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We present a general theory for the equilibrium structure of cylindrical tubules and helical ribbons of chiral
lipid membranes. This theory is based on a continuum elastic free energy that permits variations in the
direction of molecular tilt and in the curvature of the membrane. The theory shows that the formation of
tubules and helical ribbons is driven by the chirality of the membrane. Tubules have a first-order transition
from a uniform state to a helically modulated state, with periodic stripes in the tilt direction and ripples in the
curvature. Helical ribbons can be stable structures or unstable intermediate states in the formation of tubules.

PACS number~s!: 68.15.1e, 61.30.2v, 87.10.1e, 87.22.Bt

I. INTRODUCTION

Chiral amphiphilic molecules can self-assemble into mi-
crostructures with a variety of morphologies. Two of the
most interesting morphologies, both for basic research and
for technological applications, are cylindrical tubules and he-
lical ribbons@1–3#. Tubules are bilayer or multilayer mem-
branes of amphiphilic molecules wrapped in a cylinder, as
shown in Fig. 1@4#. They are observed in a variety of sys-
tems, including diacetylenic lipids@1,5#, bile @6#, surfactants
@7#, and glutamates@8#. In diacetylenic lipid systems, the
tubule diameter is typically 0.5mm and the tubule length is
typically 50–200mm; in other systems, the tubule dimen-
sions are typically several times larger@6#. In most of these
systems, tubules exhibit a helical ‘‘barber-pole’’ pattern on
the surface of the cylinder. Helical ribbons are similar micro-
structures, consisting of long twisted strips of membranes
with their edges exposed to the solvent, as shown in Fig. 2
@9#. In some cases, helical ribbons are unstable precursors to
the formation of tubules; in other cases, helical ribbons ap-
pear to be stable. Cylindrical tubules have been studied ex-
tensively for use in several technological applications, such
as electroactive composites and controlled-release systems
@2#. Helical ribbons have not been used in technological ap-
plications, but they have also been studied extensively as
part of an effort to rationally control the self-assembly of
tubules.

There have been three general approaches to the theory of
tubules and helical ribbons. First, de Gennes argued that a
membrane of chiral molecules in any tilted phase must de-
velop a spontaneous electrostatic polarization@10#. This po-
larization can induce a narrow strip of membrane to buckle
into a cylinder. The original theory of de Gennes described
buckling along the long axis of a cylinder, but a straightfor-
ward modification describes helical winding due to electro-
static interactions. This theoretical approach predicts that
adding electrolytes to the solvent should increase the radius
of the resulting tubules, because the electrostatic interaction
would be screened by electrolytes in solution. However, ex-
periments have shown that electrolytes in solution do not
affect the formation or radius of tubules@11#, except for the
particular case of tubules composed of amphiphiles with

charged head groups@12#. Thus electrostatic interaction is
very probably not a dominant factor in tubule formation.

As an alternative theoretical approach, Lubensky and
Prost derived a general phase diagram for membranes with
in-plane orientational order, which predicts cylinders as well
as spheres, flat disks, and tori@13#. Within the cylindrical
phase, the cylinder radius and length are determined by a
competition between the curvature energy and the edge en-
ergy. One important prediction of this theory is the scaling
r}l 1/2 between the tubule radiusr and the tubule length
l . However, experiments have found no correlation between
r and l . Rather, in a typical sample of tubules,r is quite
monodisperse whilel varies widely@14#. Thus the compe-
tition between curvature energy and edge energy is also not a
dominant factor in tubule formation.

A third approach, which is consistent with the experimen-
tal results on lipid tubules, is based on the chiral packing of
the molecules in a membrane. Helfrich and Prost have shown
that a chiral membrane in a tilted phase will form a cylinder
because of an intrinsic bending force due to chirality@15#.
This bending force arises because long chiral molecules do
not pack parallel to their neighbors, but rather at a nonzero
twist angle with respect to their neighbors. If the molecules
lie in bilayers and are tilted with respect to the local layer
normal, the favored twist from neighbor to neighbor leads
the whole membrane to twist into a cylinder.

Several investigators have generalized the original
Helfrich-Prost concept of an intrinsic chiral bending force in
different ways. Ou-Yang and Liu have developed a version
of this theory based on an analogy with cholesteric liquid
crystals@16#. Chappell and Yager have developed an analo-
gous theory in which the direction of one-dimensional chains
of molecules, rather than the direction of molecular tilt, de-
fines a vector order parameter within the membrane@17#.
Nelson and Powers have used the renormalization group to
calculate the effects of thermal fluctuations on tubules@18#.
This calculation predicts an anomalous scaling of the tubule
radius as a function of the strength of the chiral interaction.
Chunget al. have considered the full elastic anisotropy of a
membrane and have related the pitch angle of tubules to a
ratio of membrane elastic constants@6#. They have also made
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predictions for the kinetic evolution of helical ribbons into
tubules.

In our earlier paper, we generalized the Helfrich-Prost
concept in another way@19#. In that theory, we began with a
three-dimensional~3D! liquid-crystal free energy and applied
it to the case of chiral molecules in a membrane. We showed
that the chiral term in this free energy has two simultaneous
effects: it leads the membrane to twist into a cylinder and it
induces a variation in the direction of the molecular tilt on
the cylinder. Through this calculation, we predicted that tu-
bules can form periodic modulated structures characterized

FIG. 1. Transmission electron micrograph of a tubule with ad-
sorbed Pd-Ni catalyst particles on the surface@4#. The diameter of
the tubule is approximately 0.5mm. Reprinted from Ref.@19#.

FIG. 2. Scanning electron micrograph of helical ribbons formed
from a racemic mixture ofD and L diacetylenic phospholipids.
Note that the racemic mixture forms distinct right- and left-handed
helical ribbons. The diameter of the helical ribbons is approxi-
mately 0.5mm. Reprinted from Ref.@9# with permission~© 1988
Elsevier Scientific Publishers!.

FIG. 3. Schematic view of the striped pattern in the tilt direction
in the modulated state of a tubule. The arrows indicate the direction
of the molecular tilt, projected into the local tangent plane.
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by helical stripes in the tilt direction winding around the
cylinders, as shown in Fig. 3. These stripes are analogous to
the stripes seen in thin films of chiral smectic liquid crystals
@20–22#, but in a cylindrical rather than a planar geometry.
We argued that these stripes correspond to the helical sub-
structure that is often observed on tubules.

In this paper, we further extend this theoretical approach
to provide a more unified and systematic model of tubules
and helical ribbons. First, we combine our earlier theory with
the Chung theory to obtain a theory of tubules with both
elastic anisotropy and tilt modulation. We derive explicit ex-
pressions for the average direction of the tilt and for the
direction of the modulation, in terms of the elastic coeffi-
cients, and we show that these directions are different. Next,
we show that the same theory can also be applied to helical
ribbons. This theory shows that helical ribbons can be stable
microstructures for a certain range of parameters; they are
not necessarily intermediate states in the formation of tu-
bules. Finally, we investigate the effects of the striped tilt
modulation on the detailed shape of tubules. Based on recent
models of lipid bilayers@23,24#, we expect a modulation in
the tilt to induce a modulation in the curvature. We predict
the curvature modulation illustrated in Fig. 4, which re-
sembles thePb8 rippled phases of lyotropic liquid crystals
@25,26#.

The plan of this paper is as follows. In Sec. II, we con-
struct a free energy for tubules and helical ribbons, which
includes elastic anisotropy and includes the possibility of tilt
modulation. In Sec. III, we use this free energy to predict the

radius and tilt direction for tubules with uniform tilt. The
results of that section are in exact agreement with the theory
of Chunget al. In Sec. IV, we consider tubules with a modu-
lation in the tilt. We propose an explicit ansatz for that modu-
lation and then minimize the free energy over the parameters
in that ansatz. We find that there is a first-order transition
from uniform to modulated tubules. In Sec. V, we apply the
same theory to helical ribbons. The theory predicts the range
of parameters in which helical ribbons are stable. In Sec. VI,
we investigate ripples in the curvature of tubules and helical
ribbons. We derive an explicit expression for the ripple shape
that corresponds to our ansatz for the tilt modulation. Finally,
in Sec. VII, we discuss these theoretical predictions and
compare them with experimental results.

II. FREE ENERGY

In this section, we construct a free energy for tubules and
helical ribbons. In this free energy, we suppose that the mem-
brane is in a fluid phase, which may have hexatic bond-
orientational order but does not have crystalline positional
order. This assumption is based on the theoretical argument
of Nelson and Peliti, who showed that a flexible membrane
cannot have crystalline positional order in thermal equilib-
rium at nonzero temperature, because thermal fluctuations
induce dislocations, which destroy this order on long length
scales@27#. This assumption is also supported by two types
of experimental evidence. First, Treanor and Pace found a
distinct fluid character in nuclear magnetic resonance and
electron spin resonance experiments on tubules@28#. Second,
Brandowet al. found that tubule membranes can flow to seal
up cuts in the membrane from an atomic force microscope
tip @29#. This flow indicates that the membrane has no shear
modulus@30#. Further information on the membrane phase
comes from Thomaset al., who found long positional corre-
lation lengths of 0.068–0.135mm in synchrotron x-ray scat-
tering studies of tubules@31#. Taken together, all of these
experimental results suggest that tubule membranes are in a
highly correlated hexatic phase.

In this paper, we do not attempt to derive the free energy
from a 3D liquid-crystal free energy, as in our earlier paper
@19#. Rather, we use a 2D differential-geometry notation,
which is more general. In this notation, the curvature of a
membrane is described by the curvature tensorKab . The
orientation of the molecular tilt is represented by the unit
vectormW . As shown in Fig. 5,mW is the projection of the
molecular directornW into the local tangent plane, normalized
to unit magnitude.

A membrane may consist of a single domain, in which the
curvatureKab is low and the tilt directionmW varies smoothly.
Alternatively, a membrane may consist of many internal do-
mains separated by domain walls. Domain walls are sharp
boundaries between domains. Across a narrow domain wall,
mW jumps abruptly andKab may become high. Here we will
consider the free energy of domains and domain walls sepa-
rately.

First, we consider a domain of low curvature and
smoothly varying tilt. Within a domain of a membrane, the
free energy can be written as

FIG. 4. Schematic view of the ripples in the curvature in the
modulated state of a tubule. The amplitude of the ripples has been
exaggerated for clarity.
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Here the surface area element isdA5Agd2x, eab is the an-
tisymmetric symbol, andDa is the covariant derivative
within the membrane. Throughout this work, we shall imply
summation over repeated indices, such asa in the first term
above. The first term ofF is the standard Helfrich bending
energy of the membrane@32#. The coefficientk is the isotro-
pic rigidity. The second term represents the anisotropy of the
rigidity. The coefficientk8 is the difference between the en-
ergy required to bend the membrane parallel to the tiltmW and
the energy required to bend it perpendicular tomW . In general,
k8 can be either positive or negative. The third term, intro-
duced by Helfrich and Prost@15#, is a chiral term that favors
curvature in a direction 45° frommW . The coefficientlHP is a
measure of the magnitude of the chiral interaction between
the molecules in the membrane. The fourth term is another
chiral term, which favors a bend inmW . This term was intro-
duced by Langer and Sethna in the context of flat films of
chiral liquid crystals@20#. The coefficientlLS should have
the same magnitude aslHP; both coefficients are compa-
rable toKq in the notation of our earlier paper@19#. How-
ever, there is no symmetry reason whylLS andlHP must be
equal. The fifth term, with coefficientg, is the coupling be-
tween curvature of the membrane and splay ofmW . It can be
understood in two equivalent ways:~a! the curvature of the
membrane breaks the symmetry between the two monolayers
of a bilayer and hence induces a splay inmW or ~b! a splay in
mW induces a curvature of the membrane to keep the mol-
ecules more nearly parallel in three dimensions. This term is
equivalent to terms that have been considered in the

Lubensky-MacKintosh theory ofPb8 rippled phases@23,24#.
The final pair of terms is the 2D Frank free energy for varia-
tions inmW . It provides an energy penalty for tilt variations
and hence limits those variations. The coefficientc is a
single Frank constant.

We now consider a domain wall between two domains.
Across a domain wall, the tilt directionmW changes abruptly.
The curvatureKabmay also become large, giving a ‘‘crease’’
in the membrane. For those reasons, different parts of the
molecules come into contact at a domain walls than inside
the domains. A domain wall therefore costs an energyeW per
unit length. The domain-wall energy cannot be derived from
the free energy~2.1! within a domain; rather, it is an addi-
tional parameter that describes narrow walls where that free
energy does not apply. For any morphology that includes
domain walls, with a total wall lengthLW , the total free
energy isF tot5F1eWLW .

In the free energy~2.1!, the termlLSAgeabD
amb is a total

derivative. If the curvature is constant, as in a perfect cylin-
der, the termgKa

aDbm
b is also a total derivative. One might

think that these terms integrate to constants and hence do not
affect the morphology of a membrane. However, these terms
are significant if the membrane consists of internal domains
separated by domain walls, because they then become line
integrals along the domain walls. Indeed, these terms favor
the formation of a series of domains separated by domain
walls, because they can contribute a negative free energy for
each domain. Thus, in the rest of this paper, we will retain
these terms and we will explicitly compare their negative
contribution to the free energy with the energy cost of the
domain walls.

The free energy~2.1! does not contain an exhaustive list
of all the terms permitted by symmetry; other terms are also
possible. For example, the term (mambKab)

2 would give an
additional elastic anisotropy, which has been considered by
Chung et al. @6#. The combination (AgeabD

amb)2

2(Dbm
b)2 would give a difference in the Frank constants

for bend and splay. Rather, this free energy is only intended
to include the terms that generate distinct physical effects,
while the omitted terms give higher-order details of the
structure.

If the membrane forms a perfect cylinder with radiusr ,
the free energy~2.1! simplifies greatly. In the standard cylin-
drical coordinates (u,z), the curvature tensor becomes

K5S 21/r 0

0 0D . ~2.2!

The tilt director field can be written asmW (u,z)
5(cosf,sinf). As shown in Fig. 5,f(u,z) is the angle in the
local tangent plane between the tilt direction and the equator
of the cylinder. The free energy then becomes

F5E dAH 12 kS 1r D
2

1
1

2
k8S 1r D

2

cos2f2lHPS 1r D sinfcosf
2lLS¹W 3mW 1gS 1r D¹W •mW 1

1

2
c@~¹W 3mW !21~¹W •mW !2#J ,

~2.3!

FIG. 5. Geometry of a tubule with radiusr and lengthl . Here

nW is the molecular director,mW is the projection ofnW into the local
tangent plane~normalized to unit magnitude!, andf is the angle in

the tangent plane betweenmW and the equator.
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wheredA5rdudz,

¹W 3mW 5
1

r
]usinf2]zcosf, ~2.4!

and

¹W •mW 5
1

r
]ucosf1]zsinf. ~2.5!

Note that the 2D cross product defined by Eq.~2.4! is a
scalar. This form of the free energy is generally more conve-
nient to work with than the more general form~2.1!. The
interpretation of these terms is exactly as discussed above. In
the following sections, we will use this free energy to inves-
tigate the structure of tubules and helical ribbons.

III. TUBULES WITH UNIFORM TILT

As a first step in understanding the implications of the
free energy~2.1!, we consider tubules with a uniform tilt
directionmW . This model of uniform tubules is equivalent to
the model of Chunget al. @6#. We present it here in order to
review their results in our notation.

Suppose that a tubule of radiusr has a uniform tilt
mW 5(cosf0,sinf0), at an anglef0 away from the equator, as
shown in Fig. 6. The entire tubule is a single domain, with no
domain walls. In terms ofr andf0 , the free energy per unit
area is

F

A
5
1

2
kS 1r D

2

1
1

2
k8S 1r D

2

cos2f02lHPS 1r D sinf0cosf0 .

~3.1!

Minimizing this expression overr and f0 simultaneously,
we obtain

r5
k1/4~k1k8!1/4@k1/21~k1k8!1/2#

lHP
~3.2!

and

f05arctanF S k1k8

k D 1/4G . ~3.3!

These results lead to two important conclusions. First, the
tubule radiusr scales inversely with the chirality parameter
lHP. In a nonchiral membrane, wherelHP→0, the radius
r→`. The coefficient of 1/lHP is a combination of the elas-
tic constantsk andk8. Second, the tilt directionf0 is deter-
mined by the ratio of the energy costk1k8 for bend parallel
to the tilt direction over the energy costk for bend perpen-
dicular to the tilt direction. In an isotropic membrane, where
k850, we obtainf0545°. In an anisotropic membrane,
k8 may be positive or negative and hencef0 may be greater
or less than 45°.

Chunget al. @6# originally derived Eq.~3.3! in order to
analyze experimental data on tubules in bile. In experiments
on bile systems, they found two types of tubules. Both types
of tubules show clear helical markings, but the direction of
these markings are different: 53.7° from the equator in one
type of tubule and 11.1° from the equator in the other. Chung
et al. assumed that these helical markings are aligned with
the molecular tilt, so thatf0553.7° and 11.1° in the two
types of tubules. They then used Eq.~3.3! to determine the
values of (k1k8)/k that correspond to these values off0 .
The resulting values are (k1k8)/k53.4 and 0.0015, respec-
tively. The ratio of 3.4 is quite reasonable, but the ratio of
0.0015 is surprising. It seems unlikely that a bend in the
membrane perpendicular to the tilt direction would cost al-
most 1000 times more energy than a bend parallel to the tilt
direction. For that reason, we must reexamine the assump-
tion that helical markings are aligned with the molecular tilt.
In the following section, we propose an alternative interpre-
tation of the helical markings, which can explain this
anomaly.

IV. TUBULES WITH TILT MODULATION

In this section, we relax the assumption that the tilt direc-
tionmW is uniform everywhere on a tubule. Instead, we allow
mW to vary as a function of the cylindrical coordinatesu and
z, with mW (u,z)5„cosf(u,z),sinf(u,z)…. We show that the
ground state of the tubule can have a periodic helical modu-
lation ofmW .

As a specific ansatz, we suppose that there aren distinct
stripes in the tilt direction. In the terminology of Sec. II, each
stripe is a single domain of the membrane. The stripes are
separated byn distinct domain walls. The stripes and domain
walls run around the cylinder helically, as shown in Fig. 3.
We further suppose that the tilt directionf varies linearly
across each stripe. Across each domain wall,f changes
sharply, almost discontinuously on the scale of the stripes.
The direction of the stripes and the domain walls is defined
by the anglev with respect to the equator of the cylinder,
illustrated in Fig. 7. Letu8 be the coordinate running along
thev direction,

FIG. 6. Schematic view of a tubule with the uniform tilt direc-

tion mW 5(cosf0,sinf0), as indicated by the arrows.
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u8[u1
z

r
tanv. ~4.1!

In terms of this coordinate, our ansatz for the tilt direction
f can be written as

f~u,z!5f01
nDf

2p S u8mod
2p

n D , ~4.2!

whereu8mod2p/n runs from2p/n to p/n. This ansatz has
the sawtooth form shown in Fig. 8. It oscillates about the
average valuef0 with the amplitudeDf. Thus our ansatz
has five variational parameters: the radiusr , the average tilt
direction f0 , the amplitude of the tilt variationDf, the
stripe directionv, and the number of distinct stripesn. In
terms of these parameters, the stripe width is

L5S 2p

n D rcosv. ~4.3!

We must now express the free energy~2.3! in terms of the
five variational parameters. To simplify the algebra, we sup-
pose thatDf!1, i.e., there is only a small variation in the
tilt direction. We will discuss corrections to this approxima-
tion at the end of this section. The curl and divergence of the
tilt then become

¹W 3mW 5
nDfcos~f02v!

2prcosv
~4.4!

and

¹W •mW 52
nDfsin~f02v!

2prcosv
. ~4.5!

With these expressions, it is straightforward to work out the
gradient terms in Eq.~2.3!.

The terms 1
2k8r22cos2f2l HPr

21sinfcosf require spe-
cial attention. This combination of terms favors a particular
orientationf0 of the tilt direction with respect to the equator
of the cylinder. Because it gives an energy penalty for varia-
tions in the tilt away from the optimum direction, it depends
onDf as well as onf0 andr . We expand this combination
as a power series in (f2f0), then average it over the cyl-
inder ~i.e., average it over the coordinateu8). The result can
be written as12k8r22cos2f02lHPr

21sinf0cosf01
1
2n(Df)2,

where

n5
1

6 F S k8

2r 2D
2

1S lHP

r D 2G1/2. ~4.6!

The term1
2n(Df)2 gives the energy penalty for variations of

f away fromf0 .
The domain-wall energy also requires special attention.

As noted in Sec. II, the continuum free energy of Eqs.~2.1!
and ~2.3! does not describe the narrow regions inside the
domain walls. Rather, we must explicitly add the domain-
wall energyeW per unit length. In principle,eW can depend
on f0 , Df, andv. In this paper, we will neglect that pos-
sible variation and treateW as a constant. In an areaA of the
membrane, the total length of all the domain walls is
LW5A/L. The domain-wall energy per unit area of mem-
brane therefore becomes

eWLW
A

5
eWn

2prcosv
. ~4.7!

Putting all the pieces together, the total free energy per
unit area for our ansatz now becomes

FIG. 7. Definition of the anglev, which gives the direction of
the stripes and the domain walls on a tubule with respect to the
equator.

FIG. 8. Ansatz for the tilt directionf(u,z), in terms of the
coordinateu8[u1(z/r )tanv.
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A
5
1

2
kS 1r D

2

1
1

2
k8S 1r D

2

cos2f02lHPS 1r D sinf0cosf0

1
1

2
n~Df!22lLS

nDfcos~f02v!

2prcosv

2
g

r

nDfsin~f02v!

2prcosv
1
1

2
cS nDf

2prcosv D 2
1

eWn

2prcosv
. ~4.8!

This expression must be minimized over the five variational
parametersr , f0 , Df, v, andn.

To do this minimization, we will make an approximation:
We will treat n as a continuous variable rather than as an
integer. This should be a good approximation forn@1, al-
though not forn'1. We will discuss corrections to this ap-
proximation, as well as the previous one, at the end of this
section. After making this approximation, it is convenient to
change variables fromn to L5(2prcosv)/n. We also
change variables fromv to d5f02v. The variableL is the
stripe width, as noted above, andd is the difference between
the average tilt direction and the stripe direction. In terms of
these variables, the free energy~4.8! simplifies to

F tot

A
5
1

2
kS 1r D

2

1
1

2
k8S 1r D

2

cos2f02lHPS 1r D sinf0cosf0

1
1

2
n~Df!22lLS

Dfcosd

L
2

g

r

Dfsind

L
1
1

2
cS Df

L D 2
1

eW
L
. ~4.9!

This expression for the free energy must be minimized over
the five variational parametersr , f0 , Df, d, andL.

As a first step, we minimize the free energy over the angle
d. We obtain

tand5
g

rlLS
. ~4.10!

This expression is equivalent to the corresponding result in
our earlier paper@19#. This result is important because the
angled gives the difference between the stripe directionv
and the average tilt directionf0 . Because these two direc-
tions differ by an angled, we can explain the anomaly men-
tioned at the end of Sec. III. Recall that the experiments of
Chunget al. @6# found one type of tubules with helical mark-
ings at an angle of 11.1° from the equator. If these helical
markings indicate the average tilt directionf0 , then the ratio
of rigidities (k1k8)/k must be 0.0015, an anomalously low
value. However, if the helical markings indicate thestripe
direction, then this result for (k1k8)/k does not hold. That
ratio could be closer to 1 and the anglef0 could be closer to
45°, while the stripe direction is 11.1°. Thus our interpreta-
tion is that those experiments were measuring the stripe di-
rection, not the average tilt direction.

One might think thatd would be very small because
tand scales as 1/r and r is large. However, in Sec. III we

showed thatr scales ask/lHP. For that reason, tand scales
as (glHP) /(lLSk). We have already argued that the chiral
coefficientslHP andl LS should have roughly the same mag-
nitude. Hence we obtain

tand;
g

k
. ~4.11!

This ratio can be large or small.
For the next step in the calculation, we substitute Eq.

~4.10! for d back into Eq.~4.9! for the free energy, to obtain

F tot

A
5
1

2
kS 1r D

2

1
1

2
k8S 1r D

2

cos2f02lHPS 1r D sinf0cosf0

1
1

2
n~Df!22Fl LS

2 1S g

r D
2G1/2Df

L
1
1

2
cS Df

L D 2
1

eW
L
. ~4.12!

Minimizing this expression over the stripe widthL gives

L5
c~Df!2

@lLS
2 1~g/r !2#1/2Df2eW

~4.13!

if this denominator is positive, orL→` otherwise. This ex-
pression forL is the same result that one would expect from
studies of stripes in flat films@20–22#. It is equivalent to the
result for stripes in tubules in our earlier paper@19#, except
that the dependence onDf was not considered there. This
expression shows that thelLS and g/r terms in the free
energy both tend to induce stripes with a narrow width. If the
energy gain from these terms, added in quadrature, exceeds
the energy costeW of a domain wall, then stripes will form;
otherwise they will not form. If stripes do form, their width
depends on the competition between the Frank free energy
proportional toc, which resists variation inf, and thelLS
andg/r terms.

We now insert Eq.~4.13! for L back into Eq.~4.12! for
the free energy. The result is

F tot

A
5
1

2
kS 1r D

2

1
1

2
k8S 1r D

2

cos2f02lHPS 1r D sinf0cosf0

1
1

2
n~Df!22

1

2c H FlLS
2 1S g

r D
2G1/22 eW

Df J 2 ~4.14!

if the quantity in cruly brackets in the last term is positive. If
not, then the last term is zero. Because only the last two
terms in the free energy depend onDf, we will call them
Fstripe(Df)/A. We must now minimizeFstripeoverDf. This
minimization cannot be done analytically, but it can be done
graphically. In Fig. 9, we plotFstripe as a function ofDf for
a sequence of values ofn. The parametern, defined in Eq.
~4.6!, gives the energy penalty for variations off away from
f0 . For largen, the only minimum ofFstripe is for Df50.
That is reasonable because a large value ofn suppresses all
variations inf. As n decreases,F stripedevelops a local mini-
mum forDfÞ0. At a critical valuenc , there is a first-order
transition fromDf50 to Df5Dfc . For n,nc , the mini-
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mum atDfÞ0 becomes the absolute minimum of the free
energy. To calculatenc and Dfc , we set Fstripe50 and
]F stripe/](Df)50. The result is

nc5
1

16ceW
2 FlLS

2 1S g

r D
2G2 ~4.15!

and

Dfc5
2eW

@lLS
2 1~g/r !2#1/2

. ~4.16!

The corresponding value of the stripe width is

Lc5
4ceW

lLS
2 1~g/r !2

~4.17!

and hence the gradient in the tilt directionf is

Dfc

Lc
5

@l LS
2 1~g/r !2#1/2

2c
. ~4.18!

In summary, forn.nc the tubules are uniform, with no
tilt modulation. In that case, we haveDf50, L→`, and
Fstripe50. At n5nc , there is a first-order transition from the
uniform state to a modulated state withDf5Dfc and
L5Lc . At this point, Fstripe is still zero. Forn,nc , the
tubules remain in the modulated state. Asn decreases,Df
andL both grow larger andFstripebecomes negative. It is not

possible to derive a general analytic expression forDf and
L in the modulated state. However, a good estimate would be
Df'Dfc andL'Lc .

We must now minimize the free energy~4.14! over the
radius r and the average tilt directionf0 , which are the
remaining variational parameters. Forn>nc , we have
Fstripe50 and hence the total free energy is

F tot

A
5
1

2
kS 1r D

2

1
1

2
k8S 1r D

2

cos2f02lHPS 1r D sinf0cosf0 .

~4.19!

This is exactly the free energy considered in Sec. III. Hence
the solution given in Eqs.~3.2! and ~3.3! still applies to the
uniform state of tubules. Forn,nc , we haveFstripe,0 and
hence

F tot

A
5
1

2
kS 1r D

2

1
1

2
k8S 1r D

2

cos2f02lHPS 1r D sinf0cosf0

1
Fstripe

A
. ~4.20!

Although we do not have a general expression forFstripe, we
see thatFstripecan be expanded in a power series inr

22. The
constant term in that series does not affect the minimization.
The term proportional tor22 just gives anegative renormal-
ization of the rigidity k. The higher-order terms inr22

should be neglected because we have already neglected
terms of that order in our original curvature expansion for
the free energy. For that reason, if we just use the renormal-
ized rigidity kR in place of the bare rigidityk, then the
derivation of r andf0 in Sec. III still follows. We obtain
Eqs.~3.2! and~3.3! for r andf0 with the renormalizedkR in
place ofk.

At this point, we have minimized the free energy~4.9!
over the five parameters in our variational ansatz:r , f0 ,
Df, d, and L. We have shown that there is a first-order
transition from a uniform state to a modulated state charac-
terized by stripes in the tilt direction. We must now discuss
corrections to two approximations in this variational calcula-
tion.

First, we assumed that there is only a small variation in
the tilt direction across a stripe:Df!1. In some systems,
Df might be locked at a larger angle. For example, in a
membrane with hexatic bond-orientational order, the angle
Df560° would be favored, because that angle would allow
the tilt direction to jump from one bond direction to another
bond direction across each domain wall. Such locking has
been investigated in the context of flat liquid-crystal films by
Hinshawet al. @21#. In such a system, the transition from the
uniform state to the modulated state would become more
strongly first order than we calculated above: The larger dis-
continuity inDf would imply a larger latent heat of transi-
tion. Thus the quantitative predictions of this section would
no longer apply. Nevertheless, our qualitative predictions
would still apply, because tubules would have a first-order
transition from a uniform state to a modulated state whether
or notDf!1.

Second, we did the variational calculation with the ap-
proximation that the stripe widthL is a continuous variable

FIG. 9. Graphical minimization of the stripe free energyFstripe

as a function ofDf, as discussed in the text.Fstripe is the sum of the
two terms plotted in~a! and~b!. ~c! For largen, the only minimum
is the uniform state withDf50. ~d! As n decreases, another mini-
mum develops forDfÞ0. ~e! At n5nc , there is a first-order tran-
sition from the uniform state (Df50) to the modulated state
(Df5Dfc). ~f! For n,nc , the modulated state becomes the ab-
solute minimum of the free energy.
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or, equivalently, that the number of stripesn takes continu-
ous rather than just integer values. In fact, because of the
periodic boundary conditions going around a cylinder, the
parametern must be an integer and henceL5(2prcosv)/n
is restricted to a discrete set of values. For that reason, there
will be a series of jumps, or first-order transitions, between
different integer values ofn. Within each constant-n
‘‘phase,’’ there will be one special point where the continu-
ous minimization gives exactly the right answer:n is an
integer. At those special points, all the results of the minimi-
zation ~for d, L, Df, etc.! will be correct. Between those
special points, there will be deviations from the predictions
of the continuous approximation. The actual values should
therefore fluctuateabout the values from the continuous ap-
proximation. Thus this approximation should give a reason-
able estimate of the actual results.

V. HELICAL RIBBONS

In this section, we apply the theory for the modulated
state of tubules, developed in the preceding section, to heli-
cal ribbons. We draw an explicit analogy between a single
stripe of a modulated tubule and a single ribbon. We show
that a helical ribbon can be either a stable state of a mem-
brane or an unstable intermediate state in the formation of a
tubule. A stable helical ribbon has a particular optimum
width. If more molecules are added to the ribbon, it becomes
longer, not wider. By contrast, an unstable helical ribbon
grows wider until it forms a tubule.

The basis of our calculation is the geometry shown in Fig.
10. A narrow ribbon winds helically around thez axis. We
consider a linear variation of the tilt directionf up to the
ribbon edge. The tilt variation is in the direction specified by
the anglev with respect to the equator, as is the ribbon itself.
Again, we describe the tilt variation using theu8 coordinate

u8[u1
z

r
tanv, ~5.1!

which runs in thev direction. The ribbon edges are at
u856u* , whereu* is a variational parameter. The maxi-
mum possible value isu*5p, at which point the edges of
the ribbon collide and the ribbon forms a tubule. Between the
edges, our ansatz for the tilt directionf is

f~u,z!5f01
Df

2u*
u8. ~5.2!

This ansatz is a single period of the sawtooth wave of Fig. 8.
As in Sec. IV, the ansatz has five variational parameters: the
radiusr , the average tilt directionf0 , the amplitude of the
tilt variation Df, the ribbon directionv, and the angle
u* , which is the half-width of the ribbon in theu8 coordi-
nate. The actual width of the ribbon is

L52u* rcosv. ~5.3!

We must now express the free energy~2.3! of a helical
ribbon in terms of these five variational parameters. The free
energy is expressed per unit area of membrane, where the
area does not include the gaps between the edges of the
ribbon. For most of the terms, the free energy per unit area of

a tubule, derived in Sec. IV, still applies. However, instead of
the domain-wall energyeW , we must now use the edge en-
ergy eE per unit length for each of the two edges of the
ribbon. This edge energy gives the energy cost of having
different parts of the molecules exposed to the solvent at the
ribbon edges. Hence the total free energy per unit area in our
ansatz for a helical ribbon becomes

F tot
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2
kS 1r D

2

1
1

2
k8S 1r D

2

cos2f02lHPS 1r D sinf0cosf0

1
1

2
n~Df!22lLS

Dfcos~f02v!

2u* rcosv

2
g

r

Dfsin~f02v!

2u* rcosv
1
1

2
cS Df

2u* rcosv D 2
12

eE
2u* rcosv

. ~5.4!

This expression must be minimized over the five variational
parametersr , f0 , Df, v, andu* .

At this point, we note that all five variational parameters
are continuous variables; none of them is an integer, as in
Sec. IV. Thus we can immediately change variables from
u* to the ribbon widthL52u* rcosv and fromv to the
difference angled5f02v. In terms of these variables, the
ribbon free energy~5.4! simplifies to

FIG. 10. Schematic view of a helical ribbon, with a variation in
the tilt direction across the width of the ribbon. The arrows repre-
sent the tilt direction on one side of the bilayer.
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F tot
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cS Df

L D 2
1
2eE
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. ~5.5!

Equation~5.5! for the ribbon free energy is exactly the same
as Eq.~4.9! for the tubule free energy, but with 2eE substi-
tuted in place ofeW . However, for ribbons, all of the param-
eters really are continuous variables; that is not just an ap-
proximation. Thus the theory of ribbons is mathematically
simpler than the theory of tubules.

Because the free energy for ribbons is equivalent to the
free energy for tubules, we can carry over our results from
the theory of tubules in Sec. IV. The direction of a ribbon,
relative to the average tilt direction, is given by the differ-
ence angle

tand5
g

rlLS
;

g

k
. ~5.6!

The ribbon widthL is given by

L5
c~Df!2

@lLS
2 1~g/r !2#1/2Df22eE

~5.7!

if this denominator is positive, orL→` otherwise. However,
note that the maximum possible value ofL is L max
52prcosv. If L.Lmax, the edges collide and the ribbon
forms a tubule. Thus there is a stable ribbon withL,Lmax
only for a certain window of parameters.

For the amplitudeDf of the tilt variation, the analysis of
Sec. IV applies again. At a critical value ofn,

nc5
1

64ceE
2 FlLS

2 1S g

r D
2G2, ~5.8!

there is a first-order transition from a state withDf50 and
L→`, i.e., a state with no stable ribbon, to a state with
Df5Dfc andL5Lc , where

Dfc5
4eE

@lLS
2 1~g/r !2#1/2

~5.9!

and

Lc5
8ceE

lLS
2 1~g/r !2

. ~5.10!

If Lc,Lmax, then a stable ribbon forms at this transition.
Finally, the minimization overr andf0 goes through exactly
as in the case of the modulated state of tubules. The results
are the same as in Sec. III, but with the renormalized rigidity
kR in place of the bare rigidityk.

VI. RIPPLES

In this section, we consider the possibility of non-
uniformly curved states of a tubule. In particular, we con-

sider equilibrium undulated, or rippled, textures on otherwise
cylindrical tubules. In part, this is because of the similarity of
the model described above in Eq.~2.1! to recent models of
modulated phases of lipid bilayers@23,24# and liquid crystal
films @33# and the suggestion in Ref.@24# that chiral stripe
textures such as those of Sec. IV may exhibit a rippled shape.
There have also been experimental reports of regular peri-
odic undulations of the surface of tubules@34,35#. Quite gen-
erally, however, we expect that an underlying chiral stripe
texture, with a spatially varying tilt field as described in Sec.
IV, will lead to a shape modulation of the tubule, as shown in
Fig. 4. This is because of the coupling of the molecular ori-
entation, or tilt field, to membrane shape@23#.

Given an underlying stripe texture of the molecular tilt
mW (u,z), we study the corresponding tubule shape that results
from the coupling of molecular tilt to membrane shape.
Among the possible explicit couplings of molecular tilt to
membrane shape, the termgKa

aDbm
b is general to all mem-

branes with in-plane orientational order. It is allowed by
symmetry for both chiral and achiral lipid bilayers. Further-
more, the coupling constantg is expected to be of the same
order as the bending modulusk @36#. The second coupling in
increasing powers ofm andK, lHPAgebcm

amcKa
b is permit-

ted only for chiral systems. Here we shall consider a some-
what simplified model, in which we letk850 in Eq. ~2.1!.
We calculate the modulated shapes of tubules with tilt modu-
lation in the limit that the ripple amplitude is small compared
with the tubule radiusr , which is of order 1mm.

For a rippled surface, of course, the curvature tensor
Kab in Eq. ~2.1! is no longer constant. In Sec. IV we de-
scribed the tilt fieldmW (u,z) by a tilt anglef(u,z). Here we
consider also a ripple characterized by a deviationh(u,z) of
the membrane surface away from a background cylindrical
geometry. More precisely, the membrane position in three
dimensions is given by

XW ~u,z!5„~r1h!cosu,~r1h!sinu,z…, ~6.1!

wherer is the fixed~average! radius of the tubule. In other
words, we consider a small undulationh of the local cylinder
radius. The following analysis is valid forh!r .

We find it convenient to use coordinates (s,z), where
s5ru. In these coordinates, the metric tensor for the tubule
surface is

gab5 tWa• tWb5S ~11h/r !21~]sh!2 ]sh]zh

]sh]zh 11~]zh!2
D ,

~6.2!

wheretWa5]aXW form a basis for the local tangent plane to the
membrane. Through second order in the, presumed small,
height modulationh, the surface area measure isdA
5Agdsdz, where

Ag5Audetgabu>S 11
h

r D S 11
1

2
~¹W h!2D ~6.3!

and

~¹W h!25~]sh!21~]zh!2. ~6.4!
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The curvature tensor is Kab5NW •]a]bXW , where
NW 5 tWu3 tWz /u tWu3 tWzu is the unit surface normal. Through or-
derh2, the mean curvature

Ka
a5gabKab>2

1

r
1¹2h1

~¹W h!2

2r
2

~]sh!2

r
, ~6.5!

wheregab5(gab)
21, and

¹2h5]s
2h1]z

2h. ~6.6!

We shall find that the tilt modulation described in Sec. IV
leads to a modulation ofh with the same period. For the
stripe texture considered above, this period is the stripe
width L. The last two terms in Eq.~6.5! are of order
h2/(rL 2), which is smaller than¹2h;h/L2 by approxi-
matelyh/r . Thus we shall retain only the first two terms in
Eq. ~6.5!.

To orderh, the divergence ofmW is given by

Dam
a>S 12

h

r D ]scosf1]zsinf1
]zh

r
sinf. ~6.7!

The first terms in Eq.~6.7! are of orderDf/L. From Eqs.
~4.18! and ~5.6!, we expect that this is of order

Df

L
;

l LS

c
;
1

r
~6.8!

near the transition to the stripe texture, since we also expect
thatk andc are of the same order@36#. The last term in Eq.
~6.7! is thus smaller than the other terms by a factor of ap-
proximatelyh/L. Below, we shall ignore the last term in Eq.
~6.7!. We comment on the validity of this below.

The leading-order terms in Eq.~2.1! that depend on the
ripple shapeh are given by

Fh5E AgdsdzFk2 ~Ka
a!21g~Ka

a!~Dbm
b!G

.E dsdzFk2 S 1r 2 22
¹2h

r
1~¹2h!2D

2gS ¹2h2
1

r D ~]scosf1]zsinf!

1lHP~sinfcosf~]s
2h2]z

2h!1~sin2f2cos2f!]s]zh!G .
~6.9!

For a fixed background cylinder radiusr and a ~predeter-
mined! modulating tilt anglef(u,z), which following Sec.
IV can be described in terms of a single variableu8 given in
Eq. ~5.1!, the Euler-Lagrange equation for the height field
h is determined by variation of Eq.~6.9! with respect toh.
To leading order inh/r , the result is an ordinary differential
equation

k]s8
4 h2g]s8

3 cos~f2v!1
lHP

2
]s8
2 sin2~f2v!50

~6.10!

that can be integrated to yield

k]s8
2 h2g]s8cos~f2v!1

lHP

2
sin2~f2v!5const,

~6.11!

where s85rcosvu85scosv1zsinv extends from2L/2 to
L/2. Here we have also used the fact thath is a periodic
function. This does not allow, for instance, a linear term in
Eq. ~6.11!. For the tilt field given above in Eq.~4.2!,

]s8cos~f2v!52
Df

L
sin~f2v!. ~6.12!

Within one period of the modulated texture, the tilt angle
f can be represented as

f2v5d1Df
n

2pL
s8, ~6.13!

where again2L/2,s8,L/2. For smallDf, the solutions to
Eq. ~6.12! can be written

h>h1S ~s8!2

2
2a D1

Df

L
h2S ~s8!3

6
2bs8D , ~6.14!

wherea andb are constants and the coefficientsh1 andh2
depend ong, k, lHP, d, Df, andL.

At this point, an additional assumption concerning the
domain wall is necessary. Here we consider two possibilities,
both of which, however, yield the same functional form@Eq.
~6.14!# for the height ripples on the surface of tubules. As
noted above, we have not taken account of possible depen-
dences of the domain wall energyeW on parameters of our
model such asf or v. If we continue to assume as before
that the domain wall is of infinitesimal thickness and costs an
energyeW per unit length that is independent of model pa-
rameters, which now include the possibility of a finite slope
discontinuity of the membrane at the domain wall, then the
constant in Eq.~6.11! can be determined by minimizing the
integrated free energy of Eq.~6.9! using Eq.~6.11!. Because
of the presence of the domain wall, we must include total
derivatives such as the termk(¹2h)/r in Eq. ~ 6.9!. This is
equivalent to solving Eq.~6.11! with the constant on the
right-hand side set equal to 1/r . The result is given by Eq.
~6.14! with

h15S 1r 2
g

k

Df

L
sind2

lHP

2k
sin2d D ~6.15!

and

h252S g

6k

Df

L
cosd1

lHP

6k
cos2d D . ~6.16!

For the above to be a periodic function in the range from
2L/2 to L/2, we must have
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b5
L2

24
. ~6.17!

The other constanta is arbitrary. We note that in the above,
the contributions to bothh1 and h2 from the chiral and
achiral couplings are of the same order, provided that
l HP'lLS andg'k, sinceDf/L;1/r .

On the other hand, if we assume a narrow but finite do-
main wall region~2!, in which the elastic constantsk, g, and
l HP have the same values as in the region~1! above and in
which the tilt anglef varies again linearly, but in reverse to
its variation in region~1!, then the solution in region~1! can
still be expressed by Eq.~ 6.14!, where

h152
g

k

Df

L
sind, ~6.18!

h2 is given by Eq.~6.16!, andb is given by Eq.~6.17!. This
is valid for domain walls of widthL8!L. The general result
for L8'L is somewhat more complicated, although the gen-
eral form of Eq.~6.14! is still valid. In particular, periodicity
of h in region ~1! alone is no longer valid and hence the
coefficient b differs from the value above.~A somewhat
more general solution was derived in Ref.@24# for flat mem-
branes.! In general, however, the membrane slope is continu-
ous across the boundaries between regions~1! and~2! under
the conditions of equal elastic constantsk , g, andlHP. We
note, however, that the chiral and achiral couplings no longer
contribute to the ripple amplitude at the same order. The
dominant contribution to the ripple amplitude is from the
achiral termgKa

aDbm
b, while the contribution to Eq.~6.14!

from the chiral couplingl HPAgebcm
amcKa

b is smaller by a
factor of orderDf.

For a stripe widthL, the amplitude of the height modula-
tion h is of orderL2/r , where we have used Eq.~6.8!. Thus

h

r
;S Lr D

2

;
1

n2
, ~6.19!

where, as in Sec. IV,n is the number of stripes on the cyl-
inder. We have assumed that this is small. So our analysis
above is valid forL!r . In other words, we have calculated
the shape of tubules with stripe textures in the limit that the
stripe texture has both amplitude and period small compared
with the tubule radius. Note also thath is smaller thanL by
a factor ofL/r;1/n.

In Fig. 11, we show representative ripple shapes for vari-
ous values ofh1 andh2 . In Fig. 11~a!, we show the shape for
h1,0 andh250. This is the dominant contribution for small
Df. This term is symmetric unders8→2s8. The correction
to this, smaller by orderDf, is asymmetric. In Figs. 11~b!
and 11~c!, we show the corresponding shapes forh2Df
50.3h1 andh2Df5h1 .

As a final point, note that the analysis in this section, as
well as Sec. IV, applies to any membrane in a cylindrical
morphology, regardless of how it formed. In particular, if any
membrane is adsorbed onto a pre-existing cylindrical sub-
strate ~perhaps a microscopic wire or fiber!, it can form
stripes in the tilt direction and ripples in the curvature. These
modulations can occur even if the membrane is not chiral: In
a nonchiral membrane, they would be induced by theg term

in the free energy, which couples membrane curvature to
variations in the direction of the tilt. These modulations can
reduce the free energy by concentrating the curvature into
domain walls.

VII. DISCUSSION

In this paper, we have presented a general theory of tu-
bules and helical ribbons based on the concept of chiral mo-
lecular packing. This theory shows that tubules can have
both uniform and modulated states. In the uniform state, tu-
bules have a constant orientation of the molecular tilt with
respect to the equator of the cylinder. In the modulated state,
tubules have a periodic, helical modulation in the direction
of the molecular tilt and corresponding ripples in the curva-
ture of the cylinders. In this section, we discuss the experi-
mental evidence for these theoretical predictions.

There are two types of experimental evidence supporting
the concept that the formation of tubules and helical ribbons
is due to chiral molecular packing. First, many experiments
have seen helical markings that wind around tubules, giving
tubules a chiral substructure. Clearly, helical ribbons always

FIG. 11. Plots of the ripple shapes, as a function of the coordi-
nates8 normal to the ripples. For smallDf, the dominant contri-
bution is symmetric unders8→2s8, but corrections are asymmet-
ric. ~a! h1,0 andh250. ~b! h2Df50.3h1 . ~c! h2Df5h1 .
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have a chiral structure. It is reasonable that the observed
chirality of these microstructures results from a chiral pack-
ing of the molecules. Second, recent experiments have found
that diacetylenic lipid tubules have a very strong circular
dichroism, which indicates a local chiral packing of the mol-
ecules, regardless of whether a chiral pattern is visible on the
surface of the cylinder@37#. The same diacetylenic lipid mol-
ecules in solution or in large spherical vesicles have very low
circular dichroism. These results show that the molecular
packing in tubules is chiral, while the molecular packing in
spherical vesicles is not chiral.

So far, there has not been any direct test of our prediction
of tilt modulation—no experiments have been sensitive to
the local direction of molecular tilt in tubules. However, the
helical markings on tubules provide indirect evidence for this
prediction. In some cases, these helical markings are bound-
aries between sections of tubules with different numbers of
bilayers in the walls. However, in other cases, helical mark-
ings appear even when there is no detectable discontinuity in
the number of bilayers, as in Fig. 1. These helical markings
are apparently stable, because they do not anneal away in
time, and hence seem to be a characteristic of the equilibrium
state of tubules. Our interpretation is that these helical mark-
ings are the orientational domain walls predicted by our
theory. In this interpretation, the domain walls are visible in
electron micrographs because impurities accumulate there
and colloidal particles from the solution preferentially adsorb
there. Such preferential diffusion of impurities to orienta-
tional domain walls has been observed directly in Langmuir
monolayers@38#.

Of course, this interpretation of the observed helical
markings provides only indirect support for our theory. For a
more direct test of our theory, one would need an experiment
that can directly probe the local direction of molecular tilt.
One possible experimental technique is fluorescence micros-
copy with polarized laser excitation. This technique has been
used to observe variations in the local tilt direction in Lang-
muir monolayers@38#. To apply this technique to tubules,

one would either~a! use the intrinsic fluorescence of the
constituent amphiphilic molecules,~b! attach a fluorescent
group to the molecules, or~c! put a fluorescent probe into the
membrane that forms tubules. One would then illuminate the
tubules with polarized light from a laser source. Variations in
the direction of molecular tilt would then lead to variations
in the intensity of fluorescence, which could be detected us-
ing confocal microscopy or near-field scanning optical mi-
croscopy. Through this approach, optical techniques could
detect the predicted helical modulation in the tilt direction in
the modulated state.

The ripples in tubule curvature predicted by our theory
may be the modulations seen by Yageret al. @34# and by
Thomas@35#. Electron micrographs taken in those experi-
ments show very clear helical variations in the tubule curva-
ture. However, other experiments have not observed any
ripples on tubules, within the resolution of the electron mi-
crographs. The preliminary data are not yet sufficient to ex-
plain why ripples are seen in some experiments but not in
others.

Our prediction of a first-order transition between the uni-
form and modulated states of tubules also has some experi-
mental support. Nounesiset al. have measured the magnetic
birefringence and specific heat of both single-bilayer and
multi-bilayer tubules, as functions of temperature through
the melting transition@39#. They find that single-bilayer tu-
bules undergo a second-order melting transition, with strong
pretransitional effects, while multi-bilayer tubules undergo a
first-order melting transition. Furthermore, single-bilayer tu-
bules show an anomalous peak in the specific heat about 3°
belowthe main peak associated with melting into the untilted
phase. This anomalous peak is consistent with our predicted
transition between the modulated and the uniform states of
tubules. The modulated state should occur in the 3° window
between the anomalous peak and the main melting peak,
where the membrane elastic constants are low, and the uni-
form state should occur at lower temperatures, below the

FIG. 12. Scenario for the kinetic evolution of flat membranes into tubules, as discussed in the text.~a! When a membrane is cooled into
a tilted phase, it develops stripes in the tilt direction and then breaks up along the domain walls to form ribbons.~b! Each ribbon twists in
solution to form a helix.~c! A helical ribbon may remain stable or may grow wider to form a tubule. Reprinted from Ref.@37# with
permission~© 1994 American Association for the Advancement of Science!.
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anomalous peak. Thus our theory may explain this heat-
capacity anomaly.

As a final point, we note that our theory for the modulated
state of tubules leads to an interesting scenario for the kinetic
evolution of flat membranes or large spherical vesicles into
tubules. This scenario, proposed in Ref.@37#, is illustrated in
Fig. 12. When a flat membrane or large spherical vesicle is
cooled from an untilted into a tilted phase, it develops tilt
order. Because of the molecular chirality, the tilt order forms
a series of stripes separated by domain walls, as shown in
Fig. 12~a!. Each stripe forms a ripple in the membrane cur-
vature and each domain wall forms a ridge in the membrane.
Thus the domain walls are narrow regions where different
parts of the amphiphilic molecules come into contact with
neighboring molecules and with the solvent. As a result, the
domain walls become weak lines in the membrane and the
membrane tends to fall apart along those lines. The mem-
brane thereby forms a series of narrow ribbons. These rib-
bons are free to twist in solution to form helices, as shown in
Fig. 12~b!. Those helices may remain as stable helical rib-
bons or, alternatively, they may grow wider to form tubules,
as shown in Fig. 12~c!. Note that this proposed mechanism
for tubule formation can only operate if the initial vesicle
size is larger than the favored ribbon width. If the initial
vesicle is too small, it cannot transform into a tubule. This
prediction is consistent with the experimental observation

that large spherical vesicles~with diameter greater than 1
mm! form tubules upon cooling, while small spherical
vesicles~diameter less than 0.05mm! do not @40,41#. Thus
the theoretical prediction of stripes in the tilt direction gives
some insight into the kinetics of the tubule-formation pro-
cess.

In conclusion, in this paper we have shown the range of
possible states that can occur in tubules. Tubules can have a
uniform state, as was considered by earlier investigators, but
they can also have a modulated state, with a periodic helical
variation in direction of molecular tilt and in the curvature of
the membrane. There is at least indirect evidence that the
modulated state occurs in actual experimental systems. A
more definitive test of this theoretical prediction requires di-
rect experimental probes of variations in the molecular tilt
direction.
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