Introducing modelling into the Solar
Cooking Box experiment

Introducing computer modelling into project based
learning; does modelling support and improve
the understanding of the experiment?

Introduction

For several years, project based learning (PBL) has been a
key element of the VU lab course education. In the form
of experiments, students are encouraged to explore and
understand the physical principles that underlay several
processes. At the same time, students are taught to obtain
a scientific attitude towards handling those principles to
obtain results from their setups. PBL has been described
as a very powerful tool to get students to become internally
motivated to acquire knowledge [1]. L. Bot claims that
students of the current generation (2005 and after) have
?less patience and intellectual effort” due to the virtual
influences that have been around them from a young age [2].
Bot suggests ”a dose of reality” may be a suitable remedy to
get the students to become motivated to absorb the required
knowledge. Hence, PBL has become an important concept
in educational literature of the last decade.

The PBL method relies strongly on the students internal
motivation and is therefore dependent on the problem that
has to be solved; it has to be both interesting and manage-
able within the set time frame. Students must take charge
of the project on their own and are made responsible for
planning and delivering. When working with PBL, careful
monitoring of the students’ progress is necessary to avoid
students from getting stuck and experience an excessive
workload [3].

The subject of this work is to introduce a new element into
the existing Solar cooking box (SCB) experiment that is a
part of the obligatory experimental lab course of the first
year physics curriculum at the VU. The new element will
be the development of a computer model to simulate the
circumstances of the box. It is intended as an addition to the
regular experiment and is supposed to support the students
in their understanding of the SCB. The benefits of simu-
lating problems using computer code have been described
for a variety of scientific fields [3], [7], [8]. In these works it
is stated that the use of computer code creates a necessity
for abstract thinking and understanding the fundamental
concepts of the problem that is simulated. Besides these
beneficial effects, it is also expected that the students mo-
tivation will be enhanced by using computational methods
[3]- developing a model vs using a model

By letting the students gather knowledge and apply it at the
same time, there is an explicit interaction between knowing
and doing, modelling and experimenting. The modelling can
help the experimenting because it can predict how certain
experimental features will behave. The experiment can help
in making the model more realistic and as a check whether
the important features are modelled correctly.

Project Goal

The goal of this work is to investigate how the computer
model can best be fitted into the project and to evaluate its
educational value. The main question is; does the simulation
add to the knowledge and understanding of the students?
A secondary goal is to form a set of recommendations and
assignments to improve the project for next year. The setup
of this research is mostly observatory. No hypothesis was
formed before the beginning the project. Instead, a strategy
was thought out on how to best guide the students towards
an understood and completed model. This case study is
therefore a description of the way the students handled the
instructions and materials that were handed to them, and
how this fits into certain educational views.

A choice has been made to let the students begin from
the basics, to maximise the understanding of the theory.
The experiment is performed in two groups of three/four
students from both the UvA and the VU. Of each of the
two groups, one student was asked to take charge of the
modelling. After a short theoretical introduction, the groups
were instructed how the SCB works and were then left to
think of a research question. Afterwards, some modelling
deadlines were set. The results and progress were monitored
and at the end of the project, an evaluation was held.

Report outline

This work consists of a general introduction on some educa-
tional views on modelling and simulating. In the following
section, some important educational views and concepts are
treated, which will be used to put the observations and find-
ings of the students progress in perspective. The outcome
of the observation and a concluding questionnaire is stated
in the Students comments and experiences section. From
analysing these remarks, a few conclusions and recommenda-
tions are made. A very important returning question is: is it
possible to incorporate modelling into the SCB experiment
without compromising too much on basic concepts of either
one of the elements?

Educational views on modelling

There are numerous works on teaching through computa-
tional methods. Most of these works give ground rules or
basic requirements on how to best proceed when implement-
ing a computational physics course. The module that was
added to the SCB experiment is not a complete course.
Therefore, the views that are expressed in these works only
provide a framework in which we can place the observations,
but do not apply as stringent rules.



Modelling Competencies

In the work of O. van Buuren [5], five modelling competen-
cies are distinguished. These competencies are seen by van
Buuren as basic requirements for success of the modelling
learning path. In our course, these are not only require-
ments, but also educational goals. The competencies regard
the use and understanding of:

- Computer environment

- Graphs as means for interpreting outcomes

- Variables and formulas for analysing the context and
reducing it to a manageable problem

- Relation elements of model to variables

- Evaluation processes regarding models, output and
experiments

The chosen programming environment for the modelling of
the solar cooking box model is Mathematica. It was chosen
because the students were assumed to have experience with
the program; a mandatory course in Mathematica is a part
of the first year curriculum at the VU. At the UvA this
is not the case, though pairing of VU and UvA students
was a foreseen solution to this problem. The supervisor had
taken several courses about programming in Mathematica
and could therefore sufficiently tutor the students on this
aspect of the modelling.

Mathematica is quite
powerful in solving
equations in an ana-
lytic way, which al-
lows for the specific
task of showing the
students that it is pos-
sible to let a computer
solve their differen-
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Figure 1: Example of a SCB simula-
tion with manipulate option, as shown
in Mathematica.

ectly switching to nu-
merical solutions, the
interpretation of the
outcome is still available. The environment also allows for
quick visualisations of data and formulas. Combined with
the Manipulate option, it provides an ideal base for under-
standing the influence of the various parameters. This plays
into the concept of ‘direct gratification’, which is also posted
as an important concept in the work of C. Mias [3], in which
the author suggests visual and interactive courses provide
a greater sense of accomplishment than abstract theories.
"Modern’ students should therefore be more motivated to
work on the problem.

Graphs as means of interpreting outputs naturally follow
from the project and program. The output of the experiment
and the output of the model are both in graph format,
which allows for the second competency to be satisfied.
This competency is very important, since it ties directly
into the main benefit of modelling: getting a better grip
on the problem by understanding the abstract basics. This
abstractness is very prominent in graphs, since they are by
nature an abstract representation of a complicated system.
The third competency, ’Variables and formulas for analysing
the context and reducing it to a manageable problem’ is
strongly connected with using graphs, since Mathematica
allows for easy manipulation of single variables and analysing
the outcome.

To satisfy the fourth competencty, the derivation of a simple
version of the SCB model is provided and explained. Ex-
panding and understanding the model will be the students’
responsibility, however help is offered when the modelling
fails due to lack of mathematica skills. It is stressed con-
tinuously that the model is an approximation and that the
students have to think on how to improve upon it.
Something that is also stressed from the outset of the project
is to look at the model and the experimental situation and
compare the output values. Students are also encouraged to
look up literature on the different variables and constants
that come into play, to get a feel for their magnitude and
influence. Understanding the inherent limitations of models
and the experiment is a specific learning goal in this experi-
ment. The last competency, 'Evaluation processes regarding
models, output and experiments’ is therefore not a basic
skill students already posses, nor can it be taught within
the first week.

The modelling cycle, displayed in figure 2, shows an overview
of the path students are expected to take whilst program-
ming simulations. The indicated process provides what
could almost be seen as ’ground rules’ for modelling [5],
[6]. The cycle assumes a start from a ‘real world situation’,
which has to be simplified and mathematised. The following
feedback-loop provides a realistic model that can be used
to approximate and predict the real world situation. This
cycle also shows the necessity for abstract thinking and
using formulas, as can be seen in the descriptions of steps 1
through 4.

From van Buuren et al. [5] we can also derive guidelines for
the modelling learning sequences.

- For situations that have to be modelled, but which
are new to students, experiments must precede the
modelling. This order of events is necessary, otherwise
students can not become acquainted with the events
and phenomena that have to be modelled.

- Data from measurements is used for evaluation of the
model.

- The basic mathematical concepts and physics concepts
have to be introduced before the experimenting and
modelling begins.

These guidelines are not all met in the modelling part of
the SCB experiment. The experimenting and modelling
are processes that both start on day 1 and are carried out
simultaneously. Though this may seem illogical from the
standpoint of the guidelines, there are several reasons this
can not be changed; the students have a limited amount of
time in which they have to finish both the experiment and
the model. By synchronous work on the experiment and
the model (which is mostly comprised of understanding the
theory), the students understanding of the SCB is expected
to increase faster. The original though of the modelling was
that it would enhance the students creativity in the experi-
ment, as it would increase their understanding and curiosity.
It can be argued that, purely for the development of the
model, this approach is not optimal. It should therefore
be remembered that the construction of the model is not
the main focus of the practicum, but rather a supportive
element in the SCB experiment.

The second guideline, ’data from meas
evaluation of the model’, is used in t
model and is therefore clearly met/ As the model is built
and expanded, data is produced by the experiment and
the students were instructed fo contemplate on how to
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best expand the model, after comparing it to the output
of the experiment. What factors are missing? Is there
something else going on? How would could this best me
described mathematically? These are typical questions that
go back to the very core of what physics is; a mathematical
description of observable phenomena.

The third guideline, introducing theory before working with
the experiment, is not completely met due to time con-
straints and the general setup of the practicum. Having
said this, in the presentation at the start of the course, the
students are introduced to the basic principles and con-
cepts. These are left to be further explored by the students
themselves afterwards.

Students are not only expected to complete the experiment
and the model, but are also judged on how they handle
the gap between the knowledge they have at the beginning
of the course and the knowledge they require to bring the
experiment to a successful end. They are made responsible
for bridging this gap as well. This is a key part in the PBL
approach that is implemented in the course.

Difference between secondary school and undergraduate?

Modelling versus Simulating

There are various ways of teaching physics through computer
techniques. The goal of this project was to implement the
construction a virtual model that would help the students
in their understanding of the underlying physics. However,
modelling and simulating a system are two distinct and
different things.

In a simulation that represents a physical situation or object,
a student may tweak variables and change parameters, but
he or she can not change the essence of the simulation;
the mathematical elements that form its basis. A student’s
interaction with the simulation has an exploratory character.
[9] This means that simulations can be used to analyse the
relations between different variables and relations that are
built into the model: they have a very qualitative character.
In modelling, the underlying basic mathematics and prin-
ciples have to be understood as well, since it is the students
own responsibility to get them operational. A student will
have full control over a model and can improve and redesign
it until the results are satisfactory. The downside to model-
ling is that it usually requires more time than simulating.
Students can also lose themselves in modelling, because a
model can be accurate enough, but never complete. Careful
time management is therefore required, as stated by C. Mias
[3].

Project development and observa-
tions

Before the project started, a model of the SCB was was built
in Mathematica, to see which steps the students would have
to take and what kind of end result could be expected. This
model can be found in Appendix 2, figure 1 is an example
output of that program. The program uses coupled differen-
tial equations to describe the energy exchange between the
various layers of the box and plots the temperatures as a
function of time. Almost all the input parameters are manip-
ulable, creating a highly flexible simulation. The differential
equations are comprised of source- and leak-terms. These
represent in- and outgoing heat, and are the most important
element of the abstract understanding the students have to
acquire.

Opening presentation and first assignment

After an instruction on the use of the experimental setup,
the students were presented with the basic principles of the
SCB; its use and purpose, the different forms of energy/heat
exchange, the simple conduction approach and the deriva-
tion and solution of the simplified differential equation (the
presentation can be found in Appendix 1). Armed with
these basic principles, they were left to brainstorm about a
suitable research question.

The presentation provided the students with the gist of
the theoretical model; source terms and loss terms, these
were explicitly pointed out. The terms are explained in
Appendix 3, as well as in the presentation. The modelers
were then instructed to make a simple Mathematica graph
of the provided solution of the differential equation. This
was done to offer some direction, so the students would not
be stuck at the beginning of the course.

The students were given handouts that further explained
the theory and were then instructed to perform a few simple
assignments.

Students comments and experiences

The students were asked specific questions about the mod-
elling and how they felt it fitted into the experiment and
were also asked for general feedback. There were two groups,
both with one modeller.

The students did not agree among each other when asked
about the added value of the simulation. The students who
had been working on the models were mostly positive, they
found that the model had contributed to their understanding
of the problem and the limitations of modelling in general.
The workload was found to be high.

The students that had not been working on the model
were less positive about the simulations contribution to the
experiment. The models power to predict certain behaviour
remained absent due to the fact that these were not finished
in the first week. The ”experimentalists” found that the
modelling task took away manpower from the experiment,
seemingly without a useful end result. The students that
had been working on the model had different thoughts
about this: they indicated that their mathematical insight
of the problem was better than that of their fellow students.
Specifically, working with the source- and leak terms in the
model had helped them understand the processes that occur
inside the box. One student also mentioned that by working
on the model, he was compelled to find literature about the
theory.

Both groups agreed on the fact that the modelling helped
them in their understanding of the theory, when it came
to writing a report and making a poster. The students
were also satisfied with the amount of supervision on the
modelling and experiment. The handout was considered
to be helpful. The modelling students indicated a possible
improvement of the modelling: adding some simple math-
ematica assignments to the course. The modelling students
felt that starting from scratch with the model is the best
for understanding the model completely. They advised not
to change this.

One of the groups (group 2) experienced communication
difficulties. Though undoubtedly caused mainly by the
personal difficulties between the group members, it may
also partly have been caused by the setup of the experiment.
The students were frustrated by the fact that the promised
advantages of the simulation did not present themselves
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Figure 2: The modelling cycle [5], originally from Galbraith and Stillman [6].

in time. On the other hand, the modelling student was
frustrated by the lack of understanding and support that
was received from the other group members. They did not
seem to be willing to make time to think about the difference
between the models outcome and the experimental outcome,
they merely discarded the model as being too inaccurate and
incomplete. The modelling students also had difficulty with
the absolute differences between model and experiment.
The group 2 students mentioned that it would probably
have benefited them if the theory had been treated before
starting the experimental work. This would have given all of
them the chance to gain understanding of the model, instead
of leaving the responsibility of figuring out the theory to
one person. They also indicated that more group meetings
about the model would have benefited them. They did not
initiate these meetings themselves in the beginning of the
experiment because they did not know how much work the
modelling would be.

The modelling student of group 2 also indicated that the
gap between the simple fit that was used to analyse the
experimental data and the model she built, was too big.

Evaluation and Recommenda-

tions

The progress of the students was closely monitored for this
work. There were several assignments that were provided
during the first two weeks, in order to help speed along the
process of modelling the SCB. Furthermore, a number of
group meetings were held over the course of 3 weeks and
personal guidance was offered on a daily basis. During the
first week, both groups were instructed on how to start
up their experiment, set and work towards an end goal.
The observed progress of the students in these tasks and
obstacles herein were logged and analysed during and after
the course.

Communication

Despite the fact that the differences between the model and
the experiment provide ample possibility to have interesting

discussions, the students did not engage in these discussions
much by themselves. It would therefore seem logical to
add another modelling competency to the list, specifically
for this type of project: group communication. Though
not critically important for the success of the model itself,
communication is essential in transferring knowledge and
understanding of concepts that the model brings with it.
Lack of communication between students was one of the
observed weaknesses of the performed implementation of
the modelling in the SCB experiment, by both the students
and the supervisors.

Though this problem can not be blamed solely on the way the
modelling was implemented into the experiment, a solution
could be to implement a number of discussion sessions about
the model and the theory. Also, group sessions specifically
about the progress of the model seem to be necessary. The
students that were not involved in the modelling, were
not very receptive to discussing the discrepancies between
the model and the experiment by themselves. However,
discussing these issues seem to be a vital part, if not the
most important part, of the perceived problems with the
simulation. The group communication must therefore be
monitored and encouraged more than before, to prevent the
modeller and the experimenters from working completely
separate and loose the advantage of shared knowledge.

Presenting the modelling

The focus of the modelling could be slightly altered by fo-
cusing more on the phenomenological aspect, instead of the
quantitative results. The shape of the graphs and inform-
ation that can be derived from them, are more important
than obtaining the exact same values as the experimental
setup from the simulation. This is once more reflected in one
of the statements above, in which a student expresses to find
the discrepancy between model and reality hard to accept.
This is a very important statement, from which we can learn
how to make the students value the model more without
changing a lot; focusing on the trends and relations between
the different parameters instead of focusing on trying to get
as close to the "real” situation.

As previously stated, the modelling competencies are not



only requirements for successful programming, but also goals
of the course. This seems to cause a sort of chicken and egg
situation, in which it is unclear what the students should
already have mastered and what they should learn. Since it
is very clear that most of them have never worked explicitly
with this sort of educational setup, the focus will be on
learning and getting the students to put the competencies
in practice, without explicitly telling them to do so.

The first day

As mentioned before, the first day was largely dedicated
to introductory elements such as the presentation of the
basic principles of the SCB and and introduction to the
physical experiment and how to use it. There were some
coordination problems that arose, which can be solved fairly
easily.

First of all, the preparation the students need, have to be
communicated in advance. The students must download
and install Mathematica before starting the SCB experi-
ment. There are also possibilities to use Mathematica on a
computer that is present at the practicum, but this makes
it impossible to work on the model at home. In the first
week, this is expected to be necessary.

The presentation in its current form seems to suffice for
instructing the students in the basic concepts of the SCB
and providing the mathematical ground for the model. In
the presentation, the group is instructed for the first time to
divide tasks among themselves. The importance of co6pera-
tion and frequent group meetings could be stressed at this
point, as a first measure to prevent the group communica-
tion to become an obstacle in the experiment. This measure
would refer to the new competency that was mentioned
before.

On the first day, there is rather a lot to take in for the
students; they are introduced to an experiment, the way they
are to operate it, the physical and mathematical principles
and they have been given specific tasks within their group,
a working form which has not been implemented like that
before in the curriculum. For this reason, the modeler may
experience difficulty in starting work on the model very
energetically. For this reason, the first assignment should
not be too large.

When analysing the first day by using the modelling cycle
by Galbraith and Stillman [6], the students were set on track
by introducing them to A. the messy real world situation.
They were left to think about how to handle the setup and
come up with a research question that would be manageable
within the 4 week time frame. The presentation also offered
them with the basic mathematical concepts and solutions,
which means that also parts of C. Mathematical model and
D. Mathematical solution are offered.

Assignments

The first set of assignments took the students longer to
complete than expected. In the first group, this could be
attributed to inexperience with Mathematica. In the second
group, this was also a factor, but the time schedule of the
modeler was also a possible cause of the problem; she had
another course next to the full time practicum, which caused
her to be absent sometimes. This can not be blamed on
the setup of the course, but it should have been picked up
before asking the group to distribute tasks and influencing
the result so the modeler is not often indisposed.

The most time consuming step was grasping the abstraction
of the model in an already quite abstract environment as
Mathematica. Assignments could help with this. The stu-
dents were less well prepared for the course than anticipated.
It was not the purpose of the project to teach them to use
Mathematica, but it turned out to be necessary. This cost
nearly a week, which was impractical. If it is unsafe to
assume the students are familiar with Mathematica, the
addition to the project should be questioned.

The content of the assignments was assumed to be easy; the
assignment was almost a copy-paste from the introductory
presentation. The students did not seem to take the assign-
ment as simple; instead they started expanding the model.
They wanted to understand every aspect of the model from
the start, which is understandable but not practical. The
task was to input the provided formula for a simple SCB
into a Mathematica ‘manipulate’ and get a feeling for the
behaviour of the model. It would seem that a clear explana-
tion of the assignment would solve this problem and save a
lot of time.

The above described observation ties into the ordering of
the modelling path, which was applied wrongly in the as-
signment. Students should have been introduced to the
parameters in more detail before trying to work with them.
This connects to step 1 in the modelling path, 'Understand-
ing, structuring, simplifying, interpreting context’ [5]. This
step was purposefully skipped in favour of getting the stu-
dents acquainted with the graphic output and simple model
faster, but this approach seemed to backfire immediately. It
would seem that an introductory assignment that deals with
the meaning of the parameters might benefit the progress
at the beginning of the course.

After observing this misstep, the modelling students were
instructed to investigate the role of the various parameters
in the model and discuss them with their fellow group
members. This turned out to progress slowly as well, since
the students worked on the model in parallel to researching
the parameters. The expanding of the model had a higher
priority due to the group pressure to finish the model fast
and possibly because it was more interesting and 'fun’ to do.
The ’direct gratification’ concept of Mias [3] seems to apply.
This provides another reason to improve the assignments
on the investigation of the various parameters.

are the model of Galbraith and the constraints of van Buuren useful?

Time schedule

Setting and monitoring a time schedule could help the stu-
dents finish their product in time. However, the project
requires them to make their own planning. Letting the
students come up with their own research question is an
important part of the PBL setup, the students are made
responsible for setting goals and planning the project. The
planning of the modelling is a part of this.

Looking at the simulating of the SCB experiment and the
modelling cycle in figure 2 [6], the situation forces a start
from both point A and D. The modelling has to start simul-
taneously with the reviewing of the theory, otherwise it’s
power to predict the behaviour of the system will be lost,
because the simulation will not be finished in time. This is
achieved by providing the students with a quick introduction
of the theory. This might prohibit students from taking the
optimal path through the modelling cycle, because some
of the key simplifications have been performed for them.
However, the experiment as a whole does benefit from this,
due to the foreseen faster completion of the model.



The presentation was received well, handouts were distrib-
uted to further explain the derivation and to provide back-
ground information. The first assignment did not go as
smoothly as planned, due to an unexpected lack of Mathem-
atica knowledge and experience on the students side. This
inhibited the planned swift start of the project by several
days.

What could be done to improve the progress of the project,
is checking the time schedule more often and be stricter on
adapting it. It could be a standard part of the meetings with
the supervisors, which would keep both the students’ and
the supervisors’ attention on the progress and the planning.
For the modelling, deadlines were set in advance. However,
these were not met. This also calls for stricter monitoring,
but also less stringent deadlines. This may sound contra-
dictory, but the set deadlines were apparently not realistic,
so the students may need more time to complete the assign-
ments. The monitoring of those deadlines then becomes
more important, because the time schedule is tight.

These measures seem easy enough, but are possibly hard to
unite with the purpose and philosophy of PBL, since the
students must be made to feel that the project is in their
own hands and the planning is their own. A patronising
attitude will discourage students to work on the project.
This should be taken into account when monitoring. The
importance of monitoring was also described by Mias [3],
who stated that PBL requires carefull monitoring of the
students progress is necessary to avoid students from getting
stuck and experience an excessive workload.

For the modelling, the time schedule should specify the
relevant deadlines for assignments.

Refer to the ‘research

questions’

enthusiasm

The Solar Cooking Box experiment was expanded with a
modelling part. This lead to an updated presentation and
an improved handout. (see Appendix 1 and 3)

From the evaluation of the course and discussions with
students, a few important constraints and requirements can
be formulated.

Conclusion

- Only if the required programmer knowledge is present
beforehand, will the modelling be a viable part of the
project. The project will not benefit from adding a
course in programming, since it will take too much
time.

- Paying extra attention to group communication is vital
when adding a programming module. One of the group
members will physically work on a different problem
than the rest of the group. To ensure the experience
and gained knowledge are transferred, regular group
meetings must be held, both on progress in modelling
and experimenting.

- To prevent frustration about slow progress and dis-
crepancies between the model and the experimental
outcomes, the focus of the modelling should be shif-
ted more to the phenomenological aspect, instead of
the quantitative results. It must deal with trends and
relations, not absolute numbers.

- The students should be given assignments about the
meaning and relations between the various paramet-
ers of the SCB, before they begin experimenting and
modelling. This will improve their understanding and
speed up the modelling process.

- The students must make a time schedule, in which
they have to set deadlines for certain stages of the
experiment and the modelling. Supervisors have to
keep the students on track or ensure delays do not lead
to frustration.

Taking all the above requirements into account, adding a
modelling part to the SCB project could definitely be of edu-
cational value. The advantages of the abstract programming
and the need to understand the underlying theory clearly
showed during the students explanations and discussions.
The modelling could add to the project, and does not need
to interfere with experiment.

something about developing vs using/simulating
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Appendix 1 - Solar Cooking Box Opening Presentation

Project fysica van leven en
energie

De Solar Cooking Box (SCB)

Belang van de SCB

* Meer dan 50 landen

* Afrikaanse landen zoals Ethiopié, Somaliég,
Eritrea

* India, Afghanistan en vluchtelingenkampen

Belang van de SCB

* Duurzaam product
* Ontbossingsprobleem
* Elektriciteit in Afrikaanse dorpen

Broeikas effect

* Werking van de SCB berust op het broeikas
effect

* Korte golflengtes = Transmissie
* Lange golflengtes - Absorptie

Productontwikkeling

* Gebruikerseisen:

De SCB moet gebruikt kunnen worden in
geisoleerde dorpen in Afrikaanse landen. De SCB
moet twee maaltijden per dag kunnen bereiden.

* Lijst van gebruikerseisen
opstellen

+ Bespreken met andere  oowa
groepjes

* Interview met Stichting Solar
Cooking

Productontwikkeling

* Financiéle mogelijkheden:

* De materialen die gebruikt
worden

* Weeg de voordelen tegen de
kosten af

PRODUCT




Productontwikkeling

* Kies een aspect dat je wilt
onderzoeken

* Probeer niet alles in een keer
te onderzoeken

technisch
mogelijkheden’
URKUNDE !

%

A

gebruikerseisen

* Geef een volledige
beschrijving van dit aspect e

Q

Simpel ontwerp van de SCB

) zonlicht
\ P

O

pan + inhoud

g
i i poten

v

glasplaat

straling-absorberend bodem

geisoleerde wanden
enbodem

Natuurkunde van de SCB

x LICHT Het zonlicht vertegenwoordigt een zekere

\ energie/warmtestroom Q;,, (J/s)

\ Op grond van de wet van behoud van energie
Al geldt:

g Qin = Qabs + Qe + Qr (1)
! De transmissiecoéfficiént T is gedefinieerd als
K <
/ Q¢
/ Qe = 0; 2
¥ m

Tisi.h.a. golflengte afhankelijk.

figuur 3: drie processen als licht op een glasplaat
valt

Warmtetransport
* Geleiding

* Straling

C ¢
IS

* Convectie

Theorie

Ty AT =
Quit

figuur 1: opwarm model

Theorie

dQuit
dt

Qnet = an - Quit = an - k(T - Tb)

. S
= Quit = kT(T - Tb)-

T
Qllit

Siguur 1 opwarm model




Theorie Theorie
im g _ dl _ Qnet _ Qin - k(T — Tb)
Qnet = an - Quit = Qin - k(T - Tb) 4i~0 At dt ¢ ¢
AT _ Qu KT, k.. _ _ A _ .,
oy AT _dT _ Qo _ Qun— KT —T) @~ C T o ol mATBT= B+ T) =BT
A * ¢ ‘ A= Lm + KT B = E en T = fé +T
B C ’ e B '
Qn Qi
T T
Qui{ Om’t
figuur I: opwarm model figuur I: opwarm model
Theorie Theorie
dT* dT™*
— BT — _BT*
dt dt
T* = ce B,
Qn Qi
T T
éui{ éuit
figuur 1: opwarm model figuur 1: opwarm model
Theorie Theorie
T = _é +T T* = ce Bt Temperature (°C)
B
) A A
T(O):T(O)—EZTb—E:ceozc 0

Siguur 1 opwarm model
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Theorie

Temperature (°C)

150 |-

100

50+

0 L L L L L L 0 Time (h)
0 20 40 60 80 100 120 140

Theorie

Temperature (°C)

0 L L L L L L lé‘tOTime (h)

Modelleren

* Verwacht wordt dat jullie zowel modelleren
als experimenteren

* Enige uitleg over modelleren volgt later
* Omgang met Mathematica?

Groepsproces

* Verdeel de rollen in het groepje:
— Voorzitter
— Notulist
— Modelleren
— Experimenteren
— (Poster)

Groepsproces

* Voorzitter: Zorgt dat het groepsproces goed
verloopt en lost eventuele problemen op.
Houdt overzicht en verduidelijkt problemen.

* Notulist: Houdt de verslaglegging goed en
secuur bij, houdt de planning bij en maakt
afspraken.

Groepsproces

* Planning is uiterst belangrijk

» Zorg dat je tijdig de verschillende resultaten
kan vergelijken (modelleren en
experimenteren)
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Succes!!
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Appendix 2 - Example of SCB Mathematica Model

In[1]:= Manipulate[

vars = {
kWood -» .1,
kGlass » .84,
kWool -» 0.029,
kAir -» 0.023,

CWater -» 4.210 % 10°,
Cair -> 0.00121 105,
CWool -> 1.656 = 10°,
CWood - 1.224 % 10°,
CGlass -» 2.184 % 10°,

Qin -» InputPower,
Tout -> 20 + 273.15,
0->5.67 % 10'8,
uren = timeoff;

ApanesWood -» hwBox,
dpanesWood - tBox,
ApaneGlass - hwBox,
dpaneGlass - tGlass,

eAir » 0,

eWood » .82,
eWool -» .9};

DiffTlucht = [D[Cair Tlucht[t], t] ==

1 [ ApanesWood? ]
——  |oin-5|———— | kWood ( Tlucht[t] - Twalll[t]) | -
ApanesWood? dpanesWood

1 ApaneGlass? ]
kGlass ( Tlucht[t] - TGlass[t]) | +
ApanesWood® | dpaneGlass

If[RadOnOff = "Oon", - (eA:i.r * o * 5 ApanesWood? (Tlucht [t]*-Twalll [t]4) ) -
(eAir » o » ApaneGlass® (Tlucht[t]*-TGlass[t]?)), 0]] //. vars;
DiffTGlass =

D[CGlass TGlass[t], t] ==
1

(ApanesWood? dpanesWood)

1 ApaneGlass?
kGlass ( Tlucht[t] - TGlass[t]) -
ApanesWood® | dpaneGlass
ApanesWood?
—— | kGlass ( TGlass[t] - Tout) | //. vars;
dpanesWood
DiffTwalll =

12



2 | scB2.nb

D[CWood Twalll[t], t] ==

1 1 ApanesWood?
kWood
(5 ApanesWood? dpanesWood) ApanesWood? dpanesWood
ApanesWood?

( Tlucht[t] - Twalll[t]) -5 ( kWool ( Twalll[t] - TWool[t]) | +

dpanesWood

If[RadOnOff = "On", (eAir x o 5ApanesWood’ (Tlucht[t]*-Twalll[t]*)) -
(eWood * 0 * ApanesWood? ('I'walll [£14 - TWool[t]'*) ) ’ 0]] //. vars;
DiffTWool =

D[CWool TWool[t], t] ==

ApanesWood?

kWool ( Twalll[t] - TWool[t]) -

: (
(5 ApanesWood? dpanesWood) dpanesWood

ApanesWood?

kWood ( TWool[t] - Twall2[t]) | +
dpanesWood

If [RadOnOff = "on", (eWood * 0 % 5 ApanesWood? (Twalll [t]% - TWool [t] 4) ) -
(eWool * O * ApanesWood2 (TWool [t]%-Twall2[t] 4) ) ’ 0]] //. vars;
DiffTwall2 =

D[CWood Twall2[t], t] ==

ApanesWood?

kWood ( TWool[t] - Twall2[t]) -

: [
(5 ApanesWood? dpanesWood) dpanesWood

ApanesWood?

kAir ( Twall2[t] - Tout) | +
dpanesWood

If [RadOnOff = "on", (eWool * o * ApanesWood? (TWool [t]1%-Twall2[t] 4) ) -

(eWood * 0+ 5 ApanesWood? (Twallz [t14- Tout4) ) ' 0] //. vars;

Tsol = NDSolve [ {DiffTlucht, DiffTGlass, DiffTwalll, DiffTWool, DiffTwall2,
TGlass[0] == Tout, Tlucht[0] == Tout, TWool[0] == Tout, Twalll[0O] == Tout,
Twall2[0] == Tout} //. vars, {Tlucht, TGlass, Twalll, TWool, Twall2},

{t, 0, 3600 xuren}] // FullSimplify // Flatten;
Evaluate[TluchtOff = Tlucht[3600 x uren] /. Tsol];
Evaluate[TGlassOff = TGlass[3600 x uren] /. Tsol];
Evaluate[TwalllOff = Twalll[3600 x uren] /. Tsol];
Evaluate[TWoolOff = TWool[3600 x uren] /. Tsol];
Evaluate[Twall20ff = Twall2[3600 » uren] /. Tsol];

Module[{’rlucht, TGlass, Twalll, TWool, Twall2},

DiffTluchtNQ = (D[Cair Tlucht[t], t] ==

13



SCB2.nb

ApanesWood?

1
[— ] kWood ( Tlucht[t] —Twalll[t])] -
ApanesWood? dpanesWood

1 ApaneGlass?

kGlass ( Tlucht[t] -TGlass[t])] -

ApanesWood® | dpaneGlass

If [RadOnOff = "on", (eAir * o * 5 ApanesWood? (Tlucht [t]% - Twalll[t] 4) ) -
(eAir » o » ApaneGlass® (Tlucht[t]*-TGlass[t]?)), 0]] //. vars;
DiffTGlassNQ =

D[CGlass TGlass[t], t] ==
1

(1-\panesWoo¢:l2 dpanesWood)

1 ApaneGlass?
kGlass ( Tlucht[t] - TGlass[t]) -
ApanesWood® | dpaneGlass
ApanesWood?
—— | kGlass ( TGlass[t] - Tout) | //. vars;
dpanesWood
DiffTwalllNQ =

D[CWood Twalll[t], t] ==

1

(5 ApanesWood? dpanesWood)

1 ApanesWood?
kWood ( Tlucht[t] - Twalll[t]) -
ApanesWood? dpanesWood
ApanesWood?
——— | kWool ( Twalll[t] - TWool[t]) | +
dpanesWood

I£[RadOnOff = "On", (eAir » o * 5ApanesWood’ (Tlucht[t]*-Twalll[t]*)) -
(eWood # o » ApanesWood” (Twalll[t]* - TWool[t]*)), O]] //. vars;
DiffTWOOlNQ =

D[CWool TWool[t], t] ==

1

kWool ( Twalll[t] - TWool[t]) -

{ ApanesWood?

(5 ApanesWood? dpanesWood) dpanesWood

ApanesWood?

kWood ( TWool[t] - Twall2[t]) | +

dpanesWood

If[RadOnOff = "on", (eWood * 0 * 5 ApanesWood? (Twalll [t]1* - TWool [t]4)) -
(eWool * 0 + ApanesWood? (TWool [t]*-Twall2[t] 4) ) v O]] //. vars;

DiffTwall2NQ =

14
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4 | scB2.nb

D[CWood Twall2[t], t] ==

ApanesWood?

kWood ( TWool[t] - Twall2[t]) -

: (
(5 ApanesWood? dpanesWood) dpanesWood

ApanesWood?

kAir ( Twall2[t] - Tout) | +
dpanesWood

If [RadOnOff = "on", (eWool * 0 * ApanesWood? (TWool [t]1%-Twall2[t] 4) ) -
(eWood * 0 % 5 ApanesWood? (Twallz [t1*- Tout4) ) ' 0]] //. vars;

TsolNQ = NDSolve [ {DiffTluchtNQ, DiffTGlassNQ, DiffTwalllNQ,
DiffTWoolNQ, DiffTwall2NQ, TGlass[3600 uren] == TGlassOff,
Tlucht[3600 uren] == TluchtOff, TWool[3600 uren] == TWoolOff,
Twalll[3600 uren] == TwalllOoff, Twall2[3600 uren] == Twall20ff} //. vars,
{Tlucht, TGlass, Twalll, TWool, Twall2},
{t, uren » 3600, 4 uren » 3600}] // FullSimplify // Flatten;
Tlucht = Tlucht2;
TGlass = TGlass2;
Twalll = Twalll2;
TWool = TWool2;

Twall2 = 'I‘wa1122;] ;

Show [
Plot[

{Evaluate[Tlucht[t ¥ 3600] /. Tsol] - 273.15,
Evaluate[TGlass[t * 3600] /. Tsol] - 273.15,
Evaluate[Twalll[t » 3600] /. Tsol] - 273.15, Evaluate[TWool[t * 3600] /. Tsol] -

273.15, Evaluate[Twall2[t * 3600] /. Tsol] - 273.15},

{t, .001, uren}, AxesLabel -» {"Time (h)", "Temperature (°C)"},

PlotLegends -» {"Air", "Glass", "Wall 1", "Wool", "Wall 2"},

PlotRange -» {{0, 2.5 uren}, {0, 1.2 (TluchtOoff -273.15)}}],

Plot [

{Evaluate[Tlucht2[t * 3600] /. TsolNQ] - 273.15,
Evaluate[TGlass2[t * 3600] /. TsolNQ] - 273.15,
Evaluate[Twalll2[t * 3600] /. TsolNQ] - 273.15,
Evaluate[TWool2[t » 3600] /. TsolNQ] - 273.15,
Evaluate[Twall22[t * 3600] /. TsolNQ] - 273.15}, {t, uren, 2.5 uren},

PlotRange -» {{0, 30}, {0, 1.2 (TluchtOff - 273.15)}}]1,

{{timeoff, 10, "Turn off time"}, 1, 20, 0.001},
{{InputPower, 120, "Input Power (W)"}, O, 1000, 1},
{{hwBox, 0.5, "Height and width Box"}, .1, 1.5, 0.1},
{{tBox, .02, "Thickness walls"}, 0.001, .2, 0.001},
{{tGlass, .02, "Thickness Glass plate"}, 0.001, .2, 0.001},

{{RadOnoff, "On", "Radiation Term"}, {"On", "Off"}, ControlType - Setter}]
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Appendix 3 - Solar Cooking Box Handout

Solar Cooking Box

een wiskundige beschrijving in simpele benadering

najaar 2014

1 Opwarmen

Om het opwarmproces van een pan in een solar cooking box (SCB) te begrijpen is het
volgende model een goed uitgangspunt:

Stel je neemt in eerste benadering aan dat de SCB
een bak is met een zekere hoeveelheid vloeistof erin (zie
figuur 1). De vloeistof heeft een warmtecapaciteit C.
Deze constante is de hoeveelheid warmte die nodig is
om de vloeistof 1°C te doen stijgen. Dit betekent dat
als de hoeveelheid vloeistof @) aan warmte opneemt de

temperatuur stijgt met %

In de beginsituatie is de warmtebron (lamp of zon)
nog niet aanwezig en dan is de SCB in thermisch even-
wicht met de buitentemperatuur 7,. Dus is de tempera-

Figuur 1: model van een
tuur van de SCB T = T,,. Als vervolgens de warmtebron  gie1e Solar Cooking Box

aangaat, dan nemen we aan dat de SCB opgewarmd

wordt door een constante instroom van energie dgt”” = Qin(J/5)

Door de warmte instroom zal de vloeistof opwarmen en krijgt een temperatuur 7' die
hoger is dan de buitentemperatuur Ty,. Als de temperatuur van de bak met vloeistof hoger
is dan de omgeving zal er ook een afkoelingsproces plaatsvinden; er gaat warmte verloren.
De afkoeling kan plaats vinden door verschillende processen: geleiding, convectie, straling,
verdamping, etc.. Het meest eenvoudige model voor dit verlies is om aan te nemen dat
de warmte-uitstroom evenredig is met het temperatuurverschil (" — Ty):

dQuit . S

S Qui = k(T =T, (1)

Hierbij is k£ de warmtegeleidingscoéfficiént is van dit systeem; de voornaamste oorzaak
van energieverlies. % staat voor de ratio van het oppervlak S en de dikte van de wand 1
(het oppervlak waar warmte door weglekt). Om de formules overzichtelijk te houden, zal
in de rest van deze beschrijving % in de warmtegeleidingscoéfficiént & getrokken worden.

De netto warmtestroom Qe (J/s) die het systeem in komt, is dan
Qnet = an - Quit = Qin - k(T - Tb) (2)
Als je deze vergelijking interpreteert, dan zie je dat de netto warmte-instroom steeds

kleiner wordt naarmate de temperatuur stijgt. Het opwarmen zal dan ook steeds minder
snel plaatsvinden. Dit kunnen we uitrekenen.
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2 Oplossen van vergelijking 2

De verandering in temperatuur over de tijd is dus afhankelijk van de waarde van de
temperatuur op tijdstip t. (Het is dus geen constante verandering) We schrijven dit
proces daarom als een differentiaalvergelijking

1 g _ E _ Qnet _ an - k(T_Tb) (3)
A0 At dt O C ’

Dit is een eerste orde differentiaal vergelijking van T naar t. Daarin staat dat de verande-
ring van de temperatuur athankelijk is van de temperatuur zelf en van de warmtestroom.
Vergelijking (3) ziet er nog wat ingewikkeld uit, maar die kunnen we ook schrijven

als: )
dI' Qi KT, Kk, _ A _ *,
=0t gl =A-BT=-B(-5+T)=-BT" (4)

met .
=" B=— T"=—=+4T. 5
c c BT ©)
Hierbij zijn A en B constanten gezien de aannames die hierboven zijn gemaakt.
Nu geldt dat ‘fl—{ = % (ga zelf na) en dat betekent dat we een oplossing moeten

vinden voor de volgende nu simpele differentiaalvergelijking:

A

arx
dt

— BT (6)

Zo hebben we de vergelijking die het temperatuurverloop van het op te warmen systeem
in zijn meest eenvoudige vorm beschrijft.

Deze vergelijking heeft de oplossing T = ce
begrijpen door dit in te vullen in vergelijking (6).

~Bt Dat dit een oplossing is, kun je

3 Bepaling van de constanten c en B van de oplossing

Zoals hierboven aangegeven is op het moment dat de lamp aan gaat (¢t = 0) de tem-
peratuur van de SCB gelijk aan Tj,. Vullen we deze voorwaarde in dan vinden we een
uitdrukking voor de temperatuur als functie van de tijd:

e A A 4
T(O)—T(O)—E—Tb—B—ce =c (7)
en dus geldt dat
A Din ,
T = (T — E)e*Bt en  T=T,+ Qk: (1—ech). (8)

Het verloop van de temperatuur is dus een e-macht met een tijdconstante % In figuur 2
is een typisch verloop geschetst van de temperatuur. Op tijdstip ¢t = 0 is de temperatuur
gelijk aan Tj. Op tijdstip ¢ = oo is T(c0) = Tj, + %,

Dat betekent dat hoe groter de warmte-instroom Qm is hoe hoger de eindtemperatuur,
en hoe groter de warmteverliezen (k) hoe lager de eindtemperatuur.

2
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Figuur 2: een typische opwarmingscurve

4 Afkoelen

Wat gebeurt er als de SCB is opgewarmd tot een zekere temperatuur 74 en de bron van
verwarming wordt uitgeschakeld?
Dit houdt in dat @ = 0 en daarmee gaat vergelijking (2) over in

Qnet = _Quit = —k(T - Tb)~ (9)
en vergelijking(3) die de temperatuurverandering beschrijft wordt dan
dr KT -T))
dt C
Ga nu over op een nieuwe variabele 7** = (T' — T}), dan gaat vergelijking(10) over in (je

A ar
weet dat “o— = %)

. (10)

aT** k

=—=T" 11

dt C (11)
Deze vergelijking heeft als oplossing 7% = T — Tj = coe¢* dus (T(t) =T, + coe” Tt
Nu hadden we aangenomen dat bij het uitschakelen van de warmtebron (op ¢ = 0) de
temperatuur T4 was. Verwerken we deze voorwaarde dan wordt de oplossing

T(t) =T, + (Ta — Ty)e ¢ (12)

Het verloop van de temperatuur 7' is ook nu weer een e-macht met dezelfde (!) tijdcon-
stante k/C.
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Figuur 3: een typische afkoelingscurve

Voor meer achtergrondinformatie over warmtestromen: zie hoofdstuk 19-10 van Physics
for Scientists and Engineers, van Giancoli.
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