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Abstract
Gels composed of semiflexible polymers have remarkably complex
deformational properties. Due to the introduction of a new mesoscopic length
scale, the persistence length, the deformation field of these materials can depart
from the predictions of continuum elastic theories over mesoscopic lengths. In
this paper, we review a recently proposed phase diagram for such semiflexible
gels and discuss the implications of this research for modelling the cytoskeleton.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

1.1. Flexible versus semiflexible gels and the cytoskeleton

Gels constituted from semiflexible polymers have qualitatively different elastic properties over
mesoscopic length scales than gels constructed from flexible polymers. The underlying cause
of this difference is that in the semiflexible gel, there is a new, mesoscopic length scale set by
the persistence length of the filaments. For the gels considered here, the persistence length �p is
generically larger than the filament length L, and the network mesh size or correlation length.
In this case, we note that the static elastic moduli of the gel depend sensitively on the density of
permanent cross-links, which in turn can differ substantially from the density of entanglements.
As we show here, the moduli can also depend sensitively on the contour length L, or molecular
weight. These results stand in contrast to the case of flexible polymers, in which the plateau
modulus is essentially a function only of the density of entanglements [1, 2]. This difference
reflects a principal distinction between the two chemical systems. In the semiflexible gel, the
persistence length of the polymers ensures that each polymer chain at a permanent cross-link
retains its chemical identity through that cross-link. In flexible gels, each piece of polymer
between two cross-links can be considered to be an independent entity even though those
polymer segments between different permanent cross-links may, in fact, be part of the same
covalently bonded chain. It is only through the long-range correlation in chain tangent vectors
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imposed by the chain stiffness (alternatively the long persistence length) that the constituent
elements of a semiflexible gel retain information on chemical identity from one cross-link to
the next.

A second consequence of the long persistence length of the chains making up a semiflexible
gel is that there are now two separate modes of elastic energy storage under deformation. The
semiflexible chains must have an elastic bending energy in addition to the usual chain stretching
energy. Thus, under an externally imposed deformation, the semiflexible gel stores energy in
both bending and stretching modes of the chain. In contradistinction, a gel made of flexible
polymers can store energy only in the stretching modes of the filaments. We will show that
the relative partitioning of energy into bending and stretching modes is an important measure
of how much the gel’s deformation departs from the predictions of continuum elasticity over
mesoscopic lengths.

It is important to note that semiflexible gels are ubiquitous materials—the cytoskeleton
of eukaryotic cells is based primarily on a semiflexible, cross-linked gel constructed from
actin filaments [3–7]. F-actin, or filamentous actin is a linear protein aggregate with a cross
section of 7 nm and lengths under physiological conditions of 1–5 µm. These filaments are
remarkably stiff having a thermal persistence length of 17 µm [8]. The semiflexible polymer
network of the cytoskeleton is cross-linked by a large repertoire of actin binding proteins
so that the mean distance between cross-links can be as small as 0.1 µm, a distance much
shorter than either the typical filament length or the thermal persistence length. This network
can be a highly nonequilibrium structure: actin filaments are continually polymerizing and
depolymerizing while molecular motors (e.g. myosin) periodically apply localized stresses
to various points within the living network. The biological significance of this chemically
heterogeneous structure is that the cytoskeleton is the principal source of mechanical integrity
of the cell. It is also a structure by which the cell both exerts stresses on its external environment
and senses its local mechanical environment. The cytoskeleton is thus the primary agent
involved in cellular structure, motility, and mechanosensory transduction. A quantitative
theory for displacement and stress propagation through the cytoskeleton is then necessary
to understand the general framework for cellular force generation and transduction [4, 9–
11] that underlies such fundamental biological processes as cell division, motility [12], and
adhesion [16, 14, 13, 15]. Understanding stress propagation in cells also has implications for
the interpretation of intracellular microrheology experiments [17].

1.2. The model

In this paper we do not pursue this biophysical question in full detail, but rather examine a simple
model for a semiflexible, cross-linked gel that nevertheless demonstrates some of the novel
elastic properties of such networks. Our model system is a two-dimensional random network of
monodisperse, semiflexible filaments that are permanently cross-linked at all crossing points.
These cross-links are assumed to apply arbitrary constraint forces at the cross-link, but still
allow the free rotation of the two filaments. Each filament has a stretching modulus µ and
bending modulus κ so that the Hamiltonian of a filament is given by:

H = 1

2
κ

∫
ds (∇2u)2 +

1

2
µ

∫
ds

(
dl

ds

)2

(1)

where s is the arc length along the undeformed filament, u(s) is the transverse displacement of
the filament, while l(s) is the local extension/compression of that filament along its undeformed
contour. See figure 1.

A gel composed of filaments obeying the above Hamiltonian was numerically constructed
by laying down straight rods of length L in the two-dimensional simulation box with random
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(A) (B)

Figure 1. The left figure (A) is an example of a network with a cross-link density L/�c ≈ 29.09 in a
shear cell of dimensions W ×W and periodic boundary conditions in both directions. This example
is small, W = 5

2 L; more typical sizes are W = 5L to 20L . The right figure (B) demonstrates the
bending and stretching deformation of a single semiflexible filament. The solid red curve represents
the deformed filament, while the dotted black curve is its undeformed contour.

centre positions and randomly distributed orientations. Wherever two rods crossed, they were
permanently cross-linked; a network constructed in this manner has no initial strain energy.
The sample with periodic boundary conditions was then subjected to uniform deformations via
the Lees–Edwards method [18]4. Using a conjugate gradient method, we relaxed the system
to its local energy minimum in this zero-temperature calculation.

For networks constructed in this manner there are three length scales. The first is L, the
filament length. The second is �c, the mean distance between cross-links. This is the only
measure needed to describe the isotropic random network. Since in two-dimensions there is
a one-to-one mapping from cross-link density to filament density, this length also describes
the filament concentration in the network. In three-dimensional generalizations of this model,
however, �c will be related to the density of cross-linkers; for the sake of clarity we will refer to
it in that manner while discussing our two-dimensional system as well. The final length scale
in the problem is given by �b = √

κ/µ, which is the length over which bends in the filaments
relax, as can be shown from equation (1). For a macroscopic elastic rod, this is a length of the
order of the radius a. Hereafter, we will discuss the system in terms of L, �c, and �b.

2. Results

2.1. Elastic energy and moduli

From the total elastic energy stored in the sample, one can determine the collective, zero-
frequency elastic moduli of the system. Further numerical details can be found in [19–
22]. Examples of the sheared network are shown in figure 2. From that figure it is
apparent that there is a significant, qualitative change in the form of the elastic energy storage
between the less dense network where the energy is stored primarily in the bending modes
of the filaments ((A)—the left image) and the more dense network where the energy is
stored in the extensional/compressional modes of the filaments ((B)—the right image). The
reader may convince him/herself that for a network with freely rotating cross-links under
affine deformation, one should expect that all the elastic energy would be stored in the
extensional/compressional modes of the filaments (blue in figure 2). See inset of figure 3
as well. Thus, we see that upon change in cross-link density the network crosses over from a
deformation regime inconsistent with the assumption of affine deformation where the energy is

4 The uniaxial strain γyy was imposed by allowing an infinitesimal gap between cell images in the y-direction, valid
for our linearized, static networks [18].
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Stretch Bend

(A) (B)

Figure 2. Examples of networks in mechanical equilibrium in the nonaffine (A) and affine (B)
regimes. In both images the filament rigidity is �b/L = 0.006, but in (A) L/�c = 8.99, while in (B)
L/�c = 46.77. Dangling ends have been removed, and the thickness of each line is proportional
to the energy density, with a minimum thickness so that all rods are visible (most lines in (a) take
this minimum value). The calibration bar shows what proportion of the deformation energy in a
filament segment is due to stretching or bending. Note the change in the partitioning of the elastic
energy between stretching and bending modes between the two deformation regimes.
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Figure 3. Shear modulus G versus filament rigidity �b/L for L/�c ≈ 29.09, where G has been
scaled to the affine prediction for this density. The straight line corresponds to the bending-
dominated regime with G ∝ κ , which gives a line of slope 2 when plotted on these axes. Inset: the
proportion of stretching energy to the total energy for the same networks, plotted against the same
horizontal axis �b/L .

stored primarily in the bending of the filaments to a regime in which the filament deformation
is almost entirely extensional/compressional, which is consistent with the assumption of affine
deformation.

To further clarify this point, we examine the collective shear modulus of the network.
The assumption of affine deformation allows one to calculate the static shear modulus of the
network in terms of the extension modulus of the filaments:

Gaffine = π

16

µ

L

(
L

�c
+ 2

�c

L
− 3

)
. (2)
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We extract the shear modulus numerically and compare it with the value calculated above in
figure 3. We see that the maximum modulus of the system is the affine value computed above.
In addition, for the cases where the modulus departs significantly from its affine value, it scales
as G ∼ �2

b ∼ κ showing that the bending modes of the filaments dominate the elastic response
function in the regime where the affine calculation dramatically fails [23]. If we assume (as
will be demonstrated below) that the appearance of filament bending and the departure of the
effective shear modulus from its affine value both signify a nonaffine deformation regime of
the material, then the figures 2 and 3 taken together demonstrate two trends. The network
becomes less affine when either: (i) the bending modulus decreases, or (ii) the density of
cross-links decreases.

2.2. Affine versus nonaffine deformation

In order to discuss the properties of the deformation field for the various realizations of the
network, one should not have to resort to energetics,but rather directly describe the geometry of
the deformation. We wish to determine whether the deformation field is affine under uniformly
imposed external deformations, by which we mean that it is self-averaging—all parts of the
sample deformation in a manner identical to the whole. This self-averaging property may
well be a function of length scale: the deformation field when suitably coarse-grained to a
length g may have the self-averaging property, while it may not self-average when examined
at a finer length scale, e.g. g → g/2. At large enough scale the system must trivially self-
average so that the sample will always be affine at the sample size. We introduce a measure
of nonaffinity that is a function of length scale r , �(r). To define this scalar quantity, we
note that it must be built from the deformation tensor, ∂i u j , where u is the displacement
field in the material. To distinguish nonaffine from affine deformations, one must look at the
spatial gradients of this deformation tensor or compare it to a reference value computed for
purely affine deformation. Numerically, it is more convenient to choose the latter. Finally,
if we want a scalar quantity to define nonaffinity, we must consider the rotational invariants
of the tensor. In two-dimensions, the deformation tensor may be decomposed into a scalar,
a pseudoscalar, and a traceless symmetric tensor. Here we focus on the pseudoscalar part
that may be interpreted as a local rotation angle. To be concrete, one may image painting
lines of length g throughout the undeformed sample and then observe how these lines rotate
under the imposed shear deformation uaffine

i j = x̂i ŷ jγ0. One may then compute the expected

rotational angle under an affine deformation: �θ affine = −γ0 sin2 θ , where θ is the angle
that the undeformed line made with the x̂-axis. We then define the degree of nonaffinity at
the length scale g by a positive definite quantity which measures the difference between the
observed and affine rotation angles:

�(g) = (1/γ 2
0 )

〈(
�θ − �θ affine

)2
〉
g
, (3)

where the angled brackets, 〈 〉g denote averaging over the sample of all lines of length g. From
equation (3), it is clear that �, being a positive definite quantity, will always have a nonzero
average for any realization of the network. Due to the imposed affine deformation at the
boundary of our sample, � must go to zero at length scales approaching the system. There is,
however, a nontrivial dependence of �(r) as r becomes small compared to the system size.
We find that all networks examined fall into one of two broad categories with respect to the
dependence of �(r) on length scale r . For networks that we will define as affine, �(r) grows
with decreasing length scale but then plateaus at some finite value at length scales much larger
than the mean distance between cross-links. In contrast, we observe that in the second class,
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Figure 4. Plot of the affinity measure 〈�θ2(r)〉 normalized to the magnitude of the imposed strain
γ against distance r/L , for different �b/L . The value of r corresponding to the mean distance
between cross-links �c is also indicated, as is the solid line 1

γ 2 〈�θ2(r)〉 = 1, which separates affine

from nonaffine networks to within an order of magnitude (the actual cross-over regime is somewhat
broad). In all cases, L/�c ≈ 29.1 and the system size was W = 15

2 L .

which we call nonaffine, the measure of nonaffinity, �(r) grows monotonically as r decreases
(see figure 4).

It is important to note that the two classes of networks (affine and nonaffine) can be
differentiated by one criterion, the dimensionless ratio of the filament length L to a length λ is
large compared to one for affine networks and small compared to one for nonaffine networks.
We introduce and discuss this new length scale λ below.

3. The shear modulus and the deformation phase diagram

3.1. λ: a scaling argument

We now present a simple scaling argument to determine λ. We identify λ as the length along a
filament over which the deformation is nonaffine. First we note that there are only two lengths
in the problem to which we may compare L: �b, �c. Thus, we expect that λ can be written as

λ ∼ �c(�c/�b)
z . (4)

It remains to determine the exponent z. To proceed, we note that the stretching-only
solution presented above assumes that the stress is uniform along a filament until reaching
the dangling end. It is more realistic to suppose that it vanishes smoothly. If the rod is very
long, far from the ends and near the centre of the rod, it is stretched/compressed according
to the macroscopic strain γ0. We assume that this decreases toward zero near the end, over a
length l‖, so that the reduction in stretch/compression energy is of order µγ 2

0 l‖. The amplitude
of the displacement along this segment, which is located near the ends of the rod is of order
d ∼ γ0l‖. This deformation, however, clearly comes at the price of deformations of surrounding
filaments, which we assume to be primarily bending in nature (the dominant constraints on this
rod will be due to filaments crossing at a large angle). The typical amplitude of the induced
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curvature is of order d/ l2
⊥, where l⊥ characterizes the range over which the curved region of the

crossing filaments extends. This represents what can be thought of as a bending correlation
length, and it will be, in general, different from l‖. The latter can also be thought of as a
correlation length, specifically for the strain variations near free ends. We determine these
lengths self-consistently as follows.

The corresponding total elastic energy contribution due to these coupled deformations is
of order

�E1 = −µγ 2
0 l‖ + κ(γ0l‖/l2

⊥)2l⊥(l‖/�c), (5)

where the final ratio of l‖ to �c gives the typical number of constraining rods crossing this
region of the filament in question. In simple physical terms, the rod can reduce its total elastic
energy by having the strain near the free ends deviate from the otherwise affine, imposed strain
field. In doing so, it results in a bending of other filaments to which it is coupled. From this, we
expect that the range of the typical longitudinal displacement l‖ and transverse displacement
l⊥ are related by

l3
⊥ ∼ �2

bl2
‖/�c (6)

in order to maximize the reduction in elastic energy �E1.
Of course, the bending of the other filaments will only occur because of constraints on them.

Otherwise, they would simply translate in space. We assume that the transverse constraints
on these bent filaments to be primarily due to compression/stretching of the rods which are
linked to them. These distortions will be governed by the same physics as described above.
In particular, the length scale of the corresponding deformations is of order l‖, and they have
a typical amplitude of d . Thus, the combined curvature and stretch energy is of order

�E2 = µγ 2
0 l‖(l⊥/�c) + κ(γ0l‖/l2

⊥)2l⊥, (7)

where, in a similar way to the case above, l⊥/�c determines the typical number of filaments
constraining the bent one we focus on here. Minimizing �E2 determines another relationship
between the optimal bending and stretch correlation lengths, which implies:

l4
⊥ ∼ �2

bl‖�c. (8)

Thus, the longitudinal strains of the filaments decay to zero over a length of order

l‖ ∼ �c(�c/�b)
2/5, (9)

while the resulting bending of filaments extends over a distance of order

l⊥ ∼ �c(�b/�c)
2/5. (10)

The physical implications of equations (9) and (10) is that a length of each filament of order l‖
experiences nonaffine deformation and this nonaffine deformation causes changes in the local
strain field over a zone extending a perpendicular distance l⊥ from the ends of that filament.
Thus when l‖ becomes comparable to the length of the filament, L, the network should deform
in a nonaffine manner. We will refer to this length along the filament contour over which one
expects to find nonaffine deformation as λ and we identify the mean-field prediction for the
scaling exponent z in equation (4) as z = 2/5.

Since the ratio L/λ controls the degree of nonaffinity of the network, we expect that
mechanical properties of the network also depend on this ratio. In particular, if one were to
scale the shear modulus by the affine shear modulus (equation (2)) and the filament length by
λ, one should expect all data to collapse onto a single master curve. This is indeed the case
as shown in figure 5. From the optimization of this data collapse, we determine the scaling
exponent, z = 1/3. The discrepancy between this result and our mean-field prediction is likely
due to corrections to the naive scaling caused by the proximity of the second order critical point
corresponding to rigidity percolation [24], which we have discussed further in [19].
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Figure 5. The master curve of G/Gaffine plotted against L/λ with λ = �c(�c/�b)
1/3 for different

L/�c, showing good collapse. The enlarged points for L/�c ≈ 29.09 correspond to the same
parameters as in figure 4. Inset: the same data plotted against L/λ2 with λ2 = �c(�c/�b)

2/5, as
predicted by the scaling argument in the text, showing slight but consistent deviations from collapse
for this range of L/�c.

3.2. The phase diagram

The distinction which we draw between affine and nonaffine deformation regimes allows us
to draw a phase diagram describing the entire range of possible deformation characteristics
of semiflexible networks. The diagram is spanned by the independent axes of filament length
L and cross-link concentration c. In addition to the cross-over between the affine (A) and
nonaffine (NA) regimes, we include on the diagram a line of second order critical points
corresponding to the rigidity percolation of the network. Below this solid line in figure 6 the
material has no static shear modulus and is thus a solution. The dashed lines in the figure
represent the cross-over in the gel (solid) phase of the material between the NA and A regimes.
We emphasize that the NA −→ A cross-over is not a thermodynamic phase transition like
rigidity percolation. To complete the description of the phase diagram we note that there
are, in reality, two different affine regimes depending on the network density and the bending
modulus of the filaments.

To understand the appearance of the two different affine regimes: AE, the affine entropic
regime, and AM, the affine mechanical regime, we note that the extension modulus of the
filaments comes from two different sources. A semiflexible filament in thermal equilibrium has
for entropic reasons a population of transverse fluctuations. These fluctuations store filament
arc length which is recovered only under applied tension, which modifies the spectrum of these
transverse oscillations. From such an analysis, originally discussed in [25], one computes the
extension modulus to be

µthermal = κ�p/�
3 (11)

where � is the filament length and �p is the thermal persistence length. As the cross-link density
increases, this extensional modulus related to the pulling out of transverse thermal fluctuations
increases.

In addition to what we term the entropic or thermal modulus of the filament, there is also
a mechanical modulus due to the actual change in the arc length of the rod. This modulus can
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Figure 6. A sketch of the expected diagram showing the various elastic regimes in terms of
molecular weight L and concentration c ∼ 1/ lc . The solid line represents the rigidity percolation
transition where rigidity first develops at a macroscopic level. This transition is given by L ∼ c−1.
The other, dashed lines indicate cross-overs (not thermodynamic transitions), as described in the
text. As sketched here, the cross-overs between nonaffine and affine regimes demonstrate the
independent nature of these cross-overs from the rigidity percolation transition.

be estimated by assuming that the filament to be a homogeneous rod of cross-sectional radius
a made up of a material that has Young’s modulus Yf . In that case the extensional modulus
is given by: µmechanical = a2Yf . A comparison of the length dependent entropic modulus
to the length independent mechanical modulus yields a critical distance between cross-links
�∗ ∼ (a2�p)

1/3. For �c < �∗, the mechanical modulus is the smaller of the two moduli so
that the compliance of the individual filaments is dominated by the actual stretching of the
filaments and the network will be in the AM regime. If the cross-link density is lowered so that
�c > �∗, the extensional modulus will be primarily entropic in origin and the network will be in
the AE regime. Since the network in both the AE and AM regimes deforms affinely, the linear
mechanical response of the system is qualitatively similar. The nonlinear response to stress is
nevertheless quite distinct since the entropic extension modulus is strongly strain-hardening as
the population of transverse undulation modes is depleted under extension. The AM regime
will not show such strongly nonlinear behaviour. Finally, no similar distinction need be made
in the NA regime as the moduli of the network are controlled by the bending modulus of the
rod. Here the shear modulus is generically much smaller than in the affine regimes and it
should have a large linear response regime.

4. Biological implications

What are the implications of this analysis for the cytoskeleton? The phase diagram in figure 6
is generally applicable to all semiflexible networks; it remains to locate the F-actin network
at physiological concentrations on this diagram. Firstly, we note that the thermal persistence
length of F-actin is of the order of 10 µm. For a cross-link density leading to �c ∼ 200 nm, we
find that the entropic modulus dominates the response of the individual filaments to applied
tension. Thus, we find combining equations (11) and (4) that λ ∼ √

�p�c ∼ 1 µm. Since
typical cytoskeletal F-actin filaments have comparable lengths, we see that L/λ ∼ 1 and these
cytoskeletal networks are in the cross-over regime between the NA and AE regimes.

This result suggests that the cytoskeleton cannot be modelled as a continuum elastic
object even at length scales of a few microns. We conclude that the theoretical study of force
generation in and propagation through the cytoskeleton should not be based on a naive model
of continuum, isotropic elasticity. Similarly, intracellular microrheological data should not be
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analysed along such lines. In the broader view, one may wonder the why cytoskeletal network
seems to be tuned to the cross-over between the NA and AE regimes. Although we have no way
of knowing that such tuning was selected for in the evolutionary sense, we note that this cross-
over region is a region in which small changes in λ (changed through local modifications in
the cross-link density) lead to order of magnitude changes in the shear modulus—see figure 5.
In addition, by tuning from the NA to AE regimes, the network shifts from having a large
linear-response regime to a highly strain-hardening regime. Thus proximity to the cross-
over does create a highly tunable system (both in terms of linear and nonlinear response)
controlled by small modifications in the concentration of actin cross-linking proteins. Such
mechanical/rheological tunability may also be highly desirable in biomimetic materials based
on F-actin chemistry.
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