
Biochemical oscillations occur in many contexts (such 
as metabolism, signalling and development) and control 
important aspects of cell physiology, such as circadian 
rhythms, DNA synthesis, mitosis and the development of 
somites in vertebrate embryos (TABLE 1). In the 1950s and 
1960s, the first clear examples of biochemical oscillations 
(in metabolic systems) were recognized in glycolysis1,2, 
cyclic AMP production3 and the horseradish peroxidase 
reaction4,5. Soon after these discoveries were made, theo-
reticians were thinking about the general requirements 
for chemical oscillations and the specific mechanisms of 
these examples6,7. After the molecular biology revolution 
of the 1980s, many new examples of oscillations in pro-
tein-interaction networks (PINs) and in gene-regulatory 
networks (GRNs) came to light, such as the period (PER) 
proteins in animal circadian control8, the cyclin proteins 
in eukaryotic cell-cycle control9,10 and the repressilator11 in  
genetically engineered bacteria.

Understanding the molecular basis of cellular oscilla-
tions is more than an exercise in experimental genetics and 
biochemistry. Oscillators have systems-level characteris-
tics (for example, periodicity, robustness and entrainment) 
that transcend the properties of individual molecules 
or reaction partners and that involve the full topology 
of the reaction network. These properties can only be 
fully understood by viewing experimental data from a 
theoretical perspective and by quantitative mathematical 
modelling of chemical oscillatory processes. These models 
address general concepts of dynamical systems, such as 
feedback, time delays, bistability and hysteresis.

In this review, we present a series of examples 
of increasing complexity that illustrate the essential 

requirements for biochemical oscillators. First, negative 
feedback is necessary to carry a reaction network back to 
the ‘starting point’ of its oscillation. Second, the negative-
feedback signal must be sufficiently delayed in time so 
that the chemical reactions do not settle on a stable 
steady state. Third, the kinetic rate laws of the reaction 
mechanism must be sufficiently ‘nonlinear’ to destabilize 
the steady state. Fourth, the reactions that produce and 
consume the interacting chemical species must occur on 
appropriate timescales that permit the network to gener-
ate oscillations. Time delay can be created by a physical 
constraint (for example, the minimal time necessary 
to carry out transcription and translation, or the time 
needed to transport chemical species between cellular 
compartments), by a long chain of reaction intermediates 
(as in a metabolic pathway) or by dynamical hysteresis 
(overshoot and undershoot, as consequences of positive 
feedback in the reaction mechanism).

To keep the mathematical details of oscillating 
chemical reactions to a minimum, we will demonstrate 
the design principles of biochemical oscillators by rate 
plots (which show how reaction rates depend on chem-
ical concentrations), signal–response curves (which 
show how oscillations turn on and off in response to 
regulatory signals) and ‘constraint’ diagrams (which 
show how the kinetic constants of a reaction mecha-
nism are constrained by requirements for periodicity). 
The mathematics are available to interested readers in 
Supplementary information S1–S4 (boxes). For further 
details on the principles that underlie chemical and bio-
chemical oscillations, we refer readers to books12–15 and 
review articles2,6,16–18.
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Somites
Early segmentations of the 
body of a vertebrate embryo 
that are laid down in a 
temporally and spatially 
periodic pattern.

Robustness
The notion that a control 
system should function reliably 
in the face of expected 
perturbations from outside the 
control system and from 
inevitable internal fluctuations.

Design principles of biochemical 
oscillators 
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Abstract | Cellular rhythms are generated by complex interactions among genes, proteins 
and metabolites. They are used to control every aspect of cell physiology, from signalling, 
motility and development to growth, division and death. We consider specific examples of 
oscillatory processes and discuss four general requirements for biochemical oscillations: 
negative feedback, time delay, sufficient ‘nonlinearity’ of the reaction kinetics and proper 
balancing of the timescales of opposing chemical reactions. Positive feedback is one 
mechanism to delay the negative-feedback signal. Biological oscillators can be classified 
according to the topology of the positive- and negative-feedback loops in the underlying 
regulatory mechanism.
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Entrainment
The process whereby two 
interacting oscillating systems, 
which have different periods 
when running independently, 
assume the same period. The 
two oscillators may fall into 
synchrony, but other phase 
relationships are also possible.

Bistability
A reaction network with two 
coexisting stable steady states 
(separated by an unstable 
steady state). Which stable 
state the network adopts 
depends on the initial 
concentrations of the reacting 
species.

Hysteresis
A property of systems with 
bistability. The control system 
can be switched from one 
stable state to the other by a 
transient signal, and switched 
back again by a different 
transient signal. Hence, the 
state of the system depends 
not only on its present 
conditions, but also on its 
recent history. 

Negative feedback with time delay
To lay bare the ‘design principles’ of biochemical oscilla-
tors, it does not make sense to start with a fully detailed 
model of a particular cellular rhythm, such as the cell 
cycle in human fibroblasts, which is likely to be so over-
laid by subtle control signals that the essential features 
of the oscillator will be obscure. Rather, we start from 
a highly idealized model of periodic protein synthesis 
that illustrates the basic requirements of biochemical 
oscillators in their pristine forms.

we consider a protein (for example, PER in the  
circadian control system of fruit flies19,20) that represses 
the transcription of its own gene (FIG. 1a). The details  
of this feedback repression are not important at present. 
The time-rate of change of protein concentration, dY/dt, 
is given by a simple kinetic equation:

dY
dt

Kp
d

Kp
d + Yp

Y
Km + Y

= k1S (1)– k2ET

In this equation, the first term is the rate of protein 
synthesis and the second is its rate of degradation. The 
synthesis rate is proportional to a signal (S; which might 
be the concentration of a transcription factor that upreg-
ulates the gene) multiplied by a factor, Kp

d / (Kp
d + Yp)   , 

which expresses how gene transcription is downregu-
lated by protein Y. In this factor, Kd is the dissociation 
constant for the binding of Y to the upstream regula-
tory sequence of the gene, and p is an integer indicating 
whether Y binds to the DNA sequence as a monomer, 
dimer, trimer, or so on. The rate constant k1 is the rate of 
synthesis of Y (per unit signal strength) when the con-
centration of Y is small and the gene is fully expressed. 
In the second term, E is a protease that degrades Y (ET is 
the total concentration of enzyme), its turnover rate is k2 
and its Michaelis constant is Km.

In FIG. 1b we plot the rates of synthesis and degrada-
tion of the protein Y as functions of the protein concen-
tration, Y. From the diagram it is clear that the protein 
concentration, if indeed it is governed by equation 1,  

will be drawn towards its steady-state value, Y0, without 
any oscillations, nor with any overshoots or undershoots. 
This is great if we are modelling ‘homeostasis’, but not if 
we want to model ‘oscillations’.

Explicit time delay. Suppose that the rate of protein syn-
thesis at present (at time t) depends on the concentration 
of protein at some time in the past (at time t–τ), where 
τ is the time delay that is required for transcription 
and translation. Then, the governing kinetic equation 
becomes:

dY(t)
dt

Kp
d

Kp
d + Y(t–  )p

Y(t)
Km + Y(t)

= k1S (2)– k2ETτ

This model of protein synthesis and degradation 
was first studied in detail by Mackey and Glass in 1977 
(rEF.  21). For a proper choice of rate constants and time 
delay, this equation exhibits periodic oscillations, as 
illustrated in FIG. 1c. The time delay causes the negative-
feedback control repeatedly to overshoot and undershoot 
the steady state (FIG. 1d). For details on how to simulate 
equation 2 and all other models in this review, see 
Supplementary information S1 (box).

By ‘proper choice of rate constants’ we mean that 
for Y(t) to oscillate, the kinetic parameters — S (signal 
strength), p (nonlinearity of feedback), Km (nonlinearity  
of the removal step) and τ (duration of time delay) 
— must satisfy specific constraints, as illustrated in 
FIG. 1e,f. For details on how these constraint curves are 
calculated, see Supplementary information S2 (box). 
The constraints can be summarized in three require-
ments. First, the time delay, τ, must be sufficiently long. 
(For fixed values of p and Km, there is a minimum value 
of τ, τmin, below which oscillations are impossible.) 
Second, the reaction rate laws must be sufficiently 
‘nonlinear’. (Oscillations become easier — that is, τmin 
gets smaller — as either p or Kd/Km increases.) Third, 
the rates of opposing processes must be appropriately 
balanced.

Table 1 | Survey of biochemical oscillators

Function components Period class* references

Metabolism Glucose, ATP, phospho-fructokinase 2 min 3 52–54

Signalling Cyclic AMP, receptor, adenylate cyclase 5 min 3 55,64

Signalling Ca2+, Ins(1,4,5)P
3

> 1 s 3 65

Signalling NF-κB, IκB, IKK ~2 h 1 41,43

Signalling p53, MDM2 5 h 1 39,40

3 58,59

Signalling Msn2, adenylate cyclase, cAMP, PKA ~10 min 1 66,67

Somitogenesis Her1, Her7, Notch 30–90 min 1 40,68

Yeast endoreplication cycles Cig2, Cdc10, Rum1 1–2 h 2 49

Frog egg cycles CycB, Wee1, Cdc25, Cdc20 30 min 2 47, 48

Circadian rhythm PER, TIM, CLOCK, CYC 24 h 1 26

2 30

*See FIG. 5. Class 1 represents delayed negative-feedback loops; class 2 represents amplified negative-feedback loops;  
class 3 represents incoherently amplified negative-feedback loops. IκB, inhibitor of NF-κB; IKK, IκB kinase; Ins(1,4,5)P

3
, inositol-

1,4,5-triphosphate; NF-κB, nuclear factor κB. 
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To understand the third requirement, we must look 
more closely at the axes in FIG. 1e,f. The value of the ‘time 
delay’ plotted on the vertical axis is really a dimensionless  
combination of parameters:

k2 ETτ
Kd /k2ETKd 

= τ
Tdegr

= = (3)τ time delay
time scale for protein

degradation

The value of ‘signal strength’ plotted on the horizontal 
axis is the dimensionless ratio:

k1S
Kd /k1S

Kd /k2ET

k2 ET

=
Tsyn

Tdegr= = (4)
time scale for protein

synthesis

time scale for protein
degradation

For fixed values of p and Kd/Km, these ratios must lie 
above a specific curve plotted in FIG. 1e,f. For example, for 
p = 2 and Kd/Km = 10 (‘modest’ nonlinearity of the rate laws 
for protein synthesis and degradation), these ratios must 
(roughly speaking) satisfy the inequalities: τ/Tdegr > 2 and 
Tdegr/Tsyn > 1 (from the lowest curve in FIG. 1f). Estimating 
the time delay for transcription and translation to be 
~20 min, we predict that for the negative-feedback loop 
to oscillate, the timescale for protein degradation must be  
< 10 min and the timescale for protein synthesis must 
be even shorter. If these conditions are satisfied, then the 
period of oscillation is (again, roughly speaking) between 
twice and four times the time delay; that is, ~40–80 min. 

In the remainder of this review, we intend to show 
that these four elements (negative feedback, nonlinear-
ity, time delay and timescale constraints) are generally 
needed for all biochemical oscillators, provided the 
notion of time delay is suitably generalized.

Time delay by a series of intermediates. Our simple model 
of negative feedback on gene expression in equation 2 
exhibits sustained oscillations if there is a sufficiently 
long time delay between the action of the protein Y on 
the gene and the appearance of new protein molecules 
in the cytoplasm. we express this requirement as a dis-
crete time delay, τ, in the kinetic equation. Maybe we can 
dispense with τ if we include the dynamics of mRNA in 
our model (FIG. 2a). To this end, we write a pair of kinetic 
equations for X = mRNA concentration and Y = protein 
concentration:
dX
dt

Kp
d

Kp
d + Yp= k1S

(5)
– kdxX

dY
dt

Y
Km + Y

= ksyX – k2ET

In these equations, kdx and ksy are the rate constants 
for degradation of mRNA and synthesis of proteins, 
respectively. 

In FIG. 2b we plot the ‘nullclines’ of this pair of non-
linear differential equations. The X-nullcline (curve 1 in 
FIG. 2b) is the locus of points in the (XY) plane where the 
rate of mRNA synthesis is exactly balanced by the rate of 
mRNA degradation; that is, where:

k1S
kdx Kp

d + Yp X = (6)
Kp

d

 Along the X-nullcline, dX/dt = 0 and trajectories move 
horizontally in the (XY) plane because there is no change 
in the X direction but there may be change in the Y direc-
tion. The Y-nullcline (curve 2 in FIG. 2b) is the locus of 
points where the rate of protein synthesis is balanced by 
the rate of degradation; that is, where: 

k2ET

ksy Km + Y
X = (7)

Y

Figure 1 | Time-delayed negative-feedback oscillator. a | The protein level is 
determined by opposing processes of synthesis and degradation. Protein synthesis is 
downregulated by the protein itself. b | Curves 1 and 2 represent the rates of protein 
synthesis and degradation, respectively. The arrows indicate the direction of change 
of protein concentration, which is always towards Y

0
, the steady state concentration 

of protein, where the rate of synthesis equals the rate of degradation. c | Sustained 
oscillations for equation 2, with p = 2, K

m
/K

d
 = 1, S/K

d
 = 1, k

1
 = k

2
E

T
/K

d
 = 1 min–1 and  

τ = 10 min. The period of oscillation, T
c
, is 27.2 min. d | In curve 3 we plot the 

time-delayed rate of protein synthesis, 1/(1+Y(t–τ)p), as a function of the present 
protein concentration, Y(t). The dashed portion of curve 3 corresponds to the dashed 
portion of the oscillation in panel c; it is τ time units in duration, and it extends from 
the maximum value of Y (at t = 20 min) to the minimum value of the rate of 
production of Y (at t = 30 min). The time-delayed loop repeatedly overshoots and 
undershoots the steady state because the protein synthesis rate is no longer given  
by curve 1 at Y(t), but instead is given by curve 1 at Y(t–τ). e | Constraint curves for  
p = 1. Each curve is drawn for a specific value of K

d
/K

m
. For each case, equation 2 

exhibits sustained oscillations in the region above the curve. f | Constraint curves  
for p = 2. Notice that the oscillatory domain becomes larger as p increases and as  
K

d
/K

m
 increases; that is, as the kinetic rate laws become more nonlinear. E

T
 , the total 

concentration of enzyme; k
1
, the rate of synthesis of protein Y; k

2
, the enzyme’s 

turnover rate; K
d
, the dissociation constant; K

m
, the Michaelis constant; p, an integer 

indicating whether Y binds to the DNA sequence as a monomer, dimer, trimer, or so 
on; S, the signal strength; t, the time variable; τ, the duration of time delay.

R E V I E W S

NATURE REvIEwS | molecular cell biology  vOlUME 9 | DEcEMBER 2008 | 983

© 2008 Macmillan Publishers Limited.  All rights reserved. 

 



Nature Reviews | Molecular Cell Biology

Kd/Km

1050
0

5

10

p
Oscillation

0.01 0.1 1 10 100
0.01

0.1

1

10

100

T0.5 (mRNA in nucleus)

T 0
.5
 (p

ro
te

in
 in

 c
yt

os
ol

)

Oscillation

mRNA

0 1 2 3 4
0.0

0.5

1.0

m
RN

A

Protein

1
2

0 20 40 60

500

0

1,000

0

100

200

m
RN

A

Pr
ot

ei
n

Time

Protein

Protein

Protein

a b

c d

e f

Nucleus

Cytosol

mRNA

mRNA

mRNA (nucleus)
mRNA (cytosol)

Protein (nucleus)
Protein (cytosol)

mRNA Protein

 Along the Y-nullcline, dY/dt = 0 and trajectories 
move vertically in the (XY) plane. where the nullclines 
intersect (the solid circle in FIG. 2b), the trajectory comes 
to rest at a steady state (dX/dt = 0 and dY/dt = 0). The 
sample trajectories in FIG. 2b (the dashed lines) spiral into 
the stable steady state. Although the system of reactions 
may exhibit dampened oscillations on the way to the 
steady state, sustained oscillations in this simple gene 
regu latory circuit are impossible22. Hence, adding mRNA 

to the model does not do away with the requirement for 
an explicit time delay.

Before giving up the idea of replacing the time delay 
by a series of intermediates in the negative-feedback 
loop, let us recognize that (in eukaryotes) the mRNA 
and protein molecules need to be transported between 
the nucleus and cytoplasm (FIG. 2c). Equations 5 are read-
ily expanded to four variables: mRNA and protein in the 
nucleus (Xn, Yn) and in the cytoplasm (Xc, Yc). The four-
variable negative-feedback loop oscillates as naturally as 
a pendulum (FIG. 2d).

The constraint diagrams in FIG. 2 underscore the con-
clusions of the previous section. FIG. 2e shows that the 
kinetic rate laws must be sufficiently nonlinear (that is, 
p and/or Kd/Km are sufficiently large). FIG. 2f shows that 
the half-lives of mRNA in the nucleus and protein in the 
cytoplasm must be properly balanced. If either half-life 
becomes very short (that is, if either component turns 
over very rapidly), then that component maintains its 
steady-state value and the feedback loop reduces to three 
components, either ‘Xc, Yc, Yn’ or ‘Xn, Xc, Yn’. Nonetheless, 
oscillations persist. Hence, we conclude that oscillations 
are impossible in a two-component negative-feedback 
loop (FIG. 2b), but are possible in a three-component 
negative-feedback loop22 (FIG. 2f).

This mechanism (negative feedback on gene expres-
sion with three or more components in the feedback 
loop), which we have used to illustrate the four basic 
principles of biochemical oscillations, was first put for-
ward by Brian Goodwin23,24 in the mid-1960s as a model 
for periodic enzyme synthesis in bacteria. Our calcula-
tions in this section show that, with an effective time 
delay (due to transcription, translation and transport of 
reaction intermediates) of ~20 min, this model gives a 
period of ~1 h, which is close to the observed periods 
of such rhythms25. This mechanism has also been a 
favourite model for circadian rhythms in flies and mam-
mals, governed by the PER protein, which moves into 
the nucleus and blocks expression of the PER gene26,27. 
Of course, to get a period of 24 h, the time delay for  
the feedback signal must be considerably longer than the 
delay expected for transcription, translation and nuclear 
transport. It is thought that PER undergoes slow post-
translational modifications (phosphorylations) in the 
cytoplasm before it returns to the nucleus20.

The possibility of sustained oscillations in a three-
component negative-feedback loop was used by Elowitz 
and leibler11 to design the ‘repressilator’, a synthetic GRN 
in Escherichia coli that consists of three operons, each one 
expressing a protein that represses the next operon in the 
loop. The successful engineering of the repressilator was 
a foundational triumph of the nascent field of synthetic 
biology and a vindication of the theoretical ideas of 
Goodwin23,24, Griffith22, Goldbeter26 and others. 

Time delay by positive feedback. Time delay is a sort 
of memory: protein synthesis rate at the present time 
depends on protein concentration over some time in the 
past. Memory is a property of biochemical systems with 
bistability: under identical chemical conditions, the system 
can be in either of two alternative stable steady states28,29. 

Figure 2 | multi-component negative-feedback oscillator. a | Negative feedback 
between mRNA and protein, as described by kinetic equations 5. b | Representative 
solutions (dashed curves) of equations 5, for parameter values: p = 2, K

m
/K

d 
= 1, S/K

d 
= 1, 

k
1 
= k

dx 
= 0.1 min–1, k

sy 
= k

2
E

T
/K

d 
= 1 min–1. Notice that every trajectory spirals into the 

stable steady state located at the grey circle. Curves 1 and 2 are ‘nullclines’ for 
differential equations 5, as explained in the main text. The small arrows indicate the 
direction of motion of trajectories as they cross the nullclines. Notice that the nullclines 
in this figure are identical to the rate curves in FIG. 1b. c | The negative-feedback loop, 
taking into account transport of macromolecules between the nucleus and the 
cytoplasm. d | Sustained oscillations for the four-component loop in panel c. See 
Supplementary information S1 (box) for details. e | Nonlinearity constraint. For the 
negative-feedback loop to oscillate, p and K

d 
/K

m
 must be sufficiently large. f | Timescale 

balancing constraint. The half-lives (T
0.5

) of mRNA in the nucleus and of protein in the 
cytoplasm must lie in the shaded band for the negative-feedback loop to oscillate.  
E

T
, the total concentration of enzyme; k

1
, the rate of synthesis of protein Y; k

2
, the 

enzyme’s turnover rate; K
d
, the dissociation constant; k

dx
, the turnover rate of mRNA;  

K
m

, the Michaelis constant; k
sy

, the rate for the synthesis of protein; p, an integer 
indicating whether Y binds to the DNA sequence as a monomer, dimer, trimer, or so on; 
S, the signal strength.
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which state a system occupies depends on its recent his-
tory (a phenomenon called hysteresis). Hysteresis can 
prevent a system with negative feedback from finding its 
homeostatic steady state. To see how this happens, we 
add positive feedback to our mRNA–protein system in  
equation 5. In particular, we assume that protein Y,  
in addition to binding to its own gene regulatory site  
and downregulating its own expression, can bind to 

an allosteric site on protease E and thereby inhibit the  
activity of E (FIG. 3a). The kinetic equations become:

dX
dt

Kp
d

Kp
d + Yp= k1S – kdxX

dY
dt

Y
Km + Y + KIY 2

= ksyX – kdyY– k2ET

(8)

In these equations, kdy is the rate constant for an alter-
native pathway of protein degradation and KI is a constant 
that characterizes the strength of the inhibition of enzyme 
E by its substrate Y. In equation 8, as before, S is the con-
centration of a transcription factor that upregulates the 
expression of the mRNA that encodes protein Y. we think 
of S as a signal that can induce sustained oscillations in 
protein level as a function of time.

In FIG. 3b we draw the nullclines of equations 8 in the 
same format as FIG. 2b. The effect of positive feedback is 
a kink in the degradation curve (compare curves 2 in 
FIGS 2b, 3b), and the kink forces the dynamical system 
to overshoot and undershoot the steady state repeatedly 
(compare the dashed trajectories in FIGS 2b, 3b). The sys-
tem executes sustained oscillations (FIG. 3c), provided the 
signal strength, S, is within certain bounds (FIG. 3d).

The constraint diagrams (FIG. 3e,f) show that these 
oscill ations require positive feedback (they disappear 
if KI is too small or too large) and proper balancing of 
timescales (mRNA must be sufficiently stable (kdx must 
not be too large), and signal strength must lie within strict 
bounds (S must not be too large or too small)).

This mechanism (negative feedback on gene expression 
plus inhibition of protein degradation) has been suggested 
by Tyson et al.30 as a possible source of circadian rhythms 
in the reaction network that governs expression of the 
PER gene in fruit flies. Their idea was that the PER protein 
may form dimers that are less prone to degradation by the 
protease (E in the model is casein kinase, which phospho-
rylates PER and labels it for proteolysis). Other examples 
of this design for oscillations will be given after we expand 
our notion of reaction mechanisms from gene regulation 
to metabolic control systems (McSs) and PINs.

Biochemical interaction networks
Using a simple GRN as an example, we have discovered 
two distinct mechanisms for generating oscillations: a 
negative-feedback loop with at least three components, 
and a combination of short positive- and negative- 
feedback loops. we might depict these mechanisms with 
the following ‘regulatory motifs’:

Z X X Y E
Y

(A) (B)
In these motifs, X → Y means ‘X activates Y’ and  

X         Y means ‘X inhibits Y’. The general ideas discussed 
in the previous section — positive and negative feed-
back, time delay and nonlinearity — are not limited to 
GRNs but apply equally well to McSs and to PINs. we 
would like to know whether there is a general theory 
of regulatory motifs (like the two above) that classifies 
types of biochemical oscillator.

Figure 3 | Hysteresis-driven negative-feedback oscillator. a | RNA and protein in a 
negative-feedback loop, as in FIG. 2. This mechanism is described by kinetic equations 8. 
b | Limit cycle solution (curve 3) of equations 8 for parameter values: p = 4, K
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1 
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T
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= 1 min–1. Curves 1 and 2 as in FIG. 2b, 

except that curve 2 is given by X = k
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 + Y/(K
m

 + Y + K
I
Y2). c | Sustained oscillations of mRNA 

and protein, corresponding to curve 3 in panel b. d | Signal–response curve. Solid lines 
represent stable steady states; dashed lines represent unstable steady states; grey  
circles represent maximum and minimum excursions of Y(t) during a limit cycle oscillation.  
The oscillation in panel c is indicated by the double-headed arrow at S = 1. Notice that 
oscillations are possible only for a restricted range of S. e | Nonlinearity constraint. For this 
mechanism to oscillate, the positive-feedback loop must be strong enough (K

I
 must be 

sufficiently large) and the negative-feedback loop must be sufficiently nonlinear (p must 
be sufficiently large). f | Timescale balancing constraint. The turnover rate of mRNA (k

dx
) 

cannot be too large, and S must be within specific bounds for this system to oscillate.  
E

T
, the total concentration of enzyme; k

1
, the rate of synthesis of protein Y; k

2
, the enzyme’s 

turnover rate; K
d
, the dissociation constant; k

dx
, the turnover rate of mRNA; k

dy
, the rate 

constant for an alternative pathway of protein degradation; K
I
, a constant characterizing 

the strength of inhibition of enzyme E by its substrate; K
m

, the Michaelis constant; k
sy

, the 
rate for the synthesis of protein; p, an integer indicating whether Y binds to the DNA 
sequence as a monomer, dimer, trimer, or so on; S, the signal strength; t, the time variable; 
X and Y, the concentrations of mRNA and protein, respectively.
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In this review we are not so much interested in the 
precise mechanisms of particular biochemical oscillators 
as we are in the patterns of activation and inactivation 
(that is, the regulatory motifs) that appear repeatedly in 
all known oscillators. How activation and inhibition are 
achieved biochemically varies considerably, depending on 

the context. In GRNs, transcription factors bind to regula-
tory sequences upstream of genes and control whether the 
gene is transcribed to mRNA or not. In McSs, metabolites 
bind to enzymes and control how quickly or slowly the 
enzyme catalyses a particular chemical reaction. In this 
way, metabolite X can ‘activate’ metabolite Y either by 
activating the enzyme that produces Y or by inhibiting 
the enzyme that consumes Y. In PINs, protein X might 
activate protein Y because X is a kinase that phosphoryl-
ates Y, or because X is a binding partner that forms an 
active X–Y dimer. Protein X might, just as well, inactivate 
protein Y by binding to Y, by phosphorylating Y or by 
degrading Y. Given all these possibilities, there are many 
ways to build a PIN or McS to instantiate a particular 
regulatory motif. The examples discussed above, which 
involve negative feedback on gene expression, suggest that 
besides the regulatory motif itself (the pattern of positive 
and negative interactions), an oscillatory mechanism must 
have sufficient ‘nonlinearity’ and the rates of particular 
opposing reactions must be properly balanced.

Nonlinearities arise in biochemical reaction networks 
from many sources (FIG. 4). we have already used the 
example of a multimeric transcription factor binding 
to a genetic regulatory sequence (FIG. 4a), for which the 
probability of binding is given by a nonlinear so-called 
Hill function31, Sp

  / (Kp
d + Sp). cooperative binding of 

substrates and modifiers to multisubunit allosteric 
enzymes (FIG. 4b) also generates sigmoidal nonlineari-
ties, adequately described by Hill functions or by more 
accurate kinetic rate laws31,32. Reversible phosphorylation 
and dephosphorylation of target molecules can create a 
sigmoidal signal–response curve if the interconverting 
enzymes (kinases and phosphatases) have high affinity  
(low Km) for their abundant substrates (zero-order 
ultrasensitivity33) or if the target molecule has multiple 
phosphorylation sites34 (FIG. 4c). Our final example is a 
stoichiometric inhibitor that binds to a regulatory pro-
tein (X) to form an inactive complex (FIG. 4d): as the total 
amount of X increases in response to a signal, the active 
fraction of X shows a highly nonlinear signal–response 
curve35. A high-affinity substrate can work as a stoichio-
metric inhibitor of its enzyme, making enzyme activity 
for other substrates nonlinearly dependent on the enzyme 
level36. These sorts of interactions, when introduced into 
reaction networks of the right topology, may provide the 
nonlinearity that is needed to generate oscillations.

Next we present a general classification scheme for 
simple regulatory motifs that exhibit sustained oscilla-
tions, provided the chemical implementation has suf-
ficient nonlinearity (introduced by reactions such as 
those in FIG. 4) and that the timescales of the reactions 
are properly balanced.

Classification of oscillatory motifs
So far we have used examples to show that biochemical 
oscillations can be generated by a delayed negative-feed-
back loop (with at least three components in the loop) 
or by combining positive- and negative-feedback loops. 
In this section, we want to put these two examples into 
a general scheme for classifying motifs of biochemical 
oscillators (FIG. 5).

Figure 4 | Sources of nonlinearity. a | Oligomer binding. Left: a transcription factor (blue 
ball) forms an n-component homo-oligomer, which then binds upstream of a structural 
gene and either activates or represses mRNA synthesis. Right: the rate of mRNA synthesis 
as a function of transcription factor (TF) concentration, for an activator (solid line) or a 
repressor (dashed line). b | Cooperativity and allostery. Left: an enzyme, consisting of two 
catalytic subunits (spheres) and two regulatory subunits (cubes), catalyses the conversion 
of substrate (S) into product (P). Activators (A) and inhibitors (I) bind to specific sites on 
the regulatory subunits. Right: if the binding of substrate to the catalytic subunits is 
cooperative, then the rate of reaction as a function of substrate concentration is 
sigmoidal (solid line). The rate curve can be shifted to the left or to the right by increasing 
the concentration of the activator or inhibitor, respectively. c | Multisite phosphorylation. 
Left: a regulatory protein, X, is phosphorylated on multiple sites by a protein kinase  
and is dephosphorylated by a protein phosphatase. Right: the concentration of the 
unphosphorylated form of X as a function of the ratio of activities of kinase and 
phosphatase. d | Stoichiometric inhibition. Left: a regulatory protein, X, is synthesized  
in response to a signal, S. X binds strongly to an inhibitor to form an inactive complex. 
Right: the concentration of total X increases hyperbolically with S (dashed line), but the 
concentration of ‘free’ X is a sigmoidal function of S (solid line).
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First, we conjecture that oscillators always involve 
a negative-feedback loop. we know of no examples of 
chemical oscillations without negative feedback, and 
negative feedback seems necessary to close a sequence 
of chemical states back on itself. In all our examples, 
we will use the letter X to denote the ‘activator’ and Y 
to denote the ‘inhibitor’ in the negative-feedback loop; 

that is, X ‘activates’ Y and Y ‘inhibits’ X. The activa-
tion or inhibition can be indirect; that is, through an 
intermediate, Z.

Second, we limit our study to mechanisms that lack 
autocatalysis (that is, cases in which component X directly 
promotes its own activity). we can think of a few exam-
ples (a protein kinase that phosphorylates and activates 
itself, or a misfolded protein that induces other copies  
of itself to misfold), but direct autocatalysis of this sort is 
rare compared to self-promotion by a positive-feedback 
loop (for example, X activates w and w activates X). 
Direct autocatalysis can be incorporated into the scheme 
we are presenting, but it makes the enumeration of cases 
unnecessarily complex.

we have already shown that the capacity to oscillate 
(in networks that lack direct autocatalysis) requires at 
least three chemical species to interact by at least three 
regulatory links (activation or inhibition). Motifs A and 
B above show two simple examples: a three-component 
negative-feedback loop and a pair of coupled positive- 
and negative-feedback loops (three components and 
four links). we have systematically surveyed all three- 
component regulatory motifs with three or four inter-
action links and have investigated each topologically 
distinct motif for the capacity to oscillate. The oscillatory 
motifs we found can be divided into three classes.

Class 1: delayed negative-feedback loops. By delayed 
negative feedback, we refer to three or more components 
connected in a single loop by positive and negative links, 
with an odd number of inhibitory links. Delayed nega-
tive feedback is often used to model oscillatory responses 
in molecular cell biology. Besides circadian oscillations 
of PER protein in fruit flies (mentioned earlier), other 
examples include oscillations of p53 in response to ion-
izing radiation37–40 (p53  MDM2 mRNA  MDM2 
protein   p53) and oscillations of nuclear factor-κB 
(NF-κB) in response to stimulation by tumour necrosis 
factor40–43 (NF-κB  IκB (inhibitor of NF-κB) mRNA 

 IκB protein   NF-κB).
Because this regulatory motif has three or more 

components, it cannot be adequately represented by a 
two-variable state space, as in FIGS 2b,3b. Nonetheless, 
it is instructive to plot trajectories of the basic motif 
(X  Y  Z  X) in the XY plane (FIG. 5a, left) and 
in the XZ plane (FIG. 5a, right), and to compare these 
plots with a two-component negative-feedback loop  
(X  Y   X) in FIG. 2b. In FIG. 2b, curves 1 and 2 
(called ‘nullclines’) indicate places where the flow of the 
reaction system is horizontal (in the Y direction only) 
and where it is vertical (in the X direction only). (Please 
notice that we always plot the activator X on the vertical 
axis.) These ‘flow indicators’ force the trajectories (the 
dashed curves in FIG. 2b) to spiral into the steady state. 
For the case of a delayed feedback loop, the trajectories 
do not obey the flow indicators (FIG. 5a). when we plot 
X versus Y (FIG. 5a, left panel), the limit cycle trajectory 
(curve 3) does not cross curve 1 in a horizontal direc-
tion because the rate of synthesis of X depends on the 
concentration of Y some time in the past (because Y’s 
inhibitory effect on X passes through the intermediary 

Figure 5 | a classification scheme for biochemical oscillators. We classify oscillators by 
their interaction motifs, where X  Y means ‘protein X activates protein Y’, Y  X 
means ‘Y inhibits X’, and W   X means ‘protein W may either activate or inhibit X’. If two 
white circles appear in the same regulatory motif, they must have the same sign (either ++ 
or −−). We assume that all interactions are positive or negative (not mixed mode) and that 
all self-interactions are negative. a | Class 1: delayed negative-feedback loops. Below each 
feedback loop, we present a state-space diagram in the style of FIG. 1d. We plot ‘activator’ 
X versus ‘inhibitor’ Y (left) or Z (right). Curve 3 is a projection of the limit cycle oscillation 
onto the XY plane. b | Class 2: amplified negative-feedback loops. Either the activator X 
can be amplified by positive feedback with W (left), or the inhibitor Y can be amplified by 
positive feedback with Z (right). For each motif, we plot the limit cycle oscillation (curve 3) 
on the XY plane. c | Class 3: incoherently amplified negative-feedback loops. Each motif 
consists of a three-component negative-feedback loop (oscillatory) and a two-component 
positive-feedback loop (amplifying). Each motif also contains an incoherent feed-forward 
loop that can originate from either X or Y. To the left and right of each motif we indicate 
how the state-space diagram will appear, depending on which variable is plotted on the 
abscissa and which is plotted on the ordinate.
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component Z). If we are plotting X versus Z (FIG. 5a, 
right panel), the limit cycle trajectory does not cross 
curve 2 in a vertical direction because the rate of syn-
thesis of Z depends on the concentration of X some time  
in the past (because X’s activation of Z must pass through  
the intermediary component Y). In both cases, the delay 
allows the trajectory to form a closed orbit around the 
steady state instead of spiralling into it.

Class 2: amplified negative-feedback loops. In FIG. 3 we 
considered a special case whereby the inhibitor (the 
protein) is amplified by a positive-feedback loop. It 
should be obvious that activator amplification can be 
just as effective. For the case of activator amplification 
(FIG. 5b, left panel), the X-nullcline (curve 1) is ‘kinked’ 
by the positive-feedback loop. For inhibitor amplifi-
cation (FIG. 5b, right panel), the Y-nullcline (curve 2) 
is ‘kinked’. In either case, trajectories are now forced 
to wheel around the steady state onto a closed orbit 
(curve 3, a sustained oscillation).

where do the ‘kinks’ come from? A two-component 
positive-feedback loop (w  X  w or w  X  w)  
can respond in a bistable manner to inhibition by Y. (In 
this case (FIG. 5b, left) we think of Y as signal strength 
and X as the response variable.) If Y is large then X will 
be small, and if Y is small then X might be large. But for 
intermediate values of Y, the steady-state concentration 
of X can be either large or small, depending on how 
the system got to the intermediate value of Y. This bist-
ability is reflected in the Z-shaped nullcline (curve 1)  
on the left of FIG. 5b. For the case of inhibitor amplifi-
cation (FIG. 5b, right), we think of X as signal strength 
and Y as the response variable. In this case, Y can be a 
multivalued function of X, and the Y-nullcline (curve 2) 
becomes N-shaped. In either case, the negative feedback 
between X and Y forces trajectories to rotate clockwise 
on our standard XY plane, and the positive-feedback 
loop puts kinks in one of the nullclines to prevent  
trajectories from spiralling into the steady state.

This class of oscillators appears commonly in the 
literature, from the earliest models of chemical oscil-
lations44–46 to recent models of mitosis-promoting fac-
tor (MPF) in frog egg extracts47,48. The latter case is an 
activator-amplified negative-feedback loop, in which 
w is cdc25, X is MPF and Y is cdc20. An inhibitor-
amplified negative-feedback loop (in which X is cdc10, 
Y is cig2 and Z is Rum1) has been used by Novak and 
Tyson49 to model endoreplication (periodic DNA syn-
thesis in the absence of cell division) in mutant fission 
yeast cells. Recently, a synthetic oscillator based on an 
activator-amplified negative-feedback loop was built  
in bacteria by Jeff Hasty’s group50.

Class 3: incoherently amplified negative-feedback loops. 
By rewiring an activator-amplified negative-feedback 
loop (D), we create new regulatory motifs (c and E) 
that may also have the potential to oscillate:

W X YW X Y W X Y

(C) (D) (E)

Motifs c and E both have a two-component positive-
feedback loop (−−, in both c and E) that is embedded 
in a three-component negative-feedback loop (++− in 
c and −−− in E). Motif c also has the characteristic 
that X inhibits w directly and activates w indirectly 
(through Y). This characteristic is called an incoherent 
feedforward loop (c′). Motif E can also be redrawn as 
an incoherent feedforward loop (E′).

X

W
Y

X

W
Y

(C′) (E′)

Hence, we describe these motifs as incoherently 
amplified negative-feedback loops. In both motifs  
c′ and E′, the embedded positive-feedback loop is ‘−−’. 
There are two other incoherently amplified negative-
feedback loops based on an embedded (++) feedback 
loop. The four cases are shown in FIG. 5c. In each case, 
the negative-feedback loop can oscillate in its own right, 
but the additional positive-feedback loop adds bistability 
and robustness to the mechanism51.

The earliest models of glycolytic oscillations52–54 
belong to this class of oscillators (FIG. 5c, fourth motif). 
In this motif, Z → X refers to the biochemical reaction 
that converts fructose-6-phosphate + ATP (Z) into 
fructose-1,6-bisphosphate + ADP (X). The enzyme 
that catalyses this reaction, phospho-fructokinase (spe-
cies Y in the motif), is activated by ADP (X  Y), 
and the active form of Y promotes both the removal  
of Z (Y   Z) and the production of X (Y  X). The 
Martiel–Goldbeter55 model of cAMP oscillations in 
slime mould cells is another example of the fourth motif 
in FIG. 5c. In this case, intracellular cAMP is the activa-
tor (X) and extracellular cAMP is the incoherent signaller 
(Y). Extracellular cAMP binds to a membrane receptor 
that quickly activates the enzyme that synthesizes cAMP 
from ATP inside the cell. This is the fast activating  
signal from Y to X. Furthermore, extra cellular cAMP 
pushes the membrane receptor (Z) into an inactive 
state, which only slowly recovers activity after cAMP is 
destroyed by extracellular phosphodiesterase. This is the 
slow inhibitory signal from Y to X. Tyson and Novak56,57 
use incoherently amplified (––) negative-feedback loops 
(the first and second motif in FIG. 5c) to model cell-cycle 
transitions (M–G1 and G1–S, respectively). To model 
oscillations in p53 (a transcription factor that coordin-
ates intracellular responses to DNA damage), ciliberto 
et al.58 used an incoherently amplified  (−−) negative-
feedback loop and Zhang et al.59 suggested an alternative 
mechanism based on an incoherently amplified (++) 
negative-feedback loop.

Other possibilities? There are three other regulatory 
motifs with three components, four links and a topology 
similar to motifs c′ and E′:

X

Y
Z

X

Y
Z–––

X

Y
Z+ + +

(F) (G) (H)

R E V I E W S

988 | DEcEMBER 2008 | vOlUME 9  www.nature.com/reviews/molcellbio

© 2008 Macmillan Publishers Limited.  All rights reserved. 

 

http://ca.expasy.org/uniprot/P30308
http://ca.expasy.org/uniprot/Q8AVG7
http://ca.expasy.org/uniprot/P01129
http://ca.expasy.org/uniprot/P36630
http://ca.expasy.org/uniprot/P40380


Nature Reviews | Molecular Cell Biology

0

1

2

3

4

5

6

0
2

4
6

8
10

12

4
5

6789
10

Z

XX

X

W

Y1

Y1

Y1

Y2

Y2

50250
0

5

10 X

Time

a

b

c

Chemical chaos
refers to oscillatory chemical 
systems with aperiodic 
unpredictable behaviour. 
Chaos requires at least three 
interacting components.

In these motifs, we use circles to indicate interactions 
of either sign (+ or  –); two white circles must have the 
same sign, whereas black and white circles have opposite 
signs. 

Motif F is a ‘coherently repressed’ negative-feedback 
loop that consists of two negative-feedback loops, one 
with three components and the other with two com-
ponents. If the link X  Y is weak enough, the three-
component negative-feedback loop might oscillate on its 
own. Addition of the two-component negative-feedback 
loop dampens the propensity of the three-component 
negative-feedback loop to oscillate.

Motif G is a different sort of incoherently amplified 
negative-feedback loop; it differs from the class 3 motifs 
in FIG. 5c in that the positive loop has three compo-
nents (rather than two) and the negative loop has two 
components (rather than three). Everything we have 
said so far might lead us to expect oscillations in this 
motif under the right choice of nonlinearities and rate 
constants. However, it is possible to show that motif G 
cannot generate oscillations for any choice of nonlinear 
rate equations or any parameter settings (Supplementary 
information S3 (box)).

Motif H has two positive-feedback loops, one with 
two components and one with three. we might expect 
this regulatory motif to exhibit bistability but not oscil-
lations, and indeed this is the case (Supplementary 
information S4 (box)).

More complex topologies and oscillatory behaviours. 
we have exhausted all possible oscillatory motifs with 
three components and at most four links. Topologies  
with three components and five or six links are so densely 
connected that it is difficult to think of them as regulatory 
‘motifs’. For example, motif I combines a class 2 inhibitor-
amplified negative-feedback loop with a class 1 three-
component negative-feedback loop. Either submotif can 
oscillate by its own right. Motif I has recently been used 
by Rust et al.60 to model circadian oscillations in the phos-
phorylation state of the Kaic protein in cyanobacteria. 
In this case, X is Kaic phosphorylated only on the Thr 
residue or on both the Thr and the Ser residues, Y is Kaic 
phosphorylated only on the Ser residue and Z is KaiA. 

X Y Z +W X
Y

Z
–

(I) (J)
Allowing for four components and five or six links 

opens new possibilities that we have not explored system-
atically. Some oscillatory motifs are simple generaliza-
tions of topologies that we have seen before. For example, 
motif J is an activator-amplified negative-feedback loop 
(class 2); the only difference from the motifs in FIG. 5b 
is that the negative-feedback loop has been extended to 
three components. This motif can oscillate61.

By combining two or more oscillatory motifs in a com-
mon mechanism it is possible to create exotic behaviour, 
including chaos, as illustrated in FIG. 6. FIG. 6a, adapted 
from Rössler’s classic paper62 on chemical chaos, presents 
two overlapping ‘activator amplification’ oscillators 
(w–X–Y1 and w–X–Y2) that share a common activator.  

As FIG. 6b shows, the time course of X fluctuates up and 
down but never repeats itself. viewing a trajectory in 
(X–Y1–Y2) space (FIG. 6c), we see that the curve never 
closes on itself (it is not periodic) and seems to sweep 
out a surface of complex topology.

It is beyond the scope of this review to go further into 
the subtleties of deterministic chaos, except to point out 
that the requirements for chaos seem to be undemanding. 
chaotic trajectories readily arise in systems of coupled 
oscillators. Since multiple, coupled oscillators are likely 
to be common companions in the complex reaction 
networks underlying cell physiology, it is surprising that 
deterministic chaos has not been identified more often 
in experimental data5. Perhaps the chaotic trajectories of 
individual cells are averaged out when large pop ulations 
of cells are monitored. when the behaviour of single cells 

Figure 6 | chaotic oscillators. a | Activator amplification 
with two negative-feedback loops in parallel. W   X 
means ‘protein W may either activate or inhibit protein X’. 
b | Chaotic trajectory for the mechanism in panel a.  
Supplementary information S1 (box) for details.  
c | Projection of the chaotic trajectory into the 
three-dimensional state space (X, Y

1
, Y

2
). The chaotic 

trajectory was recomputed from the equations and 
parameter values in rEF. 62. 
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is monitored with fluorescent proteins, the possibility of 
deterministic chaos is likely to be swamped by the white 
noise of molecular fluctuations in small volumes (a single 
cell). Nonetheless, experimentalists and theoreticians 
should be open to the possibility of deterministic chaos 
in their data and in their models of complex reaction 
networks with multiple sources of oscillation.

Summing up
By modelling specific examples of oscillatory processes, 
we have drawn a number of general conclusions about 
the design principles of biochemical oscillators. All bio-
chemical oscillators are built around some sort of negative- 
feedback loop (X  Y  …  X), which ensures 
that if the concentration of X gets too large it will even-
tually decrease, and if it gets too small it will eventually 
increase63. Negative feedback is often used in biochemistry  
to achieve homeostasis (a stable steady state of inter-
mediate X), but under certain conditions the steady state 
can lose stability and be replaced by spontaneous oscil-
lations of X (high  low  high  low  …). The 
conditions for oscillation are: sufficient nonlinearity in 
the reaction kinetics, sufficient ‘memory’ in the negative-
feedback loop, and proper balancing of the timescales of 
components in the loop. In biochemical reaction kinetics 
there are many sources of nonlinearity that are conducive 
to oscillations (FIG. 4). ‘Memory’ might be a simple conse-
quence of a long negative-feedback loop, but more likely 
it stems from positive-feedback loops in the biochemical 
reaction mechanism. when positive feedback creates two 
alternative stable steady states in the reaction dynamics, 
the system can ‘remember’ its recent history and thereby 
overshoot and undershoot the homeostatic tendencies of 
the negative-feedback loop.

with these ideas in mind we classify biochemical 
oscillators according to the topology of the positive- and 
negative-feedback loops in the reaction mechanism. For 
systems with three components and three or four links 
(but no self-activation links), we identify three classes 
of oscillators: delayed negative-feedback loops, ampli-
fied negative-feedback loops and incoherently amplified 
negative-feedback loops. Our classification scheme is 
by no means complete, and oscillator motifs may be 
more complicated than any of our classes. Also, we have 

neglected mixed-mode effects (for example, Y activates 
the synthesis of X at low concentration and inactivates it 
at high concentration). Mixed-mode interactions might 
easily generate complex oscillations and chaos21.

If a reaction mechanism contains one of the regu-
latory motifs we have identified, then it can exhibit 
oscillatory behaviour, provided the rate constants are 
properly tuned. Because interaction motifs and reaction 
rate constants are under genetic control, it is possible 
for biochemical oscillators to evolve. Indeed, it is likely 
that biochemical oscillations have arisen repeatedly from 
basic, homeostatic, negative-feedback loops by serendip-
itous genetic changes that destabilized the steady state 
and generated sustained oscillations. Maladaptive oscill-
ations would have been quickly weeded out by selection, 
but weakly deleterious or adventitious oscillations might 
have been co-opted by evolving populations for benefi-
cial physiological purposes. Almost surely, mechanisms 
of circadian rhythms evolved many times independently 
in this way. On the other hand, bistability and oscilla-
tions that govern cell-cycle events are much more highly 
constrained, and the underlying mechanism (which 
seems to be universal across all eukaryotic cells) must 
have been derived from a single common ancestor.

Another consequence of the fact that a given inter-
action motif may or may not oscillate, depending on 
subtle balancing of reaction rates, is the possibility of 
a class of ‘dynamical diseases’ as distinct from ‘genetic 
diseases’. In a genetic disease, such as sickle cell anaemia, 
a mutant gene encodes a defective protein that cannot 
do its essential job in some important aspect of physio-
logy. In a dynamical disease, a mutant gene encodes a 
modified protein that still does its job but at a different 
rate, thereby causing a homeostatic control mechanism 
to break out into pathological oscillations or causing an 
oscillatory control system to spiral into a stable steady 
state69. Some cyclic blood disorders might be dynamical 
diseases of the first kind, and some sleep disorders might 
be dynamical diseases of the second kind.

we hope that this review will help biochemists and 
molecular biologists to understand better the mecha-
nisms that underlie cellular oscillations and to recognize 
the importance of quantitative modelling in studying 
these oscillations.
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Supplementary information S1 (box): Computer programmes 
 
 
Purpose:  to provide ‘ode’ files for simulating all models in the text, using WinPP 
or XPP-Aut. These programs are freely available at:  
http://www.math.pitt.edu/~bard/bardware/ 
http://www.math.pitt.edu/~bard/xpp/xpp.html 
 
 
Figure 1c,d 
 
# protein inhibits its own synthesis with explicit time delay 
# protein is degraded by a protease according to Michaelis-Menten kinetics 
 
dy/dt = k1*S*Kd^p/(Kd^p + delay(y,tau)^p) - k2*ET*y/(Km + y) 
 
aux dly = delay(y,tau) 
aux Fy=k1*S*Kd^p/(Kd^p + delay(y,tau)^p) 
 
p k1=1, S=1, Kd=1, p=2, tau=10 
p k2=1, ET=1, Km=1 
  
@ XP=t, YP=y, TOTAL=100, METH=stiff, XLO=0, XHI=100, YLO=0, YHI=3.5, 
delay=20 
done 
 
 
Figure 2b 
 
# model for a simple negative feedback loop 
# protein (y) inhibits the synthesis of its mRNA (x) 
 
dx/dt = k1*S*Kd^p/(Kd^p + y^p) - kdx*x 
dy/dt = ksy*x - k2*ET*y/(Km + y) 
 
p k1=0.1, S=1, Kd=1, kdx=0.1, p=2 
p ksy=1, k2=1, ET=1, Km=1 
 
@ XP=y, YP=x, TOTAL=100, METH=stiff, XLO=0, XHI=4, YLO=0, YHI=1.05 
done 
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Figure 2d–f 
 
# Negative feedback loop with nuclear transport 
# mRNA is synthesized in the nucleus (xn) and transported into the cytoplasm (xc) 
# where it gets translated into protein (yc) which is tranlocated into the nucleus (yn) 
#  
# eps = Vnuc/Vcyt  
# half-life of mRNA in nucleus = 0.693/kdxn 
# half-life of prot in cytoplasm = 0.693/kdyc 
 
dxn/dt = kdxn*(sig/(1 + yn^p) - xn) - kexport*xn 
dxc/dt = eps*kexport*xn - kdxc*xc 
dyc/dt = kdyc*(xc - yc)  - eps*kimport*yc 
dyn/dt = kimport*yc - kdyn*yn/(Km + yn) 
 
p Sig=1000, p=2, kdxn=10, kexport=0.2,kdxc=0.2, eps=1 
p kdyn=8, kdyc=0.1, Km=0.1, kimport=0.1 
 
@ XP=t, YP=xn, TOTAL=100, METH=stiff, XLO=0, XHI=100, YLO=0, 
YHI=1000, bounds=10000 
done 
 
 
Figure 3b–f 
 
# protein inhibits its own degradation 
 
dx/dt = k1*S*Kd^p/(Kd^p + y^p) - kdx*x 
dy/dt = ksy*x - kdy*y - k2*ET*y/(Km + y + KI*y^2) 
 
p S=1, k1=0.05, Kd=1, p=4, kdx=0.05 
p ksy=1, kdy=0.05, k2=1, ET=1, Km=0.1, KI=2 
 
@ XP=y, YP=x, TOTAL=250, METH=stiff, XLO=0, XHI=4, YLO=0, YHI=1.05 
done 
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Figure 5a (left) 
 
# Three component negative feedback oscillator (+ + -) 
# X -> Y -> Z -| X 
 
dx/dt = ksx*S/(1 + z^p) - kdx*x 
dy/dt = k1*x - k2*y/(Km + y) 
dz/dt = k3*(y - z) 
 
p ksx=0.1, S=2, kdx=0.1, p=4 
p k1=0.2, k2=0.1, Km=0.01, k3=0.05 
 
@ XP=t, YP=x, TOTAL=250, METH=stiff, XLO=0, XHI=250, YLO=0, YHI=1 
done 
 
 
Figure 5b (left) 
 
# Activator amplification & negative feedback 
 
dx/dt = ksx' + ksx*w - (kdx' + kdx*y)*x 
dy/dt = ksy*x^p/(1 + x^p) - kdy*y 
 
w = x^q/(1 + x^q) 
 
p ksx'=0.02, ksx=1, kdx'=0.2, kdx=1, q=2 
p ksy=0.01, kdy=0.01, p=2 
 
@ XP=y, YP=x, TOTAL=250, METH=stiff, XLO=0, XHI=0.5, YLO=0, YHI=5 
done 
 
Figure 5b (right) 
 
# Inhibitor amplification with negative feedback  
# x promotes y synthesis and y promotes x degradation 
# y degradation is enhanced by z 
# y binds to z to form an inactive complex C 
#  
# Kdiss*C = Yfree*Zfree = (Ytotal-C)*(Ztotal-C) 
 
dx/dt = ksx - (kdx' + kdx*y^p)*x 
dy/dt = ksy' + ksy*x - (kdy' + kdy*z)*Y 
 
 
BB = ZT+Y+Kdiss 
CC = 2*ZT*Y/(BB+sqrt(BB^2-4*ZT*Y)) 
 
z = ZT - CC 
 
p ksx=0.01, kdx'=0.01, kdx=1, p=2 
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p ksy'=0.1, ksy=0.2, kdy'=0.1, kdy=250, Kdiss=0.01 
p ZT=0.05 
 
@ XP=y, YP=x, TOTAL=250, METH=stiff, XLO=0, XHI=0.5, YLO=0, YHI=1 
done 
 
 
 
Figure 6b,c 
 
 
# Rossler (1977) BMB 
# 
# Spiral Chaos 
 
dx/dt = k1 + k2*x - (k3*y+k4*z)*x/(K+x) 
dy/dt = k5*x - k6*y 
dz/dt = k7*x - k8*z/(L+z) 
 
p k1=22, k2=2.2, k3=4.4, k4=4.4, k5=1.2 
p k6=1, k7=14, k8=140, K=0.01, L=0.05 
 
init x=7, y=6, z=0.1 
done 
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Supplementary information S2 (box): Negative feedback with explicit 
time delay 
 
 
Purpose:  to derive the constraint between τ and S for oscillatory solutions to 
equation (2) of the main text. The constraint equation is used to plot the curves in Fig. 
1e and f. 
 
First, we write equation (2) in dimensionless form: 
 

2
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The parameters in this equation are defined by 1 2
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The steady state solution of equation (S2.1) is the unique real positive root, yo, of  
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equation (S2.1), we find that 
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. Using (S2.2) we find a convenient relation 

between φ and ρ: ( )1 1
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, where R is a label for p[…]. 

 
 
Equating the real and imaginary parts of equation (S2.3), we find that 
 

( )2 2 2
ˆ  and  arctan /! " # "$ " !+ = = % .    

 (S2.4) 
 
The conditions (S2.4) imply that 
 
 ( )2 1 2

ˆ1  and  arctan 1R R! " # !$= $ = $ $ .   

 (S2.5) 
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We are now prepared to compute the curves in Fig. 1e and f, by the following 
pseudocode: 
 
Scan over p=1, 2, 3, … 
 Scan over values of κ 
  Scan over values of σ 
   Solve (S2.2) for yo 
   Compute R=p*[1+(σ-1)*yo/(σκ)] 
   If (R>1), then 
    Compute ρ=κ/(κ+yo)^2 
    Compute ω=ρ*sqrt(R*R-1) 
    Compute τ=arctan(-ω/ρ)/ω 
    Compute Period=2*π/ω 
    Save (σ,τ, ω,Period) 
   Else continue 
  Continue 
 For each (p,κ),plot (τ versus σ) 

Continue 
Continue 
End 
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Supplementary information S3 (box): Motif G 
 
 
Purpose:  to prove that the incoherently amplified negative feedback loop in motif 
(G), with a two-component negative feedback loop and a three-component positive 
feedback loop, cannot generate oscillations by a Hopf bifurcation. 
 
For motif (G) proposed in the main text (also below, left), we exhibit the sign pattern 
of the Jacobian matrix (below, right), where the a’s, b’s  and c’s  are all  > 0,               
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The stability of the steady state depends on the eigenvalues, λ, of the Jacobian matrix, 
which are the roots of the characteristic equation: 
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In order for a Hopf bifurcation to occur, this algebraic equation must have a pair of 
pure imaginary roots, i! "= ± . The necessary and sufficient condition for pure 
imaginary roots to equation (S3.1) is 
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 (S3.2) 
 
Clearly, equation (S3.2) cannot be satisfied for any choice of ax, etc. Hence, it is 
impossible for this motif to generate oscillations by a Hopf bifurcation. On the other 
hand, λ = 0 is a possible solution of equation (S3.1), if x y z y x z y z xa b c a b c a b c+ = . 
Hence, this motif can generate multiple steady states by saddle-node bifurcations. So 
we conclude that motif (G) can exhibit bistability but not oscillations.  
 
By a similar argument, we can come to the same conclusion for motif (G’) below 
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Supplementary information S4 (box): Motif H 
 
 
Purpose:  to prove that motif (H) (below, left), for which both the two-component 
and three-component feedback loops are positive, can exhibit bistability but cannot 
generate stable oscillations by a Hopf bifurcation. 
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The sign pattern of the Jacobian matrix for motif (H) is given above (right), where the 
a’s, b’s  and c’s  are all  > 0.The stability of the steady state depends on the 
eigenvalues, λ, of the Jacobian matrix, which are the roots of the characteristic 
equation: 
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 (S4.1) 
  
In order for a Hopf bifurcation to occur, this algebraic equation must have a pair of 
pure imaginary roots, i! "= ± . The necessary and sufficient condition for pure 
imaginary roots to equation (S4.1) is 
 

( )( )

( ) ( ) ( )

( ) ( ) ( )

2 2 2

2 2 2

( ) 2

0 2 ( )

x y z y x z z x y x y z x y y z x z y x

y x x y z x y x y z x y z y x z z x y

x y z z x y z x y z x y x y y x x y

a b c a b c a b c a b c a b b c a c a b

a b a b a b c a b c a b c b a c c a b

a b c c a b c a b a b c a b a b a b

! ! = + + + + !

+ ! = + + + + + +

= + + + + + + ! +

 (S4.2) 

 
If (axby − aybx) > 0, then equation (S4.2) cannot be satisfied for any choice of ax, etc. 
Hence, if motif (H) is to generate limit cycle oscillations by a Hopf bifurcation, then 
(axby − aybx) must be < 0. But, in that case, the characteristic equation (S4.1) must 
have a real positive root, λ1 > 0, as well as a pair of pure imaginary eigenvalues. The 
bifurcating limit cycles must be unstable. We conclude that it is impossible for motif 
(H) to generate stable oscillations by a Hopf bifurcation.  
 
On the other hand, λ = 0 is a possible solution of equation (S4.1), if 
x y z z x y y x za b c a b c a b c= + . Hence, motif (H) can generate multiple steady states by 

saddle-node bifurcations.  
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	Abstract | Cellular rhythms are generated by complex interactions among genes, proteins and metabolites. They are used to control every aspect of cell physiology, from signalling, motility and development to growth, division and death. We consider specific examples of oscillatory processes and discuss four general requirements for biochemical oscillations: negative feedback, time delay, sufficient ‘nonlinearity’ of the reaction kinetics and proper balancing of the timescales of opposing chemical reactions. Positive feedback is one mechanism to delay the negative-feedback signal. Biological oscillators can be classified according to the topology of the positive- and negative-feedback loops in the underlying regulatory mechanism.
	Table 1 | Survey of biochemical oscillators
	Negative feedback with time delay
	Figure 1 | Time-delayed negative-feedback oscillator. a | The protein level is determined by opposing processes of synthesis and degradation. Protein synthesis is downregulated by the protein itself. b | Curves 1 and 2 represent the rates of protein synthesis and degradation, respectively. The arrows indicate the direction of change of protein concentration, which is always towards Y0, the steady state concentration of protein, where the rate of synthesis equals the rate of degradation. c | Sustained oscillations for equation 2, with p = 2, Km/Kd = 1, S/Kd = 1, k1 = k2ET/Kd = 1 min–1 and τ = 10 min. The period of oscillation, Tc, is 27.2 min. d | In curve 3 we plot the time-delayed rate of protein synthesis, 1/(1+Y(t–τ)p), as a function of the present protein concentration, Y(t). The dashed portion of curve 3 corresponds to the dashed portion of the oscillation in panel c; it is τ time units in duration, and it extends from the maximum value of Y (at t = 20 min) to the minimum value of the rate of production of Y (at t = 30 min). The time-delayed loop repeatedly overshoots and undershoots the steady state because the protein synthesis rate is no longer given by curve 1 at Y(t), but instead is given by curve 1 at Y(t–τ). e | Constraint curves for p = 1. Each curve is drawn for a specific value of Kd/Km. For each case, equation 2 exhibits sustained oscillations in the region above the curve. f | Constraint curves for p = 2. Notice that the oscillatory domain becomes larger as p increases and as Kd/Km increases; that is, as the kinetic rate laws become more nonlinear. ET , the total concentration of enzyme; k1, the rate of synthesis of protein Y; k2, the enzyme’s turnover rate; Kd, the dissociation constant; Km, the Michaelis constant; p, an integer indicating whether Y binds to the DNA sequence as a monomer, dimer, trimer, or so on; S, the signal strength; t, the time variable; τ, the duration of time delay.
	Figure 2 | Multi-component negative-feedback oscillator. a | Negative feedback between mRNA and protein, as described by kinetic equations 5. b | Representative solutions (dashed curves) of equations 5, for parameter values: p = 2, Km/Kd = 1, S/Kd = 1, k1 = kdx = 0.1 min–1, ksy = k2ET/Kd = 1 min–1. Notice that every trajectory spirals into the stable steady state located at the grey circle. Curves 1 and 2 are ‘nullclines’ for differential equations 5, as explained in the main text. The small arrows indicate the direction of motion of trajectories as they cross the nullclines. Notice that the nullclines in this figure are identical to the rate curves in FIG. 1b. c | The negative-feedback loop, taking into account transport of macromolecules between the nucleus and the cytoplasm. d | Sustained oscillations for the four-component loop in panel c. See Supplementary information S1 (box) for details. e | Nonlinearity constraint. For the negative-feedback loop to oscillate, p and Kd /Km must be sufficiently large. f | Timescale balancing constraint. The half-lives (T0.5) of mRNA in the nucleus and of protein in the cytoplasm must lie in the shaded band for the negative-feedback loop to oscillate. ET, the total concentration of enzyme; k1, the rate of synthesis of protein Y; k2, the enzyme’s turnover rate; Kd, the dissociation constant; kdx, the turnover rate of mRNA; Km, the Michaelis constant; ksy, the rate for the synthesis of protein; p, an integer indicating whether Y binds to the DNA sequence as a monomer, dimer, trimer, or so on; S, the signal strength.
	Figure 3 | Hysteresis-driven negative-feedback oscillator. a | RNA and protein in a negative-feedback loop, as in FIG. 2. This mechanism is described by kinetic equations 8. b | Limit cycle solution (curve 3) of equations 8 for parameter values: p = 4, Km/Kd = 0.1, Kd.KI = 2, S = 1, k1 = kdx = kdy = 0.05 min–1, ksy = k2ET/Kd = 1 min–1. Curves 1 and 2 as in FIG. 2b, except that curve 2 is given by X = kdy + Y/(Km + Y + KIY2). c | Sustained oscillations of mRNA and protein, corresponding to curve 3 in panel b. d | Signal–response curve. Solid lines represent stable steady states; dashed lines represent unstable steady states; grey circles represent maximum and minimum excursions of Y(t) during a limit cycle oscillation. The oscillation in panel c is indicated by the double-headed arrow at S = 1. Notice that oscillations are possible only for a restricted range of S. e | Nonlinearity constraint. For this mechanism to oscillate, the positive-feedback loop must be strong enough (KI must be sufficiently large) and the negative-feedback loop must be sufficiently nonlinear (p must be sufficiently large). f | Timescale balancing constraint. The turnover rate of mRNA (kdx) cannot be too large, and S must be within specific bounds for this system to oscillate. ET, the total concentration of enzyme; k1, the rate of synthesis of protein Y; k2, the enzyme’s turnover rate; Kd, the dissociation constant; kdx, the turnover rate of mRNA; kdy, the rate constant for an alternative pathway of protein degradation; KI, a constant characterizing the strength of inhibition of enzyme E by its substrate; Km, the Michaelis constant; ksy, the rate for the synthesis of protein; p, an integer indicating whether Y binds to the DNA sequence as a monomer, dimer, trimer, or so on; S, the signal strength; t, the time variable; X and Y, the concentrations of mRNA and protein, respectively.
	Biochemical interaction networks
	Figure 4 | Sources of nonlinearity. a | Oligomer binding. Left: a transcription factor (blue ball) forms an n‑component homo-oligomer, which then binds upstream of a structural gene and either activates or represses mRNA synthesis. Right: the rate of mRNA synthesis as a function of transcription factor (TF) concentration, for an activator (solid line) or a repressor (dashed line). b | Cooperativity and allostery. Left: an enzyme, consisting of two catalytic subunits (spheres) and two regulatory subunits (cubes), catalyses the conversion of substrate (S) into product (P). Activators (A) and inhibitors (I) bind to specific sites on the regulatory subunits. Right: if the binding of substrate to the catalytic subunits is cooperative, then the rate of reaction as a function of substrate concentration is sigmoidal (solid line). The rate curve can be shifted to the left or to the right by increasing the concentration of the activator or inhibitor, respectively. c | Multisite phosphorylation. Left: a regulatory protein, X, is phosphorylated on multiple sites by a protein kinase and is dephosphorylated by a protein phosphatase. Right: the concentration of the unphosphorylated form of X as a function of the ratio of activities of kinase and phosphatase. d | Stoichiometric inhibition. Left: a regulatory protein, X, is synthesized in response to a signal, S. X binds strongly to an inhibitor to form an inactive complex. Right: the concentration of total X increases hyperbolically with S (dashed line), but the concentration of ‘free’ X is a sigmoidal function of S (solid line).
	Classification of oscillatory motifs
	Figure 5 | A classification scheme for biochemical oscillators. We classify oscillators by their interaction motifs, where X ￼ Y means ‘protein X activates protein Y’, Y ￼ X means ‘Y inhibits X’, and W ￼  X means ‘protein W may either activate or inhibit X’. If two white circles appear in the same regulatory motif, they must have the same sign (either ++ or −−). We assume that all interactions are positive or negative (not mixed mode) and that all self-interactions are negative. a | Class 1: delayed negative-feedback loops. Below each feedback loop, we present a state-space diagram in the style of FIG. 1d. We plot ‘activator’ X versus ‘inhibitor’ Y (left) or Z (right). Curve 3 is a projection of the limit cycle oscillation onto the XY plane. b | Class 2: amplified negative-feedback loops. Either the activator X can be amplified by positive feedback with W (left), or the inhibitor Y can be amplified by positive feedback with Z (right). For each motif, we plot the limit cycle oscillation (curve 3) on the XY plane. c | Class 3: incoherently amplified negative-feedback loops. Each motif consists of a three-component negative-feedback loop (oscillatory) and a two-component positive-feedback loop (amplifying). Each motif also contains an incoherent feed-forward loop that can originate from either X or Y. To the left and right of each motif we indicate how the state-space diagram will appear, depending on which variable is plotted on the abscissa and which is plotted on the ordinate.
	Figure 6 | Chaotic oscillators. a | Activator amplification with two negative-feedback loops in parallel. W ￼  X means ‘protein W may either activate or inhibit protein X’. b | Chaotic trajectory for the mechanism in panel a. See Supplementary information S1 (box) for details. c | Projection of the chaotic trajectory into the three-dimensional state space (X, Y1, Y2). The chaotic trajectory was recomputed from the equations and parameter values in ref. 62. 
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