓
y � x

(1.25)

For the sake of presentation33 EP appears on the left in (1.25). Assuming the
time scale for E�EP to be fast, EP is set equal to its GK-equilibrium, so that
the synthesis rate of R becomes

vs = k0 + k′0EP,ss(R) + k1S.

In view the GK-analysis the steady state concentration of EP is

EP,ss(R) = ETG(k3R, k4, J3, J4), (1.26)

with variables defined as in (1.8), which, as we recall, corresponds to a balance

k3RE

Km3 + E
=

k4EP

Km4 + EP
.

31Positive feedback between R and EP.
32Figure 1e in STBT.
33Drawing transparent diagrams combining the simple components.
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The ODE (1.24) is modified accordingly as

dR

dt
= vs − vd = k0 + k′0EP,ss(R) + k1S − k2R (1.27)

= k0 + k′0ETG(k3R, k4, J3, J4) + k1S − k2R,

analysed in the SBTB paper with k0 = 0. Apparently34 k′0ET is written as k0
in Box 1 of SBTB (page 224).

Exercise 3. Equation (1.27) can be rewritten as (1.14): verify that you get the
ODE

du

dτ
= s+ y(u)− ku,

for u = k3R with

s =
k0 + k1S

k′0ET
, k =

k2
k3k′0ET

, τ = k3k
′
0ET t.

Note that, unlike x and y, u is not a fraction, it can be (much) larger than one.

The analysis of this small block may be done in terms of either (1.14) or
(1.27), that is, either in terms of u and s, or in terms R and S. I was already
unhappy with (1.24) and now I prefer (1.14), for which the steady states must
solve the equation

s+ y(u) = ku. (1.28)

The left and right sides in (1.28) are the normalised synthesis and degradation
rates of u. Observe that k must be positive to have steady states.

Exercise 4. Steady states of (1.14) with s = 0: suppose y = y(u) versus u is
a sigmoidal GK-curve as above. Make a sketch with u ≥ 0 and 0 ≤ y ≤ 1 and
draw a straight line through the origin with slope k > 0. The u-coordinates
of the intersection points of the GK-curve and this line are the solutions of
y(u) = ku, the steady states of the ODE with s = 0. Convince yourself that
beside the trivial solution u = 0 there are no positive solutions if k is large, while
there are 2 positive solutions if k is small. Also explain that for precisely one
(positive) value of k inbetween there is exactly one positive solution. For this
k = ktouch the two graphs touch in one point. See Exercise 28 in the appendix.

Exercise 5. Steady states when s > 0, continued from Exercise 4: starting
from some k > 0 for which there are two positive solutions, show, using a sketch
again, that s+ y(u) = ku has 3 positive solutions for s > 0 small and only one
positive solution for large s > 0. Also explain that for precisely one (positive)
treshhold value of s inbetween there is exactly one positive solution. Make a
sketch in which you vary s horizontally and put the corresponding solution(s) u
vertically. Which of the 3 solutions survives as s crosses the treshhold? Compare
your sketch to the last diagram in Figure 1e of SBTB.

Exercise 6. Stabilisation when s = 0, continued from Exercise 4: assume that
the parameters k, J and K make for a convex-concave y(u) which is intersected
3 times by ku, beginning in u = 0. Explain from a sketch there are 3 stationary

34As you will noted, there are many typo’s in the equations in the SBTB paper.
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states for (1.14), by inspecting the ordering of y(u) and ku in your sketch.
Explain why u = 0 is (locally) stable: starting with no or a little u, you will
quickly see u disappear. Explain that, starting with a large u, the concentration
u stabilizes to the third intersection, which is also (locally) stable. The second,
middle, intersection is unstable. Explain that, starting with u below it, all u
disappears35, and starting with u above it, u(τ) stabilizes to the larger (third)
intersection point.

This last two exercises tell you that, in terms of S and R, without the signal S,
any small (or zero) initial concentration R of R leads to eventual death36: R will
be gone quickly37 and the larger stable steady state is unreachable. However,
the signal S changes everything, as you can see next, in terms of s and u again.

Exercise 7. Switching on: bringing in the signal amounts to increasing the
synthesis rate in the left hand side of (1.28). Explain from your sketch in Ex-
ercise 5 that the intersection points vary nicely with s until 2 of them come
together and disappear as the concentration s crosses a certain treshhold value
sc = scritical. Draw another sketch in which you put (vertically) the steady
state(s) for the concentration of the response u versus (horizontally) signal con-
centration s. Explain that for s > sc there is only one (large38) stable steady
state. Raising s above the threshold value sc switches u on.

In terms of S and R this says that a sufficiently large signal concentration S
takes the system to the larger steady positive concentration R. Moreover, there
is no way back to the original state:

Exercise 8. The punchline: starting from the system with u switched on,
decrease s to s = 0 (i.e. take the signal away), and explain why the system stays
switched on39. This is why this example is called a one-way switch. It is obtained
from a GK-block and a signal-response block through mutual activation. Do
you see how this conclusion follows just from looking at s as a function of u?
Why can the system not be switched off?

The second example in Section 1.3 above, mutual inhibition, is studied next.

1.7 The two-way switch in qualitative detail

Whereas Section 1.6 and Figure 1e in SBTB combine a GK-block (1.1) and a
signal-response block (1.2) in which EP and R are mutual activating, Figure 1f
in SBTB has mutual inhibiting40 R and E. This amounts to one single change
in the diagrams in (1.25). In terms of S, R, E and EP the difference is clear if

35u(τ)→ 0.
36Or whatever you want to call it.
37With exponential decay in time.
38Large means: large compared to the small steady state we had for s < sc.
39This must have scary real life examples.
40Note that: R activates EP ⇔ R inhibits E.
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we line up the diagrams in Figures 1e and 1f of SBTB:

S
↓
→ R →
↑ ↓

EP � E

︸ ︷︷ ︸
mutual activation

S
↓
→ R →

↓ ↑
EP � E

︸ ︷︷ ︸
mutual inhibition

(1.29)

In dimensionless form, with x, y, u and s:

s
↓
→ u →
↑ ↓
y � x

︸ ︷︷ ︸
mutual activation

s
↓
→ u →

↓ ↑
y � x

︸ ︷︷ ︸
mutual inhibition

(1.30)

Compared to the single signal-response block (1.2), which has

vs = k0 + k1S, vd = k2R,

the change is in vd. This degradation rate becomes

vd = k2R+ k′2Ess(R)R = (k2 + k′2Ess(R))R,

in which the new term is k′2ER, with E set equal to its equilibrium state Ess(R).
Drawing vs en vd in one diagram, with varying values of S, you see that the
equilibria of

dR

dt
= vs − vd = k0 + k1S − k2R− k′2Ess(R)R (1.31)

are given by
k2 + k′2Ess(R) = R (k0 + k1S) , (1.32)

but again I prefer Equation (1.27) rewritten, as (1.16) this time:

Exercise 9. Verify that, with

s = k3
k0 + k1S

k′2ET
, k =

k2
k′2ET

, τ = k′2ET t.

you get (1.16),
du

dτ
= s− ux(u)− ku,

as the ODE for u = k3R. Conclude that the bifurcation diagram is given by

s = ux(u) + ku. (1.33)
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In the next exercises you can again do most of the analysis of (1.16) by
looking at (1.33) and see why this example is called a two-way switch. Just as
in the case of (1.14), this bifurcation diagram shows, for a given input (signal)
s, what the possible outputs (responses) are, and it remains to figure out which
of the possible outputs you will see as you vary initial data and/or the signal. In
the end the main conclusion is Exercise 12 below, to which you might want to
jump without going through the details below, but then you are likely to miss a
first difference between the two-way and the one-way switch, as the case k = 0
shows next.

Exercise 10. Consider a reversed GK-curve x = x(u). You can multiply x(u)
by u and plot ux(u) vertically against u horizontally. Clearly41 your plot must
start from the origin with slope 1 because x(0) = 1. Verify that u can be written
as a function of x in the window 0 ≤ x ≤ 1, since

u

v
=

1− x
K + 1− x

J + x

x
, (1.34)

in which u→∞ corresponds to x→ 0, and show that in this limit

ux = v
1− x

K + 1− x
(J + x)→ v

J

K + 1
.

Use this to plot two possible graphs of ux(u) versus u, one with a single maxi-
mum and one which is monotone.

You can now show or believe that

JK < 1 +K =⇒ ux(u) has a (single) maximum (1.35)

If JK ≥ 1 +K then ux(u) increases monotonically from 0 to a positive limit42.
If JK < 1 +K then ux(u) first increases monotonically from 0 to a maximum
and decreases to a positive limit afterwards.

Exercise 11. Verify (1.35) for small J and K, using the steepness of the GK
curve near u = v.

If you don’t believe (1.35) then do the exercises in the appendix.

Exercise 12. Let k > 0. If JK ≥ 1 + K, then ku + ux(u) is increasing in
u. If JK < 1 + K then ux(u) has a maximum. You can then verify, using
a sketch, that ku + ux(u) must have a maximum and a minimum if k > 0 is
small, and that ku + ux(u) is monotone increasing if k > 0 is large. In fact,
there is precisely one k = khip > 0 inbetween for which there is a horizontal
inflection point. For k ≥ khip the graph is monotone, for 0 < k < khip there
are precisely 2 extrema, a maximum and a minimum. You can infer this from
Exercise 31 which implies that (also) the graph of ku+ux(u) has only one point
of inflection. Make a sketch.

Exercise 13. If JK < 1 + K then as k ↑ khip, the maximum and minimum
of ux(u) + ku, as well as the inflection point, move to the horizontal inflection

41Why?
42As u runs from 0 to ∞.
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point of the graph of ux(u) + khipu. It is a fact that for JK < 1 + K and
0 < k < khip, as u runs up from 0 to infinity, the graph of ku+ ux(u) increases
from 0 to a maximum, then falls down to a positive minimum43 and finally
increases to infinity with a asymptotic slope k. Draw the solution set of

ku+ ux(u) = s

in a diagram with u versus s and compare to the last diagram in Figure 1f
in SBTB. Now explain in detail what you expect to happen if you start the
reaction with u = 0, turn up s slowly. Explain how the system switches on if
you cross the maximum of ku+ux(u). Then let s decrease slowly, what happens
if s crosses the minimum of ku + ux(u). Explain why this is called a two-way
switch. The hysteretic effect should be noted. Switching off is possible, but it
is not like you play back the movie.

To have a two-way-switch, this mutual inhibition block requires JK < 1+K
and 0 < k < khip. This khip may be computed implicitly, see again the appendix.

1.8 Homeostasis

The third example in Section 1.3 concerns Figure 1g in SBTB.

S
↓

→ R →
↑ ↓
E � EP

(1.36)

The equation is
dR

dt
= k0Ess − k2SR, (1.37)

and can be rewritten as (1.16):

Exercise 14. Verify that you get

du

dτ
= x(u)− su,

corresponding to
s
↓

→ u →
↑ ↓
x � y

for u = k3R with

s =
k2S

k0k3ET
, τ = k0k3ET t.

Exercise 15. Do the qualitative analysis of the bifurcation diagram and com-
pare to Figure 1g in SBTB.

43For all other positive values of J,K, k the graph of ku+ ux(u) is monotone.
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1.9 A missing figure?

Figure 1h in SBTB could have been

S
↓

→ R →
↓ ↑

E � EP

Exercise 16. Verify that you get

du

dτ
= k − (s+ y(u))u,

corresponding to
s
↓

→ u →
↓ ↑

x � y

Exercise 17. Do the qualitative analysis of the bifurcation diagram for the
fourth example in Section 1.3 and prepare Figure 1h for SBTB.

1.10 Sniffers

The first combination of (1.2) in Figure 1a with another block is Figure 1d,
where S signals both R and X. By itself this would be:

→ X →
↑
S
↓
→ R →

(1.38)

For this block you get a system of ODE’s for the concentrations,

dR

dt
= k1S − k2R;

dX

dt
= k3S − k4X,

which would give linear response curves for both X and R, because this system
is decoupled. You can independently solve for R and X. But if X inhibits44 R,
the system reads

dR

dt
= k1S − k2XR;

dX

dt
= k3S − k4X. (1.39)

We have not yet discussed systems of coupled ODE’s. But the steady state is
easily computed by setting the right hand sides equal to zero:

Exercise 18. Compute the steady state of this system for S > 0 and note
that Rss is independent of S. This steady state is stable, can you guess why?
Explain the term sniffer.

44Draw the corresponding arrow yourself, in tex I can’t.
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2 Figure 2 in SBTB

2.1 Figure 2a

The example in Figure 2a is deceptive. Let us first consider

s
↓
→ u →

↓ ↑
x � y

This has ODE’s

du

dτ
= s− (k + y)u, ε

dy

dτ
=

ux

J + x
− vy

K + y
, x+ y = 1.

I have put a parameter ε to have the quasi-stationary case

ux

J + x
=

vy

K + y
, x+ y = 1

with ε. The bifurcation diagram is given by

s = (k + y(u))u,

as before, which is a sigmoidal function if JK < K + 1 (the same condition as
for ux(u) to have a maximum). For y(u) close to a step function, it has a very
steep part, corresponding to an almost flat part in the bifurcation diagram. The
phase plane for u and y has null clines (k+ y)u = s and y = y(u). You will find
that the steady state is always stable. But with 2 GK-blocks the story changes,
as the numerics in STBT show. We’ll come back to this in the next version of
these notes.

2.2 Figure 2b

s → r →
↓ ↑ ↓
−→ u →
↑ ↓
y � x

(2.40)

dr

dτ
= kuu− krr,

du

dτ
= s+ y(u)− (k + r)u.

The bifurcation diagram is given by

s = (k +
ku
kr
u)u− y(u), r =

ku
kr
u

We introduce new parameters

ε = kr, µ =
ku
kr
,
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which changes the equations into

ṙ =
dr

dτ
= ε(µu− r), u̇ =

du

dτ
= s+ y − (k + r)u

and the bifurcation diagram into

s = (k + µu)u− y(u), r = µu.

You have seen this diagram for µ = 0. For a sigmoidal GK-function y = y(u)
increasing from 0 to 1 as u runs from 0 to ∞ any k for which ku = y(u) has
3 solutions (one being u = 0), produced a diagram s = ku − y(u) which was
a one-way switch. For small µ the diagram looks almost the same, but what
about stability? If (us, rs) is steady state then the matrix

A =

(
a b
c d

)
=

(
∂ṙ
∂r

∂ṙ
∂u

∂u̇
∂r

∂u̇
∂u

)
=

(
−ε εµ
us y′(us)− k − rs

)
in (us, rs) is needed. Recall

D = det(A) = ad− bc = λ1λ2, T = trace(A) = a+ d = λ1 + λ2,

in which λ1, λ2 are the eigenvalues of A. If T 2 < 4D the eigenvalues are complex
(λ = α± βi) and (us, rs) is a spiral point. The sign of T = 2α then decides the
stability: a stable spiral point for T < 0, an unstable spiral point for T > 0.
A spiral point requires a positive D, but a positive D also allows real nonzero
eigenvalues λ1, λ2 of the same sign: 0 < 4D < T 2 makes the point a node, a
stable node for T < 0, an unstable node for T > 0.

The bifurcation curve

s = (k + µu)u− y(u)

has turning point in the zero’s of

s′(u) =
ds

du
= k + 2µu− y′(u)

Show that

A =

(
−ε εµ
us µus − s′(us)

)
and that

D = det(A) = εs′(us)

This tells you that part of the bifurcation curve corresponds to saddle points
(these are unstable stationary states). Indicate which part this in your figure.

Now the remaining parts are not necessarily stable. Show that

T = µus − ε− s′(us)

and explain how a stable steady state may become unstable by increasing µ.
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2.3 Figure 2c

s
↓
→ r → u →

↑ ↓
y � x

(2.41)

with the system of equations

dr

dτ
= s− (k1 + y(u))r,

du

dτ
= (k1 + y(u))r − k2u.

Note that the 3 horizontal arrows correspond to 3 reactions (only the middle
one appears twice in the equations). This network looks similar to the one-way
switch, but does it behave similarly? You will find out below.

Determine the steady states for each s > 0 and sketch the bifurcation di-
agram in terms of s and the u-component of the steady states. Compute the
matrix

A =

(
a b
c d

)
=

(
∂ṙ
∂r

∂ṙ
∂u

∂u̇
∂r

∂u̇
∂u

)
in the steady state and show that the trace and determinant are given by

D = k2(k1 + y(u)), T = ry′(u)− y(u)− k1 − k2

(the matrix A will contain k1, k2, s, y(u), y′(u), r). Discuss the possibility that
the steady state is an unstable spiral point or unstable node. For which value
of s do you expect this to be certainly the case? Assume that y = y(u) has a
sigmoidal graph with a steep transition from y ≈ 0 to y ≈ 1. Sketch the null
clines, draw the arrows, and argue that orbits starting on the positive r-axis
will spiral inwards to a periodic orbit.

3 Sigmoidal GK-functions: details

In the next exercises you will see and learn how simple algebra and PPP-plots
quickly lead to insight in the GK-balance (1.10), beginning with explaining why
y(u) runs monotonically from 0 to 1 as u runs from 0 to large values and even-
tually ∞. If you like you may skip the first few simple exercises which concern
the MM-rates and jump directly to Exercise 21 to continue from there. Just
before Exercise 23 you will see a trick you have already seen before. Exercises
23 and 24 explain the shape of the GK-curve for J and K small.

Exercise 19. Simple but important: consider the synthesis rate

ux

J + x
(3.42)

in (1.10). You need to specify the parameters u and J in order to (computer)plot
this rate as a function of x. Since both parameters u and J are positive, an
obvious first choice is u = J = 1. Sketch the graph of the function

f(x) =
x

1 + x
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using PPP with x running from 0 to a value far beyond its contextual maximal
value 1. What is the dominating term in the denominator when x is small?
And when x is large? In both cases examine the expression you get by keeping
only this dominating term in the denominator. These can be plotted in the
same diagram as f(x). The two lines you get have a meaning in relation to the
graph of f . Explain. Convince yourself that the graph of f is concave, starts
of with slope 1, and asymptotes from below to 1 as x gets large. Never in your
life forget the shape of this graph.

Exercise 20. All MM-rates are the same: starting from u = J = 1 examine
how the graph of

ux

J + x

changes if you vary u and J , one at the time first. Pay special attention to
the slope in the origin and to the asymptote. Discuss the (near) limit cases:
u small and u = 0, J small and J = 0, u large and u → ∞, J large and
J → ∞. Also examine variations in which the ratio u

J is kept fixed. All this
should also convince you that all these graphs look the same if you scale the
units appropriately. In the GK-context you will want to restrict your attention
to x between 0 and 1.

Exercise 21. Balancing both MM-rates in (1.23): now that the synthesis rate
is well understood, the same holds for the degradation rate

vy

K + y
, (3.43)

as a function of y with parameters v and K. You can sketch the graphs of both
rates, and combine them in one picture, remembering that x+y = 1. Start with
the diagram with the degradation rate plotted versus y. On the horizontal axis
you put x = 0 where y = 1 and x = 1 where y = 0, and draw the graph of the
x-dependent synthesis rate from right to left. Note that in the resulting picture
the windows 0 < x < 1 and 0 < y < 1 coincide. You can vary u and have
various synthesis rate curves in the picture. This should give you a diagram
which resembles the second diagram in Figure 1c of SBTB. Explain that for
each choice of positive values u, v, J,K, the two graphs intersect in one point
only. This identifies the GK-equilibrium.

Exercise 22. Monotone GK-curves: we are interested is the dependence of the
response y on the signal u. Varying u, you should be able to figure out that
y runs monotonically from 0 to 1 as u runs from 0 to ∞. Just look at what
happens in the diagram of Exercise 21 in which you drew both rates. As you
vary u, one curve changes, the other remains where it is, so you can see how the
intersection point moves.

The conclusion in Exercise 22 is rather immediate from examining the graphs,
while getting the GK-formula for y right and recognising it is monotone is not
so easy. Now here is the nice trick again: if you want to know the shape45 of
the graph of y versus u, you can also examine the graph of u versus y:

45For which parameter values is the graph of y versus u convex-concave?
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Exercise 23. Inverted GK-curves: eliminate x by plugging x = 1− y in (1.10)
and show that

w =
u

v
=

y

K + y

J + 1− y
1− y

= gJK(y).

I have introduced w as a name for u
v , and denoted the right hand side in

Exercise 23 by gJK(y), a function of y with (positive) parameters J and K. It
looks complicated, but with some experience you may wish to see immediately
what its graph w = gJK(y) must look like. First we look at a (near) limit case
which shows what you can expect:

Exercise 24. Steep sigmoidal GK-curves: In most examples in SBTB both K
and J are small. For J = K = 0, you get w = 1 in the formula in Exercise
23, meaning that u = v. In the graph of y versus u, with a vertical window
0 ≤ y ≤ 1, this is the vertical line segment with u = v. With the segment
0 ≤ u ≤ v on the u-axis and the segment v ≤ u < ∞ on y = 1, you get a
broken curve of three line segments. Choose some v > 0 and make a drawing.
For small positive K and J the graph of y versus u must be close to this broken
curve, with a rather swift transition from y ≈ 0 to y ≈ 1. It is a difficult to
imagine such a smooth curve with a steep transitional part to be anything else
but sigmoidal in this near limit case.

To see how far into the parameter domain the sigmoidal shape of the GK-
curve persists we look at y in terms of u:

Exercise 25. Highschool math revisited with PPP: With y horizontally (and
w = u

v vertically) guess from a sketch, while keeping track of the signs of the
factors in gJK(y), that, varying y from −∞ to +∞, that the graph of gJK(y)
starts from the horizontal asymptote w = 1, runs up to a vertical asymptote in
y = −K, where it flips over from w = +∞ to w = −∞, runs up again from −∞
to intersect the horizontal axis in y = 0 and run up to +∞ along other vertical
asymptote in y = 1, flipping over a second time, running up from −∞ again
to intersect the horizontal axis a second time in y = J + 1, finally asymptoting
back to w = 1 from below.

You will improve your hands on math skills greatly by spending some PPP-
time on the previous exercise and convincing yourself of the scenario it sketches.
Note that all 3 branches of the graph are monotone and that gJK is really the
simplest function you can think of that has such a graph. You may have learnt
how to do draw such graphs, using the second derivative to find the inflection
points, of which there must be at least one here46, as you can infer from a
first PPP-sketch. Judiciously guessing that there is probably only one inflection
point47, the question is really if this point lies in the window 0 < y < 1 of
interest.

In this window of interest, the graph w = gJK(y) is a curve which starts of
in the origin and runs up to the asymptote in y = 1. You already knew this
from Exercise 22. Does the graph start off convex or concave from y = 0? An
easy Maple/Mathematica calculation, or a more tedious one by hand, shows
that the second derivative of gJK(y) in y = 0 is

g′′JK(0) =
2(JK − 1− J)

K2
,

46Between the two vertical asymptotes.
47Graphs of simple functions can only do so much and they usually don’t.
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which tells you that the graph starts off convex if

JK > 1 + J. (3.44)

The next exercise explains why this is the boring case, apparently avoided by
nature and the authors of SBTB.

Exercise 26. Concave GK-curves: assume (3.44) so that g′′JK(0) ≥ 0. Guess
that, as it approaches the asymptote y = 1, the graph must be convex. Take
notice of the following line of reasoning. Inbetween it might change to concave
and then back to convex again, but you can show that the graph has only one
inflection point48. In case of (3.44), the inflection point lies to the left of y = 0,
implying the graph is convex in the window 0 < y < 1 for all positive J and
K satisfying (3.44). Translated to y as a function of w or u, it is a fact that
the graph with (vertically) the response y as a function of (horizontally) the
(nonnegative) signal u is boringly concave if (3.44) holds49.

On the other hand, if
JK < 1 + J,

the graph of y versus u starts of convex, and must turn concave eventually
as it asymptotes from below to y = 1. For simple graphs like the one under
consideration, there is only one inflection point. The important conclusion is
(1.22). This conclusion carries over to all phosporylation blocks appearing in
the SBTB paper. This last exercise may help convince you the GK-graphs in
SBTB are correct.

Exercise 27. Sigmoidal GK-curves for small K (or small J): examine the
limit case K = 0 (or J = 0) to convince yourself of the conclusions above. Draw
diagrams (y versus u and u versus y) for K = 0 (or J = 0) and K > 0 (or
J > 0) small.

Exercise 28. If you like, the critical k = ktouch for which the graphs of y(u)
and ku touch may be computed: explain why the 2 equations

k =
y(u)

u
= y′(u) (3.45)

are equivalent to saying that the graphs of y(u) and ku touch in u. Writing

u = v
y

K + y

J + 1− y
1− y

, u′ =
du

dy
, (3.46)

see Exercise 23, use the fact that

u′y′ =
du

dy

dy

du
= 1

allows u-derivatives to be expressed in y. Thus, avoiding the GK-formula, you
can show that the second equality in (3.45) is equivalent to

u(y)

u′(y)
− y = 0,

48A nice math exercise.
49Like the hyperbolic curve in the last diagram in Figure 1b of SBTB.

24



which Maple reduces to

y2
y2 − 2 (J + 1) y − JK + J + 1

(J +K) y2 − 2Ky +K(1 + J)
= 0. (3.47)

The quadratic numerator has negative discriminant and is positive for 0 < y < 1.
Show that, provided JK < 1 + J , there is a unique 0 < y < 1 for which (3.47)
holds. For this

y = ytouch = J + 1−
√
J(J + 1 +K),

which through (3.46) corresponds to a unique u = utouch, we must have, solving
(3.47) for K rather than y, that

K =
J + 1− 2(J + 1)ytouch + y2touch

J
,

which implies that, looking at the first equation in (3.45) and using Maple again,

k = ktouch =
(1− ytouch)

2

Jv
.

To see why (1.35) holds you need to differentiate. Using the fact that

x′ = x′(u) =
dx

du
=

1
du
dx

=
1

u′(x)
=

1

u′
,

and Leibniz’ product rule, you can check that (using Maple)

d

du
(ux(u)) = x(u) + ux′(u) = x+

u

u′
= − x2Q(x)

(K + J)x2 − 2 Jx+ J(1 +K)
,

with
Q(x) = x2 − 2 (K + 1)x− JK +K + 1.

Now u-derivatives are expressed in x, again this trick50 avoids the GK-formula.
The window 0 < x < 1 corresponds to ∞ > u > 0. The denominator is positive
since it is positive in x = 0. Its discriminant is −(4(J + K + 1))JK < 0, so
you only need to look at the quadratic Q(x). Since Q(1) = −K − JK < 0 and
Q′(x) = 2(K + 1 − x) < 0 for 0 ≤ x ≤ 1, it depends on Q(0) = 1 + K − JK
whether ux(u) has a maximum.

Exercise 29. Verify that ux(u) has a maximum only if JK < 1+K, and sketch
its graph for JK < 1 +K and JK > 1 +K.

Exercise 30. Inflection points: if JK < 1 + K then for u > 0 there is in fact
precisely one u > 0 for which the second derivative of ux(u) is 0. Believe this.
The graph of ux(u) has only inflection point. Verify directly that the second
order derivative of ux(u) is negative in u = 0 because the first order derivative
of x(u) is negative in u = 0.

If you don’t believe do the last exercise in the appendix (Section 3).
read on, otherwise jump to Exercise 12. Since

d2

du2
(ux(u)) =

d

du
(x(u) + ux′(u)) =

dx

du

d

dx
(x(u) + ux′(u)) =

dx

du

d

dx

(
x+

u

u′

)
,

50These calculation details are remarkably similar to (3.47).
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and (with Maple again)

d

dx

(
x+

u

u′

)
=
(
x+

u

u′

)′
= 2− uu′′

u′2
=

2x(K + 1− x)C(x)

((K + J)x2 − 2 Jx+ J(1 +K))
2 ,

in which the cubic C(x) is given by

C(x) = (J +K)x3 − 3 Jx2 + 3 J (K + 1)x+ J (−1 + JK −K) . (3.48)

The inflection points of the graph of ux(u) versus u correspond to solutions of
C(x) = 0 with 0 < x < 1. The cubic C(x) turns out be increasing for 0 ≤ x ≤ 1.
You can see this because

C ′(x) = (3(J +K))x2 − 6Jx+ 3J(K + 1), C ′′(x) = 6((K + J)x− J),

C ′(0) = 3J(K + 1) > 0, C ′(1) = 3K(J + 1) > 0,

C ′′(0) = −6J < 0, C ′(1) = 6K > 0,

C ′′(
J

J +K
) = 0, C ′(

J

J +K
) =

3JK(J +K + 1)

J +K
> 0,

the latter being the positive minimum of C ′(x) in the window 0 < x < 1. Since

C(0) = J(−1 + JK −K), C(1) = K(J + 1)2 > 0,

there is an inflection point if and only if JK < 1 + K. This point is then
unique because C ′(x) > 0 for 0 < x < 1. It corresponds to the unique solution
x = xinflection in the window 0 < x < 1 for which C(x) = 0.

Exercise 31. Inflection points for k > 0: knowing that the graph of ux(u) has
an inflection point if and only if JK < 1 + K, explain why the same holds for
the graph of ux(u)+ku, and that the inflection point, if it does occur, occurs for
the same u = uinflection, independent of k. This is the u value which through
(1.34) corresponds to the x-value for which C(x) = 0 above.

Exercise 32. Implicit calculation of k = khip, see Exercise 28: solve C(x) = 0
simultaneously with

d

du
(ku+ux(u)) = k+x+

u

u′
= k− x2Q(x)

(K + J)x2 − 2 Jx+ J(1 +K)
= 0. (3.49)

Note that C(x) = 0 defines x = xinflection. Solving with respect to K show
that

K =
J(1− x)3

x3 + 3Jx+ J2 − J
, x = xinflection,

Plug K into (3.49). Maple quickly shows that this reduces (3.49) to

kJ − x3

J
= 0,

so that, since x = xinflection, again with Maple,

khip =
x3inflection

J
.

Of course, you still need to find x = xinflection from the cubic equation C(x) = 0.
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4 Afleiding Michaelis-Menten reaction rate

In de reactie
v1 v3 v5

S + E � SE � PE � E + P
v2 v4 v6

zijn S en P het substraat en het product, E het enzym, SE het enzym met
gebonden substraat, PE het enzym met gebonden product, met concentraties

s = [S], c0 = [E], c1 = [SE], c2 = [PE], p = [P ],

en reactiesnelheden

v1 = k1sc0, v2 = k2c0, v3 = k3c1, v4 = k4c2, v5 = k5c2, v6 = k6c0p, (4.50)

met reactieconstanten k1, k2, k3, k4, k5, k6. Dit heeft aanleiding tot een stelsel
gekoppelde differentiaalvergelijkingen van de vorm

ṡ = −v1 + v2
ċ0 = −v1 + v2 + . . .
ċ1 = v1 + . . .
ċ2 = . . .
ṗ = . . .

voor de concentraties, waarin de reactie rates in (4.50) moeten worden ingevuld.
De kolom 3-vector c heeft als entries c0, c1, c2.

Exercise 33. Schrijf het stelsel dat je zo krijgt in de vorm

ṡ = −k1c0s+ k2c1
ċ = A(s, p)c
ṗ = −k6c0p+ k5c2

met A(s, p) een 3× 3-matrix waarin s en p lineair voorkomen.

Exercise 34. Verifieer dat c0+c1+c2 constant is en noem die constante ε = eT .
Introduceer γ0, γ1, γ2 door c = εγ. Dan verandert het stelsel in Opgave 33 in

ṡ = ε(−k1γ0s+ k2γ1)
γ̇ = A(s, p)γ
ṗ = ε(−k6γ0p+ k5γ2)

en dus is de tijdschaal voor de verandering van s en p veel groter dan die van
γ als ε klein is. De aanname dat γ(t) dus veel sneller in evenwicht komt dan
s(t) en p(t) leidt tot A(s, p)γ = 0, drie vergelijkingen voor γ0, γ1, γ2 waarvan de
derde volgt uit de eerste twee (waarom?). Combineer dit met γ0 + γ1 + γ2 = 1
en bepaal γ0, γ1, γ2 in termen van s en p. Gebruik de uitdrukking die je vindt in
de expressies voor ṡ en ṗ en laat zien dat dit leidt tot differentiaalvergelijkingen
van de vorm

ṡ =
ε(s−Kp)

a0 + a1s+ a2p
= −ṗ

en druk K, a0, a1, a2 uit in k1, k2, k3, k4, k5, k6.
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Exercise 35. Een andere manier om het stelsel in Opgave 33 te vereenvoudigen
is de aanname dat reacties 1,2,5,6 heel snel zijn waardoor de reactie S+E � SE
en PE � E + P heel snel in evenwicht raken en k1sc0 = k2c en k5c2 = k6c0p
met c0 + c1 + c2 = eT de concentraties c0, c1, c3 geven in termen van s en p. Dit
leidt tot dezelfde vergelijkingen als in Opgave 34 maar met andere coëfficiënten.
Druk die weer uit in k1, k2, k3, k4, k5, k6.
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