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For my project, I developed an introductory calculus handbook for the Energy, 

Climate and Sustainability 100 (ECS100) course at Amsterdam University College 
(AUC). The course is offered to first year bachelor students with no mathematics, 
physics or chemistry prerequisites. Therefore, some of the students have never been 
exposed to introductory calculus. However, the subjects covered in the course are 
based on physics and chemistry concepts that inevitably rely on basic understanding of 
integration and differentiation. From discussions with my project advisor, Judith van 
Santen and the course professor, Dr. Forrest Bradbury, we decided that developing an 
introductory calculus handbook tailored to the ECS100 course would be most beneficial 
for future students. The goal of this project was to generate a handbook that will provide 
students with the mathematical tools required for understanding the physics and 
chemistry concepts they encounter in the course.

From my course observations and brief conversations with students challenged 
by the calculus, I determined the most relevant mathematical tools to include in the 
introductory calculus handbook. Furthermore, the handbook will provide future 
generations of students with general integration and differentiation exercises (and 
solutions) in addition to exercises tailored specifically to the course. For example, 
students in the course need to perform integration calculations for thermodynamical 
processes such as the Carnot heat engine. Some students had trouble following the 
Carnot heat engine lectures because they struggled with integration, as it was the first 
or second time they had seen such calculations. Equipped with this handbook, students 
will have the opportunity to  learn the essential calculus required for the course and will 
solve (in advance) the integration and differentiation exercises they will encounter in the 
lectures and laboratory assignments. Overall, this handbook will make the students’ 
learning more efficient.  
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1 FUNCTIONS

1.1 What is a Function?

A function f assigns to each variable x exactly one value called f(x). You may
think of a function as a machine which takes in a number of inputs defined by x and
returns exactly one value for each input. You may be familiar with linear functions
of the form y = mx + b, where m and b are constants and y is the same as f(x).
In this course we will encounter four types of functions, namely polynomial, power,
exponential, and logarithmic functions. It will be helpful to become familiar with
these functions and their properties.

1.2 Polynomial Functions

A polynomial is any function of the form

P (x) = acx
c + ac�1x

c�1 + ...+ a2x
2 + a1x+ a0 (1)

where c is a non-negative integer and the numbers a0, a1, a2, ...ac are called the coef-
ficients of the polynomial. Figure (1) shows several example graphs.

Figure 1: Left to right: f(x) = x+ 2 , f(x) = x2, and f(x) = x3.

1.3 Power Functions

A power function is any function of the form

f(x) = xa (2)
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where a is a constant, not necessarily an integer and can be positive or negative.
This type of function is known as the power function because the variable x is raised
to the power of a. Figure (2) shows several example graphs.

Figure 2: Left to right: f(x) = x�1 = 1/x , f(x) = x3/2, and f(x) = x1/2.

1.4 Exponential Functions

An exponential function is any function of the form

f(x) = ax (3)

where a, known as the base, is a positive constant. This type of function is known as
the exponential function because the variable x serves as the exponent. In this course,
the base for all of our exponential functions will be the natural number e = 2.718...,
which will simplify our di↵erentiation and integration computations in the following
sections. Figure (3) shows two important example graphs.

When working with exponential functions, it is useful to know the laws of expo-
nents. If a and b are positive numbers and x and y are any real numbers, the rules
for treating exponents are

1.ax+y = axay 2.ax�y = axa�y = ax

ay

3.(ax)y = axy 4.(ab)x = axbx
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Figure 3: Left to right: f(x) = ex , f(x) = e�x.

1.5 Logarithmic Functions

A logarithmicfunction is any function of the form

y = loga x (4)

where a is a positive constant and is known as the base of the logarithmic function.
The logarithmic function is related to the power function through

loga x = y , ay = x (5)

where you can think of the log going away when moving a over to the other side of
the equation and raising it to the power of y. When working with logarithms, it is
useful to know the laws of logarithms. If a, x and y are any positive numbers, and
r is any real number, then

1. loga(a
x) = x 2. aloga x = x

3. loga(xy) = loga x+ loga y 4. loga(x/y) = loga x� loga y

5. loga(x
r) = r loga x 6. loga(1) = 0 ; for any a
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It is worth mentioning that any number raised to the power of zero is 1. This explains
the logarithm law 6, which can be explicitly confirmed using law 1:

loga(a
0) = loga(1) = 0 (6)

A logarithmic function with base e = 2.718... is known as the natural logarithm
and has the special notation

logex = ln(x) (7)

The graph of this function is shown in figure (4). The natural logarithmic function
is related to the power function through

ln(x) = y , ey = x (8)

The laws for natural logarithms follow directly from the laws of general logarithms
by specifying the base to be e.

1. ln(ex) = x 2. eln(x) = x

3. ln(xy) = ln(x) + ln(y) 4. ln(xy ) = ln(x)� ln(y)

5. ln(xr) = r ln(x) 6. ln(1) = 0

Figure 4: f(x) = ln(x).
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1.6 Combination of Functions

The functions above may be combined to form composite functions . A
composite function is composed of 2 separate function. For example, the functions
f(a) =

p
a and g(x) = x+1 can be used to form a composite function h(x) = f(g(x)).

This composite function is formed by substituting g(x) for a in the function f(a).

h(x) = f(g(x)) = f(x+ 1) =
p
x+ 1 (9)

EXERCISES

1. Simplify the following expressions:

a. x2 · x3
b.

y4

y8 c. (a3)2 d.

⇣
g3

g

⌘
· g4

2. Simplify the following expressions:

a. log5(x) + log5(y) b. log17(w)� log17(z) c. 3log3(r) d. log6(6
t)

3. Simplify the following expressions:

a. log56(56
7) b. log5(25

4) + log5(5) c. log10(1000)� log10(10) d. log399(1)

4. Simplify the following expressions:

a. eln(7) b. ln(15)� ln(3) c. � [ln(15)� ln(3)] d. ln(
p
e) + ln(

p
e)

2 DIFFERENTIATION

2.1 What is a Derivative?

The derivative of a function can be interpreted as the slope or the rate of change
of the function. To find the derivative of a function we must di↵erentiate the
function. Di↵erentiation can be used to determine quantities such as the velocity
(rate of change of position with respect to time) or acceleration (rate of change of
velocity with respect to time) of a system. Di↵erentiation is at the core of modern
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science, and in this section we introduce you to several rules for di↵erentiating the
most commonly used functions in this course.

When di↵erentiating a function, we must specify the variable that the function
is to be di↵erentiated with respect to. We are interested in how the function’s rate of
change depends on this variable. Notation commonly used to indicate the derivative
of a function f(x) = y with respect to the variable x is

df(x)

dx
=

d

dx
· f(x) = f 0(x) = y0 =

dy

dx
=

d

dx
· y (10)

Figure 5: The derivative of a function y (black) at x1 is the same as the slope of
the tangent line (pink) to the function at x1. An approximation is shown by what is
known as a secant line (blue).

The letter d indicates a “small change”, often represented by the symbol � as
in figure (5).The slope (derivative) of a function is the fraction of the vertical change
(the rise) over the horizontal change (the run). Notice that the notation dy

dx clearly
represents a slope, since this is a fraction of the small change in y (dy) over the small
change in x (dx). This is demonstrated in figure (1). Throughout this book, we will
use the di↵erent representations in equation (10) to refer to a derivative.
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2.2 Di↵erentiation Rules

Table 1 lists fundamental rules for di↵erentiating polynomial, power, natural ex-
ponential and natural logarithmic functions, as well as sums and products of these.
Understanding how to apply these rules will be essential for working with further
rules in the following sections. The best way of learning how to di↵erentiate func-
tions is to see it in practice, so let’s proceed with several examples.

Di↵erentiation Rule Procedure (c is a constant)

1. Constant Rule
dc

dx
= 0

2. Power Rule
d

dx
· (xc) = (c) · xc�1

3. Constant Multiple Rule
d

dx
[c · f(x)] = c ·


df(x)

dx

�

4. Sum Rule
d

dx
[f(x) + g(x)] =

df(x)

dx
+

dg(x)

dx

5. Natural Exponential (e) Rule
d

dx
(ecx) = c · ecx

6. Natural Logarithmic (ln) Rule
d

dx
ln(x) =

1

x

7. Product Rule

d

dx
[f(x) · g(x)] = f(x)

dg(x)

dx
+ g(x)

df(x)

dx

Table 1: Di↵erentiation rules.
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Example 1. Di↵erentiate the function p(u) = u3 + 5u2 � 7 with respect to u.

Solution:
d
du · p(u) = d

du · (u3 + 5u2 � 7) (definition)

= d
du · (u3) + d

du · (5u2)� d
du · (7) (sum rule)

= d
du · (u3) + 5 d

du · (u2)� d
du · (7) (constant multiple rule)

= 3u2 + 5 · 2u� 0 (power and constant rules)

= 3u2 + 10u

In the first line, we apply the definition of the derivative with respect to the variable
u on both sides of the equation. In the second line, we use the sum rule and apply
the derivative to each term in the function separately. In the third line, we use the
constant multiple rule to factor out the 5 in the second term. In the fourth line,
we apply the power rule to the first and second terms and the constant rule to the
third term. The derivative p0(u) of the function p(u) is given in the fifth line.

Example 2. Di↵erentiate the function

f(x) =
ax5 + bx2

x

with respect to x. Assume a and b are constants that do not depend on x.

Solution:
d
dx · f(x) = d

dx · (ax4 + bx) (definition)

= d
dx · (ax4) + d

dx · (bx) (sum rule)

= a d
dx · x4 + b d

dx · x (constant multiple rule)

= 4ax3 + b (power rule)

Notice that we first simplify f(x) because we have not provided you with the
mathematical tools to di↵erentiate fractions. For the purpose of this course, a good
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rule is to always simplify your functions to fit one of the di↵erentiation rules above.

Remark: The mathematical tool for di↵erentiating fractions is commonly known as
the quotient rule. You will not need to know it in this course.

Example 3. Di↵erentiate the function k(r) = 7
r3 with respect to r.

Solution:

d
dr · k(r) =

d
dr · (7r

�3) (definition)

= 7 d
dr · (r

�3) (constant multiple rule)

= �21r�4 (power rule)

Notice we first rewrote the fraction 7
r3 as 7r�3 in order to use the power rule. When

di↵erentiating a function, it will be necessary to rewrite fractions this way whenever
the variable of interest is raised to any power in the denominator.

Example 4. Di↵erentiate the function T (t) = 3e�2t + 5 ln(t) with respect to t.

Solution:

d
dt · T (t) =

d
dt · (3e

�2t + 5 ln(t)) (definition)

= d
dt · (3e

�2t) + d
dt · (5 ln t) (sum rule)

= 3 d
dt · e

�2t + 5 d
dt · ln(t) (constant multiple)

= 3 · (�2)e�2t + 5(1t ) (e and ln rules)

= �6e�2t + 5
t

Example 5. Di↵erentiate the function p(t) = 2t2 ln(t) with respect to t.

Solution: This is an example where we need to use the product rule. Let’s
write p(t) = f(t)g(t) and identify f(t) = 2t2 and g(t) = ln(t).
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d
dt · p(t) = f(t)dg(t)dt + g(t)df(t)dt (definition)

= 2t2 d
dt · ln(t) + ln(t) d

dt · 2t
2 (substitution)

= 2t2 1t + ln(t)(4t) (ln and power rules)

= 2t+ 4t ln(t)

EXERCISES

1. Di↵erentiate the following with respect to x:

a. f(x) = 5x3 + 4x2 + 3x+ 2 b. r(x) = 3x2+5
x c. t(x) = 2x�5/3

2. Di↵erentiate the following with respect to r:

a. x(r) = r�2 + e�r/2 + 3 ln(r) b. f(r) = ln(r2)� ln(r) c. j(r) = 9
r5

3. Di↵erentiate the following with respect to L:

a. M(L) = �L3 + 1
3L+ 1 b. w(L) = 5

L4/5 + eL + 1
3 ln(L)

c. f(L) = aLb + c ln(L) + gehL + j ;with a, b, c, g, h, j = contants

4. Use the product rule to di↵erentiate the following with respect to w:

a. f(w) = wew b. p(w) =
p
w(2 + 3w) c. r(w) = ln(w)ew

2.2.1 Substitutions

It is possible to encounter functions that depend on 2 variables which depend
on each other. For example, the function

v(P, T ) =
3P

T
(11)

depends on the variables P and T , and we are given the constraint that the variable
P depends on the variable T through

P (T ) = 2T 2 (12)
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Assume we are interested in determining how the rate of change of v depends on T .
Therefore, we should di↵erentiate v with respect to T . Notice we cannot treat P
as a constant because it also depends on T , so first we can substitute 2T 2 for P in
equation (11). This reduces the function v to

v(T ) = 6T (13)

which we now can di↵erentiate with respect to T to obtain

dv(T )

dT
= v0(T ) = 6 (14)

EXERCISES

1. Di↵erentiate the following with respect to x given the constraint on y:

a. F (x, y) = 3x3 + y2 ; y(x) = 2x b. W (x, y) = ln
⇣

4x4

2y

⌘
; y(x) = x4

2. Di↵erentiate the following with respect to r given the constraint on s:

a. P (r, s) = 3e2sr
3
+ ln(r) ; s(r) = r�2

b. R(r, s) = ln(ers) ; s(r) = r

2.2.2 Partial Di↵erentiation

So far, we have only looked at functions that ultimately depend on a single
variable. However, in real life processes, a function may depend on two or more
variables that are independent of each other. For example, the pressure P of a gas
in a sealed container may depend on the temperature T and volume V ; P (T, V ).
We may be interested in how a function’s rate of change depends on only one of the
variables. Therefore, we must di↵erentiate the function with respect to the variable
of interest while treating all other variables as constants. This is known as a partial
di↵erentiation . Notation commonly used to indicate partial di↵erentiation of a
function f(x, y) = z with respect to the variable x is

@f(x, y)

@x
=

@

@x
· f(x, y) = @z

@x
(15)

Notice that in contrast to a full derivative, a partial derivative is indicated using a
“curly” letter @ instead of a regular letter d. The di↵erentiation rules apply equally
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to full and partial di↵erentiation.

Example 1. Di↵erentiate the function P (T, V ) = T 2 + 3V � 7 with respect to T
given that V is independent of T.

Solution:

@
@T · P (T, V ) = @

@T · (T 2 + 3V � 7) (definition)

= @
@T · (T 2) + @

@T · (3V )� @
@T · (7) (sum rule)

= 2T + 0 + 0 (power and constant rules)

= 2T

EXERCISES

1. Di↵erentiate the following with respect to a given b is independent of a:

a. G(a, b) = ab+ b2 + a2 + 7 b. Z(a, b) = �1
7be

�7a/2 + 3b ln(a)

2.3 The Chain Rule

We may be interested in di↵erentiating composite functions, i.e. f(g(x)) with
respect to x. The tool required for such procedure is the chain rule .
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The Chain Rule:

The derivative of a composite function F (x) = f(g(x)) with respect
to x is given by

F 0(x) = f 0(g(x)) · g0(x)

where F 0(x) refers to the derivative of F(x) with respect to x,
f 0(g(x)) refers to the derivative of the function f with respect to
the function g(x) and g0(x) refers to the derivative of the function
g with respect to x. This is explicitly shown through the notation

dF

dx
=

dF

dg
· dg
dx

Notice that on the right hand side of the equation, the second
derivative in the product of derivatives is always taken with respect
to the variable of interest, in this case x.

Example 1. Di↵erentiate the function z(x) =
p
x+ 1 with respect to x.

Solution: This is the composite function from equation (9), which is com-
posed of the functions f(a) =

p
a and g(x) = x+ 1. Therefore, we can write

z(x) = f(g(x)) =
p
g

and apply the chain rule

dz

dx
=

dz

dg
· dg
dx

The first term on the right is the derivative of z with respect to g. Therefore, if we
want to di↵erentiate with respect to g, we should use z in terms of g, z(g). Likewise,
the second term is the derivative of g with respect to x, so we should use g(x).
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z0(x) =
⇣

d
dg ·

p
g
⌘
·
�

d
dx · (1 + x)

�
(defitnition)

=
⇣

d
dg · g

1/2
⌘
·
�

d
dx · 1 + d

dx · x
�

(sum rule)

=
�
1
2g

�1/2
�
· (0 + 1) (power and constant rules)

=
⇣

1
2
p
g

⌘
=

⇣
1

2
p
x+1

⌘

Notice that because we are interested in the derivative of z with respect to x, our
result should be in terms of x.

Example 2. Di↵erentiate the function r(u) = ln(4u3) with respect to u.

Solution: The function r(u) includes the ln function. Looking at the natural
logarithmic di↵erentiation rule, we see that we can only apply this rule if the
ln function is only dependent on a single variable “x”. Therefore, in order to
di↵erentiate r(u), we must must rewrite r as a function of some other variabe x (it
does not matter which letter you choose, as long as it is not u)

r(u) = r(x) = ln(x)

with x(u) = 4u3 and apply the chain rule

dr

du
=

dr

dx
· dx
du

which yields

r0(u) =
�

d
dx · ln(x)

�
·
�

d
du · 4u3

�
(definition)

=
�

d
dx · ln(x)

�
·
�
4 d
du · (u3)

�
(constant multiple rule)

=
�
1
x

�
· (12u2) (ln and power rules)

= 12u2

4u3 = 3
u

EXERCISES

1. Di↵erentiate the following with respect to s:

a. f(s) = 3es
3
+ 2s2 b. r(s) = 7

3 ln(s
3 + 2s2) c. g(s) = 4e

p
s � ln(7s)

15
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2.3.1 Multivariate Di↵erentation

The chain rule may be further generalized to di↵erentiate functions that depend
on 2 or more variables which may depend on each other. Assume we have a function
f(a, b, ..., k, ..., n) that depends on n variables. If we are interested in di↵erenti-
ating f with respect to one of the variables, say k, we can apply the general chain rule.

The General Chain Rule:

The derivative of a function f(a, b, ..., k, ..., n), which depends on n
variables, with respect to a single variable k is given by

df

dk
=

@f

@a

da

dk
+

@f

@b

db

dk
+ ...+

@f

@k

dk

dk
+ ...+

@f

@n

dn

dk

where the variables a, b, ...., n may depend on each other.

Notice on the right hand side of the equation, the number of terms added up is
equal to the number of variables the function f depends on.

Example 1. Di↵erentiate the function R(a, b, c) = ba2 + 3c with respect to
b given the constraints

a(b) = (b+ 2) and c(b) = ln(b)

Solution: The function R depends on 3 variables, therefore we need to apply the
general chain rule with 3 terms in the sum on the right hands side. Since we are
interested in the derivative of R(a, b, c) with respect to b, this implies

b = k

in the general chain rule. We can therefore write the derivative of R with respect to
b as

dR

db
=

@R

@a

da

db
+

@R

@b

db

db
+

@R

@c

dc

db

Our task now is to compute each of the derivatives on the right hand side, multiply
and add them accordingly.
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@R
@a = @

@a · (ba
2 + 3c) = 2ba

da
db = d

db · (b+ 2) = 1

@R
@b = @

@b · (ba
2 + 3c) = a2

db
db =

d
db · b = 1

@R
@c = @

@c · (ba
2 + 3c) = 3

dc
db =

d
db · ln(b) = 1

b

And therefore the partial derivative of the function R(a, b, c) with respect to b is

dR

da
= (2ba)(1) + (a2)(1) + (3)

✓
1

b

◆
= 2ba+ a2 +

3

b

EXERCISES

1. Di↵erentiate the following with respect to t given the constraints on x and y:

a. B(x, y, t) = xy2 + t ; x(t) = 4t2 and y(t) = ln(t)

b. F (x, y, t) = 5exyt ; x(t) = t�2/3 and y(t) = e2t

2.4 Optimization

An important application of di↵erentiation is optimization . Optimization is
used to determine the local maximum and/or local minimum output value(s)
of a function. Recall that the derivative of a function can be interpreted as the
function’s slope. If the function has a local maximum and/or a minimum, these
values will occur at the point where the function’s slope is zero, as shown in figure
5. Notice these are known as local values because the function could have smaller
or larger values, but optimization will only provide information about local maxima
and minima.

To determine the value(s) of x at which a function f(x) has a local maximum
or a local minimum, we must find the derivative of the function with respect to x,

17
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Figure 6: f(x) = x3 � 9x with xcrit,max = �
p
3 and xcrit,min =

p
3.

set it equal to zero and solve for x. The value of x at which the function has a
local maximum or a local minimum is known as a critical point , which we will
refer to as xcrit. To determine whether the critical points represent a maximum or
a minimum, we must test values of x to the right and left of xcrit for the function
f(x). Assume we test the points a < xcrit and b > xcrit. The conditions to determine
whether x produces a local maximum or a local minimum for f(x) are:

1. If f(xcrit) > f(a) and f(xcrit) > f(b); f(xcrit) = maximum

2. If f(xcrit) < f(a) and f(xcrit) < f(b); f(xcrit) = minimum

Example 1. Determine the value of r at which the function z = r2 has a local
maximum or local minimum.

Solution: Because we are asked to determine the value of r at which the
function z = r2 has a local maximum or local minimum, we must di↵erentiate the
function z with respect to r, set the derivative equal to zero and solve for the critical
value(s) of r, rcrit.
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Figure 7: z(r) = r2.

d
dr · z(r) = d

dr · r
2 (di↵erentiation)

= 2r

d
dr · z(rcrit) = 0 (optimization)

2rcrit = 0

rcrit = 0

Is z(rcrit) = z(0) = 0 a local maximum or a local minimum?

r = �2 and r = 3 (test values)

z(�2) = 4 and z(3) = 9

z(0) < z(�2) and z(0) < z(3) (condition 2 is satisfied)

We conclude that the function z = r2 has a local minimum value at x = 0. Looking
at a graph of this function in figure (7), we observe that the function’s minimum
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value indeed occurs at r = 0.

Example 2. Determine the local maximum of the function f(x) = x3 � 27x.

Figure 8: f(x) = x3 � 27x

Solution: The function f(x) is shown in figure (8). Because we are asked to determine
the local maximum of f(x), we must di↵erentiate f(x) with respect to x, set the
derivative equal to zero and solve for the critical value(s) xcrit. We can then test these
critical values to determine if they represent a local maximum or local minimum.

20
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d
dx · f(x) = d

dr · (x
3 � 27x) (di↵erentiation)

= 3x2 � 27

d
dr · f(xcrit) = 0 (optimization)

3x2
crit � 27 = 0

3x2
crit = 27

x2
crit = 9

xcrit,1 = 3 and xcrit,2 = �3

Is f(xcrit,1) = f(3) = �54 a local maximum or a local minimum?

x = 2 and x = 4 (test values)

f(2) = �46 and z(4) = �44

f(3) < f(2) and f(3) < f(4) (condition 2 is satisfied)

Therefore, f(x) has a local minimum at x = 3, and the value is -54.

Is f(xcrit,2) = f(�3) = 54 a local maximum or a local minimum?

x = �2 and x = �4 (test values)

f(�2) = 46 and f(�4) = 44

f(�3) > f(�2) and f(�3) > f(�4) (condition 1 is satisfied)

Therefore, f(x) has a local maximum at x = �3, and the value is 54.

EXERCISES

1. Find the local maxima and/or mimima value of the function:
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a. F (r) = 15� 2r � r2 b. R(z) = 4z2 � 8z � 21

c. P (w) = w3 + 7
2w

2 � 6w � 10 [hint: 3w2 + 7w � 6 = (3w � 2)(w + 3)]

3 INTEGRATION

3.1 Definite Integrals: Areas

The integral of a function f(x) between two points a and b (with a < b) may
be interpreted as the area enclosed by the lines x = a, x = b and the function f(x).
Let’s take for example the function f(x) = y = 5 and consider the lines x = 2 and
x = 6. This is depicted in figure (8).

Figure 9:
R 6

2 5dx

It is clear that the area enclosed is 5 · 4 = 20. In the language of calculus, we say
we could find the integral of, or integrate the function f(x) = y = 5 from x = 2 to
x = 6 to determine the area enclosed.

Notation commonly used to indicate the integral of a function f(x) between
the points x = a and x = b is

Area = F (x) =

Z b

a

f(x)dx (16)
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where F (x) is the solutions to the integral (the total area) and a and b are known
as the bounds of the integral. The term dx at the end of the integral belongs to
the integral notation and indicates that f(x) is to be integrated with respect to the
variable x.
Applying the notation in equation (16) to our example in figure (9) would yield the
integral

Area = F (x) =

Z 6

2

5dx = 20 (17)

Because the bounds a and b are specified, this is known as a definite integral ,
which may be evaluated as

Area =

Z b

a

f(x)dx = F (x)|ba = F (b)� F (a) (18)

Notice that the bounds are transferred onto a bar to the right of the integral solution
F (x), with the upper bound b on top and the lower bound a on the bottom. The
bar indicates that the solution to the integral is to be evaluated at b (i.e. F (b) )
and subtracted by its value at a (i.e. F (a)). This yields the area enclosed by the
bounds x = a, x = b, and the curve f(x). The integral of f(x) = 5 with respect to x
is 5x (this will be explained in section 3.2), so equation (17) can be more explicitly
written as

Area =

Z 6

2

5dx = 5x|62 = 5 · 6� 5 · 2 = 20 (19)

You may be wondering why we use integrals to determine areas. In our
example, we could have easily just multiplied the length by the width to obtain the
area. The utility of integrals is that we can determine the area between 2 bounds
and under any curve! Figure (10) provides two examples in which the precise area
could not be determined without using an integral. Section 3.2 will introduce you
to a set of integration rules for finding the area under curves necessary for this course.

Remark: Equation (18) is known as the fundamental theorem of calculus given
that the function f(x) is continuous on the interval [a,b]. This need not concern our
integration interests, but is included for completeness.

3.2 Indefinite Integrals: +C

If the bounds are not specified, i.e.

F (x) =

Z
f(x)dx (20)

23

F(b))



Figure 10: Left to right:
R 2

1
1
xdx = log(2) and

R 1

0 x2dx = 1
3

the integral is known as an indefinite integral . In contrast to definite integrals,
which provide the area under the curve, indefinite integrals are used to determine
potential antiderivatives of the function f(x). This means that the solution to the
integral in equation (20) will remain a function of x and in addition must include an
arbitrary constant term +C attached to it. Notice that because the integral F (x)
is the anti-derivative of the function f(x), di↵erentiating the function F (x) with
respect to x would return the function f(x) since the constant C is independent of
x. Assuming we were not told the bounds of our example above, the solution to the
integral would be

F (x) =

Z
5dx = 5x+ C. (21)

Our goal now is to learn how to apply a set of integration rules in order to compute
the integrals we will encounter in this course.

3.3 Integration Rules

Table 2 lists fundamental rules for integrating polynomial, natural exponential
and natural logarithmic functions, as well as sums of these. Notice that rules
1-6 have the same name as the rules for di↵erentiation. Because the integral of
a function f(x) is the same as the function’s anti-derivative, di↵erentiating the
solutions to integration rules 1, 2, 5 and 6 would return the function f(x) (try
it!). In addition, we have included a rule for swapping the bounds of a definite
integral. This can be done if the integral is multiplied by a factor of �1. As we

24



did with di↵erentiation, we will continue with several examples. Remember that
you evaluate definite integrals using the given bounds and add a constant +C to
indefinite integrals.

Integration Rule Procedure (c is a constant)

1. Constant Rule Z
c · dx = c · x+ C

2. Power Rule Z
xc · dx =

1

c+ 1
· xc+1 + C

(c 6= -1, see rule 6)

3. Constant Multiple Rule Z
cf(x) · dx = c

Z
f(x) · dx

4. Sum Rule
Z

[f(x) + g(x)] · dx =

Z
f(x) · dx+

Z
g(x) · dx

5. Natural Exponential (e) Rule Z
ecx · dx =

1

c
· ecx + C

6. Natural Logarithmic (ln) Rule Z
x�1 =

Z
1

x
= ln(x) + C

7. Bound Swap Rule

�
Z b

a

f(x) · dx =

Z a

b

f(x) · dx

Table 2: Integration rules.
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Example 1. Find Z
(3u2 + 10u) · du.

Solution:
R
(3u2 + 10u) · du =

R
3u2 · du+

R
10u · du (sum rule)

= 3
R
u2 · du+ 10

R
u · du (constant multiple rule)

= 3 · 1
3u

3 + 10 · 1
2u

2 + C (power rule)

= u3 + 5u2 + C

Example 2. Find Z ✓
1

x
+ 4e�3x

◆
· dx.

Solution:
R �

1
x + 4e�3x

�
· dx =

R
1
x · dx+

R
4e�3x · dx (sum rule)

=
R

1
x · dx+ 4

R
e�3x · dx (constant multiple rule)

= ln(x) + 4
�

1
�3

�
e�3x + C (ln and e rule)

= ln(x)�
�
4
3

�
e�3x + C

Example 3. Find Z 4

1

✓
4

w
3
2

+ 3

◆
· dw.
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Solution:
R 4

1

⇣
4

w
3
2
+ 3

⌘
· dw =

R 4

1 4w� 3
2 · dw +

R 4

1 3 · dw (sum rule)

= 4
R 4

1 w� 3
2 · dw +

R 4

1 3 · dw (constant multiple rule)

= 4
�
�2

1

�
w� 1

2 |41 + 3 · w|41 (power and constant rule)

= �8
h

1

w
1
2
|41
i
+ 3 [w|41]

= �8
⇥
1
2 � 1

⇤
+ 3 [4� 1] (evaluation)

= 13

Notice in this example we rewrote the fraction 4

w
3
2

as 4w� 3
2 in order to use the

power rule. It will be necessary to rewrite fractions this way whenever the variable
of interest is in the denominator and is raised to any power other than 1. Of course,
when the variable is in the denominator and is raised to the power of 1, the ln rule
applies for integration.

EXERCISES

1. Evaluate the following indefinite integrals:

a.
R
(3y2 + 2ey)dy b.

R
( 3x + 6x2)dx c.

R
(13r

�2/3 + 5r�1 + 2)dr

2. Evaluate the following definite integrals:

a.
R e

1

�
5
x

�
dx b.

R 2

0 (2w + 5)dw c.
R zhigh
zlow

(10z4 + 8z3 + 2)dz

3. Evaluate the following indefinite integrals; a, b, c, and d are constants:

a.
R �

axb + c
x + de5x + c

�
dx b.

R �
at3 + 5ebt + c+ d

t +
2a
t4

�
dt

4. Evaluate the following definite integrals; cv, n, R, P and T are constants:

a.
R Thigh

Tlow
cvndT b.

R Vhigh

Vlow
(nRT/V )dV c.

R Vb

Va
PdV
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3.3.1 Substitutions

Similar to di↵erentiation substitutions in section 2.2.2, it is possible to encounter
integrals that depend on 2 variables which depend on each other. For example, the
indefinite integral Z

a3

b
da (22)

depends on the variables a and b, and we are given the constraint

b(a) = a2. (23)

Because the term da at the end of the integral indicates integration with respect to
a, we cannot treat b as a constant because it depends on a. If b was independent of
the integration variable a, then it could be treated as a constant. Therefore, we first
need to substitute b = a2 to obtain the integral

Z
ada. (24)

This integral has the solution
Z

ada =
1

2
a2 + C. (25)

.
EXERCISES

1. Evaluate the integrals given the constraints:

a.
R 5

1

��1
ab2

�
da ; b(a) = 2

a b.
R ln(2)

0 (3re2t)dt ; r(t) = e�t

c.
R �

c1T
V

�
dV ; T (V ) = c2V 2/7, c1 and c2 are constants

d.
R Vb

Va
PdV ; P (V ) = (nRT )

V , n, R and T are constants
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SOLUTIONS TO EXERCISES

Section 1:

1a. x5
1b. y�4 = 1

y4 1c. a6 1d. g6

2a. log5(xy) 2b. log17(w/z) 2c. r 2d. t

3a. 7 3b. 9 3c. 2 3d. 0

4a. 7 4b. ln(5) 4c. ln(1/5) 3d. 1

Section 2.2:

1a. f 0(x) = 15x2 + 8x+ 3 1b. r0(x) = 3� 5x�2
1c. t0(x) = �10

3 x
�8/3

2a. x0(r) = �2r�3 � 1
2e

�r/2
2b. f 0(r) = 1

r 2c. j0(x) = �45/x6

3a. M 0(L) = �3L2 + 1/3 3b. w0(L) = �4L�9/5 + eL + 1
3L

3c. f 0(L) = abLb�1 + c/L+ ghehL

4a. f 0(w) = ew(w + 1) 4b. p0(w) = 3
p
w + 2+3w

2
p
w 4c. r0(w) = ew [ln(w) + 1/w]

Section 2.2.1:

1a. F 0(x) = 9x2 + 8x 1b. W 0(x) = ln(2)

2a. P 0(r) = 6e2r + 1
r 2b. R0(r) = 2r

Section 2.2.2:

1a.
@G
@a = b+ 2a 1b.

@Z
@a = 1

2be
�7a/2 + 3b/a
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Section 2.3:

1a. f 0(s) = 9s2es
3
1b. r0(s) = 7

3

⇣
3s2+4s
s3+2s2

⌘
1c. g0(s) = 7

3

⇣
3s2+4s
s3+2s2

⌘

Section 2.3.1:

1a. B0(t) = 8ty2 + 2xy
t + 1

1b. F 0(t) = 5exyt
��2

3 yt�2/3 + 2xte2t + xy
�

Section 2.4:

1a. Flocal,max = 16 1b. Rlocal,min = �25

1c. Plocal,min = �719
54 and Plocal,max = 12.5

Section 3.3:

1a. y3 + 2ey + C 1b. 3 ln(x) + 2x3 + C 1c. r1/3 + 5 ln(r) + 2r + C

2a. 5 2b. 14 2c. 2 [(z5h + z4h + zh)� (z5l + z4l + zl)]

3a.
a

b+1x
b+1 + c ln(x) + 1

5de
5x + cx+ C 3b.

a
4 t

4 + 5
be

bt + ct+ d ln(t)� 2
3at

�3 + C

4a. cvn[Th � Tl] 4b. nRT ln(Vh/Vl) 4c. P [Vh � Vl]

Section 3.3.1:

1a. 3 1b. 3 1c.
7
2c1c2V

2/7 + C 1d. nRT ln(Vb/Va)
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