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Theory of cylindrical tubules and helical ribbons of chiral lipid membranes
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We present a general theory for the equilibrium structure of cylindrical tubules and helical ribbons of chiral
lipid membranes. This theory is based on a continuum elastic free energy that permits variations in the
direction of molecular tilt and in the curvature of the membrane. The theory shows that the formation of
tubules and helical ribbons is driven by the chirality of the membrane. Tubules have a first-order transition
from a uniform state to a helically modulated state, with periodic stripes in the tilt direction and ripples in the
curvature. Helical ribbons can be stable structures or unstable intermediate states in the formation of tubules.

PACS numbgs): 68.15+e, 61.30-v, 87.10+e, 87.22.Bt

[. INTRODUCTION charged head groug42]. Thus electrostatic interaction is
very probably not a dominant factor in tubule formation.
Chiral amphiphilic molecules can self-assemble into mi- As an alternative theoretical approach, Lubensky and
crostructures with a variety of morphologies. Two of the Prost derived a general phase diagram for membranes with
most interesting morphologies, both for basic research anh-plane orientational order, which predicts cylinders as well
for technological applications, are cylindrical tubules and he-as spheres, flat disks, and t¢fi3]. Within the cylindrical
lical ribbons[1-3]. Tubules are bilayer or multilayer mem- phase, the cylinder radius and length are determined by a
branes of amphiphilic molecules wrapped in a cylinder, agompetition between the curvature energy and the edge en-
shown in Fig. 1[4]. They are observed in a variety of sys- ergy. One important prediction of this theory is the scaling
tems, including diacetylenic .Iipic{SL,S],.bilga [6], surfactants /12 petween the tubule radius and the tubule length
[7], and glutamate$8]. In diacetylenic lipid systems, the . j5wever, experiments have found no correlation between
tub_ule diameter is typ|.cally 0.»m and the tubule Ieng.th IS and/. Rather, in a typical sample of tubulesjs quite
typically 50-200um; in other systems, the tubule dimen- monodisperse whilg” varies widely[14]. Thus the compe-

sions are typically se\_/e_ral times Iaf‘g[@]. In mosE of these tition between curvature energy and edge energy is also not a
systems, tubules exhibit a helical “barber-pole” pattern on . . :
dominant factor in tubule formation.

the surface of the cylinder. Helical ribbons are similar micro- A third roach. which i nsistent with the exoerimen-
structures, consisting of long twisted strips of membranes approach, ch s consiste 1€ eXperime
| results on lipid tubules, is based on the chiral packing of

with their edges exposed to the solvent, as shown in Fig. % ) )
[9]. In some cases, helical ribbons are unstable precursors [g€ Mmolecules in a membrane. Helfrich and Prost have shown

the formation of tubules; in other cases, helical ribbons apthat & chiral membrane in a tilted phase will form a cylinder
pear to be stable. Cylindrical tubules have been studied eXRecause of an intrinsic bending force due to chiraitf].
tensively for use in several technological applications, suct his bending force arises because long chiral molecules do
as electroactive composites and controlled-release systerfi§t pack parallel to their neighbors, but rather at a nonzero
[2]. Helical ribbons have not been used in technological aptwist angle with respect to their neighbors. If the molecules
plications, but they have also been studied extensively aie in bilayers and are tilted with respect to the local layer
part of an effort to rationally control the self-assembly of normal, the favored twist from neighbor to neighbor leads
tubules. the whole membrane to twist into a cylinder.

There have been three general approaches to the theory of Several investigators have generalized the original
tubules and helical ribbons. First, de Gennes argued that ldelfrich-Prost concept of an intrinsic chiral bending force in
membrane of chiral molecules in any tilted phase must dedifferent ways. Ou-Yang and Liu have developed a version
velop a spontaneous electrostatic polarizafibd]. This po-  of this theory based on an analogy with cholesteric liquid
larization can induce a narrow strip of membrane to bucklecrystals[16]. Chappell and Yager have developed an analo-
into a cylinder. The original theory of de Gennes describedjous theory in which the direction of one-dimensional chains
buckling along the long axis of a cylinder, but a straightfor- of molecules, rather than the direction of molecular tilt, de-
ward modification describes helical winding due to electro-fines a vector order parameter within the membrghé.
static interactions. This theoretical approach predicts thallelson and Powers have used the renormalization group to
adding electrolytes to the solvent should increase the radiusalculate the effects of thermal fluctuations on tubuiles.
of the resulting tubules, because the electrostatic interactiofhis calculation predicts an anomalous scaling of the tubule
would be screened by electrolytes in solution. However, exfadius as a function of the strength of the chiral interaction.
periments have shown that electrolytes in solution do noChunget al. have considered the full elastic anisotropy of a
affect the formation or radius of tubulg$l], except for the membrane and have related the pitch angle of tubules to a
particular case of tubules composed of amphiphiles wittratio of membrane elastic constapéd. They have also made
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FIG. 2. Scanning electron micrograph of helical ribbons formed
from a racemic mixture oD and L diacetylenic phospholipids.
Note that the racemic mixture forms distinct right- and left-handed
helical ribbons. The diameter of the helical ribbons is approxi-
mately 0.5um. Reprinted from Refl9] with permission(© 1988
Elsevier Scientific Publishexs

FIG. 1. Transmission electron micrograph of a tubule with ad-
sorbed Pd-Ni catalyst particles on the surfaék The diameter of
the tubule is approximately 0,bm. Reprinted from Ref{19].

predictions for the kinetic evolution of helical ribbons into
tubules.

In our earlier paper, we generalized the Helfrich-Prost
concept in another waji 9]. In that theory, we began with a
three-dimensional3D) liquid-crystal free energy and applied
it to the case of chiral molecules in a membrane. We showed
that the chiral term in this free energy has two simultaneous
effects: it leads the membrane to twist into a cylinder and it
induces a variation in the direction of the molecular tilt on  FIG. 3. Schematic view of the striped pattern in the tilt direction
the cylinder. Through this calculation, we predicted that tu-in the modulated state of a tubule. The arrows indicate the direction
bules can form periodic modulated structures characterizedf the molecular tilt, projected into the local tangent plane.
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radius and tilt direction for tubules with uniform tilt. The
results of that section are in exact agreement with the theory
of Chunget al. In Sec. 1V, we consider tubules with a modu-
lation in the tilt. We propose an explicit ansatz for that modu-
lation and then minimize the free energy over the parameters
in that ansatz. We find that there is a first-order transition
from uniform to modulated tubules. In Sec. V, we apply the
same theory to helical ribbons. The theory predicts the range
of parameters in which helical ribbons are stable. In Sec. VI,
we investigate ripples in the curvature of tubules and helical
ribbons. We derive an explicit expression for the ripple shape
that corresponds to our ansatz for the tilt modulation. Finally,
in Sec. VII, we discuss these theoretical predictions and
compare them with experimental results.

Il. FREE ENERGY

In this section, we construct a free energy for tubules and
helical ribbons. In this free energy, we suppose that the mem-
brane is in a fluid phase, which may have hexatic bond-
orientational order but does not have crystalline positional
order. This assumption is based on the theoretical argument
of Nelson and Peliti, who showed that a flexible membrane
cannot have crystalline positional order in thermal equilib-
rium at nonzero temperature, because thermal fluctuations
induce dislocations, which destroy this order on long length
scaleq 27]. This assumption is also supported by two types
eof experimental evidence. First, Treanor and Pace found a

distinct fluid character in nuclear magnetic resonance and
electron spin resonance experiments on tubj#8% Second,
Brandowet al. found that tubule membranes can flow to seal
by helical stripes in the tilt direction winding around the up cuts in the membrane from an atomic force microscope
cylinders, as shown in Fig. 3. These stripes are analogous t§ [29]. This flow indicates that the membrane has no shear
the stripes seen in thin films of chiral smectic liquid crystalsmodulus[30]. Further information on the membrane phase
[20-23, but in a cylindrical rather than a planar geometry. comes from Thomast al, who found long positional corre-
We argued that these stripes correspond to the helical sulistion lengths of 0.068—0.136m in synchrotron x-ray scat-
structure that is often observed on tubules. tering studies of tubule§31]. Taken together, all of these

In this paper, we further extend this theoretical approactexperimental results suggest that tubule membranes are in a
to provide a more unified and systematic model of tubulesighly correlated hexatic phase.
and helical ribbons. First, we combine our earlier theory with |n this paper, we do not attempt to derive the free energy
the Chung theory to obtain a theory of tubules with bothfrom a 3D liquid-crystal free energy, as in our earlier paper
elastic anisotropy and tilt modulation. We derive explicit ex- [19]. Rather, we use a 2D differential-geometry notation,
pressions for the average direction of the tilt and for thewhich is more general. In this notation, the curvature of a
direction of the modulation, in terms of the elastic coeffi- membrane is described by the curvature terégg. The
cients, and we show that these directions are different. NeXbrientation of the molecular tilt is represented by the unit

we show that the same theory can also be applied to helic%lector m. As shown in Fia. 5m is the proiection of the
ribbons. This theory shows that helical ribbons can be stable ' g- > pro)

microstructures for a certain range of parameters; they argmlecular directon into the local tangent plane, normalized
’ to unit magnitude.

not necessarily intermediate states in the formation of tu- A b ist of a sinale d in_in which th
bules. Finally, we investigate the effects of the striped tilt membrane may consist ot a single domain, in which the

modulation on the detailed shape of tubules. Based on receRtrvatureK,, is low and the tilt directiorm varies smoothly.
models of ||p|d bi|ayer$:23,2£ﬂ’ we expect a modulation in AlternatiVE|y, a membrane may consist of many internal do-
the tilt to induce a modulation in the curvature. We predictmains separated by domain walls. Domain walls are sharp
the curvature modulation illustrated in Fig. 4, which re- boundaries between domains. Across a narrow domain wall,
sembles theP rippled phases of lyotropic liquid crystals m jumps abruptly and ,, may become high. Here we will
[25,26. consider the free energy of domains and domain walls sepa-
The plan of this paper is as follows. In Sec. Il, we con-rately.
struct a free energy for tubules and helical ribbons, which First, we consider a domain of low curvature and
includes elastic anisotropy and includes the possibility of tiltsmoothly varying tilt. Within a domain of a membrane, the
modulation. In Sec. Ill, we use this free energy to predict thefree energy can be written as

FIG. 4. Schematic view of the ripples in the curvature in the
modulated state of a tubule. The amplitude of the ripples has be
exaggerated for clarity.
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Lubensky-MacKintosh theory d?: rippled phase$23,24.
The final pair of terms is the 2D Frank free energy for varia-

tions inm. It provides an energy penalty for tilt variations
and hence limits those variations. The coefficienis a
single Frank constant.

We now consider a domain wall between two domains.

Across a domain wall, the tilt directiom changes abruptly.
The curvature ,, may also become large, giving a “crease”
in the membrane. For those reasons, different parts of the
molecules come into contact at a domain walls than inside
the domains. A domain wall therefore costs an enetgyer

unit length. The domain-wall energy cannot be derived from
the free energy2.1) within a domain; rather, it is an addi-
tional parameter that describes narrow walls where that free
energy does not apply. For any morphology that includes
domain walls, with a total wall lengtt.,y, the total free
energy iSFi;=F + eplw -

In the free energy2.1), the term}\LS\/ﬁeabDamb is a total
derivative. If the curvature is constant, as in a perfect cylin-
der, the termyK3D ,MP is also a total derivative. One might
think that these terms integrate to constants and hence do not
affect the morphology of a membrane. However, these terms
are significant if the membrane consists of internal domains
separated by domain walls, because they then become line
integrals along the domain walls. Indeed, these terms favor

FIG. 5. Geometry of a tubule with radiusand length/”. Here

n is the molecular directom is the projection ofh into the local
tangent planénormalized to unit magnitudeand ¢ is the angle in

the tangent plane betweem and the equator.

1 1
sz dA(iK(K:)Z-I- EK’mambKach

+ A ppm MK EVg €5 — N sVg €apD *mP— yKEAD,m® the formation of a series of domains separated by domain
1 walls, because they can contribute a negative free energy for

+ = c[(Vgea,D2mP)2+ (D m?)?] ¢ . (2.1  each domain. Thus, in the rest of this paper, we will retain
2 these terms and we will explicitly compare their negative

contribution to the free energy with the energy cost of the
Here the surface area elementlia= \/gd?x, e, is the an- domain walls.
tisymmetric symbol, andD, is the covariant derivative  The free energy2.1) does not contain an exhaustive list
within the membrane. Throughout this work, we shall imply of all the terms permitted by symmetry; other terms are also
summation over repeated indices, suctads the first term ~ possible. For example, the terrfm®K ,.)? would give an
above. The first term oF is the standard Helfrich bending additional elastic anisotropy, which has been considered by
energy of the membrari@2]. The coefficient is the isotro- Chung etal. [6]. The combination ({geapD?mP)2
pic rigidity. The second term represents the anisotropy of the- (Dp,m®)? would give a difference in the Frank constants
rigidity. The coefficientx’ is the difference between the en- for bend and splay. Rather, this free energy is only intended

ergy required to bend the membrane parallel to thertiind 10 include the terms that generate distinct physical effects,

the energy required to bend it perpendicularﬁoln general, while the omitted terms give higher-order details of the
; ; " . ; ; structure.
«' can be either positive or negative. The third term, intro-

. > : If the membrane forms a perfect cylinder with radiys
duced by Helfrich and Pro$L5], is a chiral term that favors the free energy2.1) simplifies greatly. In the standard cylin-

curvature in a direction 45° from. The coefficiend ipis @ yrical coordinates 4,z), the curvature tensor becomes
measure of the magnitude of the chiral interaction between

the molecules in the membrane. The fourth term is another “1r 0
chiral term, which favors a bend m. This term was intro- K=< ) (2.2
duced by Langer and Sethna in the context of flat films of

chiral liquid crystals[20]. The coefficient\ 5 should have .

the same magnitude as,p; both coefficients are compa- The tilt director field can be written asm(6,2)
rable toKq in the notation of our earlier papgt9]. How-  =(cosp,sing). As shown in Fig. 5¢(6,2) is the angle in the
ever, there is no symmetry reason whys and\ ;o must be  local tangent plane between the tilt direction and the equator
equal. The fifth term, with coefficien, is the coupling be- Of the cylinder. The free energy then becomes

tween curvature of the membrane and splaynoflt can be )
understood in two equivalent way&) the curvature of the zf A[ EK(E n EK,(E
membrane breaks the symmetry between the two monolayers 2 2 r
of a bilayer and hence induces a splaymror (b) a splay in

m induces a curvature of the membrane to keep the mol-  —A sV Xm+y
ecules more nearly parallel in three dimensions. This term is

equivalent to terms that have been considered in the (2.3

0 0/

2
coSd— Apyp

1)
F) singcosp

1\, . 1 - - - o
F)V-m+§c[(me)2+(V-m)z]),
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7 These results lead to two important conclusions. First, the
A tubule radiug scales inversely with the chirality parameter
App- In @ nonchiral membrane, wherg;— 0, the radius
r—o. The coefficient of I is a combination of the elas-
7 tic constantsc andx’. Second, the tilt directio, is deter-
mined by the ratio of the energy caost- «’ for bend parallel
/ to the tilt direction over the energy costfor bend perpen-
7 Vi dicular to the tilt direction. In an isotropic membrane, where
Y /7 k'=0, we obtain¢$y=45°. In an anisotropic membrane,
/ / x' may be positive or negative and hengg may be greater

\y or less than 45°.
Chunget al. [6] originally derived Eq.(3.3) in order to

analyze experimental data on tubules in bile. In experiments
FIG. 6. Schematic view of a tubule with the uniform tilt direc- on bile systems, they found two types of tubules. Both types

tion rﬁ:(cog‘ﬁo’sin¢o)’ as indicated by the arrows. of tubules show clear helical markings, but the direction of

these markings are different: 53.7° from the equator in one

type of tubule and 11.1° from the equator in the other. Chung
wheredA=rd 6dz, et al. assumed that these helical markings are aligned with
the molecular tilt, so thatpy=53.7° and 11.1° in the two
types of tubules. They then used E§.3) to determine the
values of (+ «')/« that correspond to these valuesdgy.
The resulting values arec{+ x’)/ k= 3.4 and 0.0015, respec-
and tively. The ratio of 3.4 is quite reasonable, but the ratio of
0.0015 is surprising. It seems unlikely that a bend in the
membrane perpendicular to the tilt direction would cost al-
most 1000 times more energy than a bend parallel to the tilt
direction. For that reason, we must reexamine the assump-
Note that the 2D cross product defined by EB.4) is a tion that helical markings are aligned with the molecular tilt.
scalar. This form of the free energy is generally more convein the following section, we propose an alternative interpre-
nient to work with than the more general for(@.1). The  tation of the helical markings, which can explain this
interpretation of these terms is exactly as discussed above. homaly.
the following sections, we will use this free energy to inves-
tigate the structure of tubules and helical ribbons.

. .01
VXm= Fagsin¢— 3,C08p, (2.9

. .1
V-m= Fagcos¢+ d,Sin¢. (2.5

IV. TUBULES WITH TILT MODULATION

ll. TUBULES WITH UNIFORM TILT In this section, we relax the assumption that the tilt direc-

As a first step in understanding the implications of thetLOn mis uniform everywhere on a tubule. Instead, we allow

free energy(2.1), we consider tubules with a uniform tilt M to var)i as a function of the cylindrical coordinatésand
directionm. This model of uniform tubules is equivalent to 2 With m(6,2) = (cos4(6,2),sin¢(6,2)). We show that the
the model of Chungt al.[6]. We present it here in order to ground state of the tubule can have a periodic helical modu-
review their results in our notation. lation of m. 3 o
Suppose that a tubule of radius has a uniform tilt As a specific ansatz, we suppose that therenagéstinct
rﬁ=(co&bo singy), at an anglap, away from the equator, as stripes in the tilt direction. In the terminology of Sec. Il, each
shown in Fig. 6. The entire tubule is a single domain, with noStriP€ is & single domain of the membrane. The stripes are

domain walls. In terms of and ¢,, the free energy per unit SeParated by distinct domain walls. The stripes and domain
walls run around the cylinder helically, as shown in Fig. 3.

area is
We further suppose that the tilt directiah varies linearly
F o1 (12 1 [1)? 1\ across each stripe. Across each domain wallchanges
Aok 7] Takly coS'do— App T | SinéoCospy. sharply, almost discontinuously on the scale of the stripes.

(3.1) The direction of the stripes and the domain walls is defined
by the anglew with respect to the equator of the cylinder,
Minimizing this expression over and ¢, simultaneously, illustrated in Fig. 7. Letd’ be the coordinate running along
we obtain the w direction,
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rcosw. (4.3

We must now express the free enefg@yd) in terms of the
five variational parameters. To simplify the algebra, we sup-
pose thatA ¢<1, i.e., there is only a small variation in the

tilt direction. We will discuss corrections to this approxima-
tion at the end of this section. The curl and divergence of the
tilt then become

@O

Ve NA ¢cog ¢p— w) 4.4
271 COSw
and

- NA ¢sin( ¢o— w)
Vem= o (4.5

FIG. 7. Definition of the anglew, which gives the direction of
the stripes and the domain walls on a tubule with respect to thgyjith these expressions, it is straightforward to work out the
equator. gradient terms in Eq2.3).
The termsix’r ~2co¢p—\ e ~Lsingcosp require spe-
cial attention. This combination of terms favors a particular
z orientation¢ of the tilt direction with respect to the equator
0'= 6+ Hanw. (4.1 of the cylinder. Because it gives an energy penalty for varia-
tions in the tilt away from the optimum direction, it depends
on A ¢ as well as onpy andr. We expand this combination
In terms of this coordinate, our ansatz for the tilt directiongg g power series in(— ¢,), then average it over the cyl-
¢ can be written as inder (i.e., average it over the coordinaé). The result can

be written asjx’'r ~2coSdo— Nypt ~ 1singoCosp+ (A ¢)2,
the sawtooth form shown in Fig. 8. It oscillates about the

where
r\ 2 2
3+
2r r
average valueb, with the amplitudeA ¢. Thus our ansatz
has five variational parameters: the radiyghe average tilt The termiv(A ¢)? gives the energy penalty for variations of
direction ¢, the amplitude of the tilt variatioml\ ¢, the ¢ away fromep,.
stripe directionw, and the number of distinct stripes In The domain-wall energy also requires special attention.
terms of these parameters, the stripe width is As noted in Sec. Il, the continuum free energy of E@s1)
and (2.3 does not describe the narrow regions inside the
domain walls. Rather, we must explicitly add the domain-
wall energyey per unit length. In principleg,, can depend
on ¢q, A¢, andw. In this paper, we will neglect that pos-

d=0,+A02 - sible variation and treat,, as a constant. In an aré@aof the
=0, s /l/\/\ membrane, the total length of all the domain walls is
By Lw=A/L. The domain-wall energy per unit area of mem-

=0,-AY/2
=0e740 brane therefore becomes

$(6,2)= ¢+ nZA—:)( 0’mod2777>, (4.2

1/2

whered’ mod2z/n runs from— #/n to «/n. This ansatz has (4.9

T
c ewlw ewn
® S = . 4.
i % 3§ A 271 COSw .7
< D D
FIG. 8. Ansatz for the tilt directionp(6,z), in terms of the Putting all the pieces together, the total free energy per

coordinated’ = 6+ (z/r)tanw. unit area for our ansatz now becomes
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Foo 1 (1)2 1 [1)2 1) showed that scales as/\yp. For that reason, tahscales
A 2K F) toK (F) COS?QSO_)\HP( F) SingoCOoSpo as (yAup) /(A sk). We have already argued that the chiral
coefficients\ yp and\ | g should have roughly the same mag-
N 1v(A¢>)2—)\ NA ¢cog ¢ho— w) nitude. Hence we obtain
2 LS 27rcosw
y nAgsin(¢o—w) 1 ( nA ¢ )2 tan5~%. (4.1)
r 271 COSw 2 "\ 2mrcosw
This ratio can be large or small.
+ ewn _ (4.9 For the next step in the calculation, we substitute Eg.
277r COSw (4.10 for 6 back into Eq.(4.9) for the free energy, to obtain

2 1

1 1\? 1\
+ EK'(F) c052¢0—)\HP(F)sm¢0cos¢o

This expression must be minimized over the five variational F.; 1
parameters, ¢q, A¢, w, andn. A 2K,

To do this minimization, we will make an approximation:

We will treatn as a continuous variable rather than as an 5 |2 y\?|Y2A¢ 1 [Ag)\?
integer. This should be a good approximation fer 1, al- + EV(A¢) | Mst T T+ SO\ T
though not forn~ 1. We will discuss corrections to this ap-

proximation, as well as the previous one, at the end of this n Ew 4.1
section. After making this approximation, it is convenient to L )

change variables froorm to L=(2nrcosw)/n. We also
change variables from to 6= ¢y— w. The variableL is the ~ Minimizing this expression over the stripe widthgives
stripe width, as noted above, aads the difference between

the average tilt direction and the stripe direction. In terms of _ c(A¢)? 413
these variables, the free ener@gy8) simplifies to [NZs+ (YIr)2]MPA ¢ — ey '

Fioo 1 (1)2 1 [1)? 2 1) . if this denominator is positive, dr—o otherwise. This ex-
A 2K 7] T 7] coSdom Mup | SindoCOsho pression forL is the same result that one would expect from

studies of stripes in flat filmg20—-22. It is equivalent to the
Agcoss y A¢>sin5+ 1 [Ad > result for stripes in tubules in our earlier pap28], except

L r L 2C L that the dependence ah¢ was not considered there. This
expression shows that the g and y/r terms in the free

i Ew 4.9 energy both tend to induce stripes with a narrow width. If the
L’ ' energy gain from these terms, added in quadrature, exceeds
the energy cost,, of a domain wall, then stripes will form;
This expression for the free energy must be minimized ovebtherwise they will not form. If stripes do form, their width

1
+ EV(A¢)2—7\LS

the five \_/ariational parameters ¢o, A, 9, andL. depends on the competition between the Frank free energy
As afirst step, we minimize the free energy over the anglgyroportional toc, which resists variation i, and the\ s
6. We obtain and y/r terms.
We now insert Eq(4.13 for L back into Eq.(4.12 for
tans= ”\7 _ (4.10 the free energy. The result is
LS
Foo 1 (1\2 1

This expression is equivalent to the corresponding result in A 2%

our earlier papef19]. This result is important because the
angle é gives the difference between the stripe direction _ fw
and the average tilt directioth,. Because these two direc- 2 Ao
tions differ by an angleS, we can explain the anomaly men-
tioned at the end of Sec. Ill. Recall that the experiments off the quantity in cruly brackets in the last term is positive. If
Chunget al.[6] found one type of tubules with helical mark- not, then the last term is zero. Because only the last two
ings at an angle of 11.1° from the equator. If these helicaterms in the free energy depend drp, we will call them
markings indicate the average tilt directighg, then the ratio  Fsyipd A ¢)/A. We must now minimizé g, Over A ¢. This
of rigidities (x+ ')/ x must be 0.0015, an anomalously low minimization cannot be done analytically, but it can be done
value. However, if the helical markings indicate thgipe  graphically. In Fig. 9, we ploFE g;ipe as a function ofA ¢ for
direction, then this result for{+ ')/« does not hold. That a sequence of values of The parametep, defined in Eq.
ratio could be closer to 1 and the anghg could be closer to  (4.6), gives the energy penalty for variations $faway from
45°, while the stripe direction is 11.1°. Thus our interpreta-¢o. For largev, the only minimum ofF s is for A¢=0.
tion is that those experiments were measuring the stripe difhat is reasonable because a large value stippresses all
rection, not the average tilt direction. variations ing. As v decreases; e develops a local mini-
One might think thaté would be very small because mum forA ¢+ 0. At a critical valuev,, there is a first-order
tand scales as t/andr is large. However, in Sec. lll we transition fromA¢=0 to A¢p=A¢.. For v<<v., the mini-

r

1\? 1\
+ EK’(F) c052¢0—)\Hp(F)sm¢ocos¢o

)\ES+(rZ

2} 1/2

2
} (4.19
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Fstripe

(®) (b)

Fstripe

3811

possible to derive a general analytic expressionAfgr and
L in the modulated state. However, a good estimate would be

Ad

Fstripe Fstripe

A9 Ap~A¢, andL~L,.

We must now minimize the free energ4.14) over the
radiusr and the average tilt directiog,, which are the
remaining variational parameters. For=v., we have
Fsuipe=0 and hence the total free energy is

21 (1
+§KF

1 2

r

For 1
—(V — <K

A 2

1
coSpo— )\Hp( ?) SiNg,CoSpg .
(4.19

This is exactly the free energy considered in Sec. Ill. Hence

Ab

Fstripe

© ®

A

Fstripe

A the solution given in Eqg3.2) and (3.3 still applies to the
uniform state of tubules. Far<wv, we haveF <0 and
hence

21

For 1 (1

. |

FIG. 9. Graphical minimization of the stripe free enef@y;pe
as a function ofA ¢, as discussed in the te¥pe is the sum of the
two terms plotted i@ and(b). (c) For largev, the only minimum
is the uniform state witlA ¢=0. (d) As v decreases, another mini-
mum develops foA ¢+ 0. (e) At v=1,, there is a first-order tran-
sition from the uniform state X\¢=0) to the modulated state

WA

r

1\? 1)
+ EK’<F) cosz¢0—)\Hp(F)sm¢oco&z>o

Fstripe
+ A (4.20
Although we do not have a general expressionHgf,., we
see thaF ;. can be expanded in a power serieg irt. The
constant term in that series does not affect the minimization.
The term proportional to~ 2 just gives anegative renormal-
ization of the rigidity . The higher-order terms im~2

(Ad=Ag,). (f) For v<w,, the modulated state becomes the ap-Should be neglected because we have already neglected

solute minimum of the free energy.

terms of that order in our original curvature expansion for
the free energy. For that reason, if we just use the renormal-

mum atA¢#0 becomes the absolute minimum of the freeiZ€d rigidity g in place of the bare rigidity«, then the

energy. To calculatev, and A¢., we setFg;i=0 and

IF suipe! (A @) =0. The result is
1 212

N e

16cey, r

Ve=

and

A _ ZEW

The corresponding value of the stripe width is

L _ 4C€W
¢ st (yir)?

and hence the gradient in the tilt directignis

A¢C_ [)\2|_S+(y/r)2]1/2
Lo 2c '

derivation ofr and ¢ in Sec. Il still follows. We obtain
Egs.(3.2) and(3.3) for r and ¢ with the renormalizedg in
place of.

At this point, we have minimized the free ener@.9)
over the five parameters in our variational ansatzig,,
A¢, 6, andL. We have shown that there is a first-order
transition from a uniform state to a modulated state charac-
terized by stripes in the tilt direction. We must now discuss
corrections to two approximations in this variational calcula-
tion.

First, we assumed that there is only a small variation in
the tilt direction across a stripéi¢<<1. In some systems,
A ¢ might be locked at a larger angle. For example, in a
membrane with hexatic bond-orientational order, the angle
A ¢=60° would be favored, because that angle would allow
the tilt direction to jump from one bond direction to another
bond direction across each domain wall. Such locking has
been investigated in the context of flat liquid-crystal films by
Hinshawet al.[21]. In such a system, the transition from the
uniform state to the modulated state would become more
strongly first order than we calculated above: The larger dis-
continuity in A ¢ would imply a larger latent heat of transi-

(4.15

(4.19

(4.17)

(4.18

In summary, forv> v, the tubules are uniform, with no tion. Thus the quantitative predictions of this section would

tilt modulation. In that case, we havk¢=0, L—«, and

no longer apply. Nevertheless, our qualitative predictions

Fsuipe= 0. At v=1, there is a first-order transition from the would still apply, because tubules would have a first-order

uniform state to a modulated state with¢=A ¢, and
L=L.. At this point, Fg is still zero. Forv<wv, the
tubules remain in the modulated state. Aslecreases) ¢

transition from a uniform state to a modulated state whether
or notA ¢<<1.
Second, we did the variational calculation with the ap-

andL both grow larger ané g, becomes negative. It is not proximation that the stripe width is a continuous variable
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or, equivalently, that the number of strippgakes continu-

ous rather than just integer values. In fact, because of the
periodic boundary conditions going around a cylinder, the
parametein must be an integer and henkte= (27rr cosw)/n

is restricted to a discrete set of values. For that reason, there
will be a series of jumps, or first-order transitions, between
different integer values ofn. Within each constam-
“phase,” there will be one special point where the continu-
ous minimization gives exactly the right answer:is an
integer. At those special points, all the results of the minimi-
zation (for &, L, A¢, etc) will be correct. Between those
special points, there will be deviations from the predictions
of the continuous approximation. The actual values should
therefore fluctuat@boutthe values from the continuous ap-
proximation. Thus this approximation should give a reason- k \

able estimate of the actual results.

V. HELICAL RIBBONS

In this section, we apply the theory for the modulated
state of tubules, developed in the preceding section, to heli-
cal ribbons. We draw an explicit analogy between a single
stripe of a modulated tubule and a single ribbon. We show
that a helical ribbon can be either a stable state of a mem-
brane or an unstable intermediate state in the formation of a
tubule. A stable helical ribbon has a particular optimum
width. If more molecules are added to the ribbon, it becomes
longer, not wider. By contrast, an unstable helical ribbon FIG. 10. Schematic view of a helical ribbon, with a variation in

grows wider until it forms a tubule. __ the tilt direction across the width of the ribbon. The arrows repre-
The basis of our calculation is the geometry shown in Figgent the tilt direction on one side of the bilayer.

10. A narrow ribbon winds helically around tleaxis. We

consider a linear variation of the tilt directio up to the . . . . :

ribbon edge. The tilt variation is in the direction specified by & twbule, c_jerlved in Sec. IV, sill applies. However, instead of
the anglew with respect to the equator, as is the ribbon itseh‘.the domain-wall energy,,, we must now use the edge en-

Again, we describe the tilt variation using ti#é coordinate ergy ee per unit length for gach of the wo edges of th_e
ribbon. This edge energy gives the energy cost of having

z different parts of the molecules exposed to the solvent at the
0'=0+ Stan, (5.)  ribbon edges. Hence the total free energy per unit area in our
ansatz for a helical ribbon becomes

which runs in thew direction. The ribbon edges are at

0'==*6*, where#* is a variational parameter. The maxi-

mum possible value ig* =, at which point the edges of F_mtz EK
the ribbon collide and the ribbon forms a tubule. Betweenthe A 2
edges, our ansatz for the tilt directighis

_g A0
$(0,2)= o+ 550", (5.2

1\2 1 (1\? 1)
—) +§K'<?) co§¢0—)\Hp(F)sm¢oco&bo

A¢cod pp— w)

1
- 2_
+2V(A¢) NS ™ 5% comw

Y Agsin(do— w) 1( Ad )2

This ansatz is a single period of the sawtooth wave of Fig. 8. r 20*rcosw 27\ 26" rcosw

As in Sec. |V, the ansatz has five variational parameters: the
radiusr, the average tilt directiop,, the amplitude of the 20—
tilt variation A¢, the ribbon directionw, and the angle 26*rcosw
6*, which is the half-width of the ribbon in th@’ coordi-

nate. The actual width of the ribbon is

e (5.4

This expression must be minimized over the five variational
L=26*rcow. (5.3  parameters, ¢, Ag, o, and *.
At this point, we note that all five variational parameters
We must now express the free ener@d) of a helical are continuous variables; none of them is an integer, as in
ribbon in terms of these five variational parameters. The fre&ec. IV. Thus we can immediately change variables from
energy is expressed per unit area of membrane, where th to the ribbon widthL=26*rcosw and fromw to the
area does not include the gaps between the edges of tldifference angled= ¢y— w. In terms of these variables, the
ribbon. For most of the terms, the free energy per unit area afibbon free energy5.4) simplifies to
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1)\2 1 sider equilibrium undulated, or rippled, textures on otherwise

F) coS o — KHP( F) singoCospg cylindrical tubules. In part, this is because of the similarity of
the model described above in E®.1) to recent models of

Apcoss 7y Agsind 1 (A¢)2 modulated phases of lipid bilayef23,24] and liquid crystal

1\2 1

L

L r L + 5¢ films [33] and the suggestion in Rdf24] that chiral stripe
textures such as those of Sec. IV may exhibit a rippled shape.
2ep There have also been experimental reports of regular peri-
+ L (5.9 odic undulations of the surface of tubule®t,35. Quite gen-
erally, however, we expect that an underlying chiral stripe
Equation(5.5) for the ribbon free energy is exactly the sametexture, with a spatially varying tilt field as described in Sec.
as Eq.(4.9 for the tubule free energy, but withe2 substi- 1V, will lead to a shape modulation of the tubule, as shown in
tuted in place ok, . However, for ribbons, all of the param- Fig. 4. This is because of the coupling of the molecular ori-
eters really are continuous variables; that is not just an apentation, or tilt field, to membrane shafi3].
proximation. Thus the theory of ribbons is mathematically Given an underlying stripe texture of the molecular tilt
simpler than the theory of tubules. m(6,z), we study the corresponding tubule shape that results
Because the free energy for ribbons is equivalent to thérom the coupling of molecular tilt to membrane shape.
free energy for tubules, we can carry over our results fromamong the possible explicit couplings of molecular tilt to
the theory of tubules in Sec. IV. The direction of a ribbon, membrane Shape1 the terﬂK:Dbmb is genera| to all mem-
relative to the average filt direction, is given by the differ- pranes with in-plane orientational order. It is allowed by

1
+ EV(AQS)Z_}\LS

ence angle symmetry for both chiral and achiral lipid bilayers. Further-
more, the coupling constantis expected to be of the same
tans= —— -7 (5.6)  order as the bending modulus(36]. The second coupling in
s K increasing powers ah andK, )\Hp\/gebcmamchis permit-

ted only for chiral systems. Here we shall consider a some-
what simplified model, in which we let’=0 in Eq. (2.1.
c(Agp)? We calculate the modulated shapes of tubules with tilt modu-
L= [Nt (7/1)2]2A ¢ 2€ (5.7 lation in the limit that the ripple amplitude is small compared
Ls™LY E with the tubule radius, which is of order 1um.
if this denominator is positive, dr—x otherwise. However,  FOr a rippled surface, of course, the curvature tensor
note that the maximum possible value &f is L, Kab N EQ.(2.D is no longer constant. In Sec. IV we de-
=2mrcosw. If L>L,,.. the edges collide and the ribbon scribed the tilt fieldm(6,z) by a tilt angle4(6,z). Here we
forms a tubule. Thus there is a stable ribbon witk L., consider also a ripple characterized by a deviatiof, z) of

The ribbon widthL is given by

only for a certain window of parameters. the membrane surface away from a background cylindrical
For the amplitude ¢ of the tilt variation, the analysis of geometry. More precisely, the membrane position in three
Sec. IV applies again. At a critical value of dimensions is given by
272 > .
Y X(6,z)=((r+h)cos,(r +h)sinb,z), 6.1
R _) | 5.9 (6,2)=((r+h)cosd,(r+h)sing,2),  (6.1)
64ceg r

wherer is the fixed(average radius of the tubule. In other
there is a first-order transition from a state witly=0 and  words, we consider a small undulatibrof the local cylinder
L—oo, i.e., a state with no stable ribbon, to a state withradius. The following analysis is valid fdr<r.

Ap=A¢. andL=L., where We find it convenient to use coordinates,4), where

4 s=r 6. In these coordinates, the metric tensor for the tubule
€E surface is
Ape=————715 5.9
P Nt (7T 59 N
. {(1+h/r)s+(dsh) dsha,h
and Oap=1ta tp= t?shﬁzh 1+((9Zh)2 ’
8CEE (62)
C:m. (5.1@ N N .

LsT Y wheret = d,X form a basis for the local tangent plane to the

. . ... membrane. Through second order in the, presumed small,
If L.<Lax then a stable ribbon forms at this transition. height modulationgh the surface area ml?aasure A
Finally, the minimization over and ¢, goes through exactly \/adsdz where

as in the case of the modulated state of tubules. The resulfs
are the same as in Sec. lll, but with the renormalized rigidity

kg in place of the bare rigidity. Vo= V|deg,,|=

VI. RIPPLES

hy( 1 2)

and

In this section, we consider the possibility of non- R
uniformly curved states of a tubule. In particular, we con- (Vh)2=(ash)%+ (9,h)2. (6.4
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The curvature tensor is KabZN'ﬂaﬁbX, where

A

4 3 HP .2 .
T . Jh— 7y, codp—w)+—3,,SIN2dp—w)=
N=t,Xxt,/|t,Xt,| is the unit surface normal. Through or- K5 J5/C0 ) 2 I SIN2( )=0

derh?, the mean curvature (6.10
_— 5 that can be integrated to yield
a b 1 _,  (Vh)® ()
Ka=9% Kap=—1+V h+T— T (6.5 N
Kof,h— vdsCOL Pp— w) + %’sinZ(d;— )= Cconst,
whereg?®=(g,,) "%, and (6.11)
V2h=a§h+é’§h. 6.6 where s’ =rcoswf’ =scosw+zsinw extends from—L/2 to

L/2. Here we have also used the fact thats a periodic

) ) _ ) _ function. This does not allow, for instance, a linear term in
We shall find that the tilt modulation described in Sec. IV gq. (6.11). For the tilt field given above in Eq4.2),

leads to a modulation ofi with the same period. For the
stripe texture considered above, this period is the stripe Ad |
width L. The last two terms in Eq(6.5 are of order JsrCOS P~ w)=— —SiN(p—w). (6.12
h?/(rL?), which is smaller thanvV?h~h/L? by approxi-
matelyh/r. Thus we shall retain only the first two terms in within one period of the modulated texture, the tilt angle
Eq. (6.9. R ¢ can be represented as

To orderh, the divergence o is given by

n
- ah ¢—w=5+A¢ﬂS , (6.13
dsCOSp + d,Sin¢h+ Tsmd). (6.7

h
Dmi= ( 1--
where again-L/2<s'<L/2. For smallA ¢, the solutions to

Eqg. (6.1 i
The first terms in Eq(6.7) are of orderA ¢/L. From Egs. a. (6.12) can be written

(4.18 and(5.6), we expect that this is of order (s')2 Ap [(s)®
NNCLN TN R
2 L 6
Ap N5 1 6.8
T ¢ r ©8  \herea and 8 are constants and the coefficiehtsand h,

depend ony, k, Ayp, 8, A¢, andL.
near the transition to the stripe texture, since we also expect At this point, an additional assumption concerning the
that k andc are of the same ord¢86]. The last term in Eq. domain wall is necessary. Here we consider two possibilities,
(6.7) is thus smaller than the other terms by a factor of apboth of which, however, yield the same functional foff.
proximatelyh/L. Below, we shall ignore the last term in Eq. (6.14] for the height ripples on the surface of tubules. As

(6.7). We comment on the validity of this below. noted above, we have not taken account of possible depen-
The leading-order terms in E¢2.1) that depend on the dences of the domain wall energy, on parameters of our
ripple shapeh are given by model such asp or w. If we continue to assume as before

that the domain wall is of infinitesimal thickness and costs an
« energyey, per unit length that is independent of model pa-
Fh:f fgdsd%g(Ki)zw(Kz)(Dbmb)} ra}meters, yvhlch now include the possibility _of a finite slope
discontinuity of the membrane at the domain wall, then the
wl 1 v2h constant in Eq(6.11) can be determined by minimizing the
zj dsd{—(—z—z—Jr(Vzh)z) integrated free energy of E¢6.9) using Eq.(6.11). Because
2\r r of the presence of the domain wall, we must include total
1 derivatives such as the terr(V2h)/r in Eq. ( 6.9. This is
—y(Vzh——)(ascosdnL d,Sing) equivalent to solving Eq(6.11) with the constant on the
' right-hand side set equal torl/The result is given by Eq.
(6.14) with
+)\Hp(sin¢cos¢(<?§h—agh)+(sin2¢—co§¢)asﬁzh)}.
o (1 yAd Ay
1

P
= F - ; Tsmﬁ— ﬁSII’]Zﬁ) (6.13

(6.9
For a fixed background cylinder radiusand a(predeter- and
mined modulating tilt angle¢(6,z), which following Sec.
IV can be described in terms of a single variaBilegiven in _ y A¢ Nup
Eq. (5.1), the Euler-Lagrange equation for the height field 2= _(a T oSt 5, CosB . (6.16
h is determined by variation of Eq6.9) with respect toh.
To leading order irh/r, the result is an ordinary differential For the above to be a periodic function in the range from
equation —L/2 toL/2, we must have
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L* h(s’)
B=—. (6.1 s
24 A

The other constant is arbitrary. We note that in the above,
the contributions to botth; and h, from the chiral and
achiral couplings are of the same order, provided that
N wp~A s and y=~k, sinceA¢/L~1/r.

On the other hand, if we assume a narrow but finite do- . \
main wall region(2), in which the elastic constanis y, and 20 -1.0 3}8 1.0 2.0
\ yp have the same values as in the regi@habove and in
which the tilt angle¢ varies again linearly, but in reverse to
its variation in region(1), then the solution in regiofil) can

still be expressed by Eq.6.14), where h(s’)
B
yAd .
h,=— = —siné, (6.18
k L

h, is given by Eq.(6.16), andg is given by Eq.6.17). This

is valid for domain walls of width.’<L. The general result
for L'~L is somewhat more complicated, although the gen-
eral form of Eq.(6.14) is still valid. In particular, periodicity ' o SIL
of h in region (1) alone is no longer valid and hence the

coefficient 8 differs from the value above(A somewhat

more general solution was derived in Rig#4] for flat mem-

branes). In general, however, the membrane slope is continu- h(s’)

ous across the boundaries between regi@hsind(2) under C
the conditions of equal elastic constarts v, and\yp. We

note, however, that the chiral and achiral couplings no longer
contribute to the ripple amplitude at the same order. The
dominant contribution to the ripple amplitude is from the
achiral termyK2D,mP, while the contribution to E¢(6.14)

from the chiral coupling\ yp\/gep,m*m°K® is smaller by a 20 1.0 00 10 20
factor of orderA ¢. s/L
For a stripe width_, the amplitude of the height modula-
tion h is of orderL?/r, where we have used E(6.8). Thus FIG. 11. Plots of the ripple shapes, as a function of the coordi-
h L\2 1 nat_es’ _normal to t_he ripples. For small ¢, the_ dominant contri-
_N(_) ~=, (6.19 putlon is symmetric undes’ — —s', but corrections are asymmet-
ror n ric. (a) h;<0 andh,=0. (b) h,A$=0.3n;. (c) h,Ap=h;.

where, as in Sec. IVy is the number of stripes on the cyl- i, the free energy, which couples membrane curvature to
inder. We have assumed that this is small. So our analysigariations in the direction of the tilt. These modulations can

above is valid forL<r. In other words, we have calculated reqyce the free energy by concentrating the curvature into
the shape of tubules with stripe textures in the limit that thegomain walls.

stripe texture has both amplitude and period small compared
with the tubule radius. Note also thiatis smaller tharl by
a factor ofL/r~1/n.

In Fig. 11, we show representative ripple shapes for vari- In this paper, we have presented a general theory of tu-
ous values oh; andh,. In Fig. 11(a), we show the shape for bules and helical ribbons based on the concept of chiral mo-
h;<0 andh,=0. This is the dominant contribution for small lecular packing. This theory shows that tubules can have
A ¢. This term is symmetric under — —s’. The correction  both uniform and modulated states. In the uniform state, tu-
to this, smaller by ordeA ¢, is asymmetric. In Figs. 1) bules have a constant orientation of the molecular tilt with
and 11c), we show the corresponding shapes foA ¢ respect to the equator of the cylinder. In the modulated state,
=0.3h; andh,A¢=h,. tubules have a periodic, helical modulation in the direction

As a final point, note that the analysis in this section, af the molecular tilt and corresponding ripples in the curva-
well as Sec. IV, applies to any membrane in a cylindricalture of the cylinders. In this section, we discuss the experi-
morphology, regardless of how it formed. In particular, if any mental evidence for these theoretical predictions.
membrane is adsorbed onto a pre-existing cylindrical sub- There are two types of experimental evidence supporting
strate (perhaps a microscopic wire or fiherit can form  the concept that the formation of tubules and helical ribbons
stripes in the tilt direction and ripples in the curvature. Thesds due to chiral molecular packing. First, many experiments
modulations can occur even if the membrane is not chiral: Irhave seen helical markings that wind around tubules, giving
a nonchiral membrane, they would be induced by¢hterm  tubules a chiral substructure. Clearly, helical ribbons always

VIl. DISCUSSION
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have a chiral structure. It is reasonable that the observedne would either(a) use the intrinsic fluorescence of the
chirality of these microstructures results from a chiral pack-constituent amphiphilic moleculegb) attach a fluorescent
ing of the molecules. Second, recent experiments have foungroup to the molecules, ¢c) put a fluorescent probe into the
that diacetylenic lipid tubules have a very strong circularmembrane that forms tubules. One would then illuminate the
dichroism, which indicates a local chiral packing of the mol-tybules with polarized light from a laser source. Variations in
ecules, regardless of whether a chiral pattern is visible on thghe direction of molecular tilt would then lead to variations
surface of the cylindei37]. The same diacetylenic lipid mol- i the intensity of fluorescence, which could be detected us-
ecules in solution or in large spherical vesicles have very |OV\{ng confocal microscopy or near-field scanning optical mi-

circu!ar Qichroism. .The§e resu_lts show that the mo',ecu,laEroscopy. Through this approach, optical techniques could
paﬁ"'r.‘g Im tul.)l,;|eS.IS chlrarll,' vv|h|le the molecular packing N detect the predicted helical modulation in the tilt direction in
spherical vesicles is not chiral. the modulated state.

S.O far, there_: has not been_ any direct test of our prgghctlon The ripples in tubule curvature predicted by our theory
of tilt modulation—no experiments have been sensitive toma be the modulations seen by Yagaral. [34] and b
the local direction of molecular tilt in tubules. However, the Y y Yagral. Y

helical markings on tubules provide indirect evidence for thisThomaS[35]' Electron micrographs taken in those experi-

prediction. In some cases, these helical markings are bound!€nts show very clear helical variations in the tubule curva-
aries between sections of tubules with different numbers of'¢. However, other experiments have not observed any
bilayers in the walls. However, in other cases, helical mark/iPples on tubules, within the resolution of the electron mi-
ings appear even when there is no detectable discontinuity iff09raphs. The preliminary data are not yet sufficient to ex-
the number of bilayers, as in Fig. 1. These helical marking®!ain why ripples are seen in some experiments but not in
are apparently stable, because they do not anneal away @ihers.
time, and hence seem to be a characteristic of the equilibrium Our prediction of a first-order transition between the uni-
state of tubules. Our interpretation is that these helical markform and modulated states of tubules also has some experi-
ings are the orientational domain walls predicted by ourmental support. Nouneset al. have measured the magnetic
theory. In this interpretation, the domain walls are visible inbirefringence and specific heat of both single-bilayer and
electron micrographs because impurities accumulate themaulti-bilayer tubules, as functions of temperature through
and colloidal particles from the solution preferentially adsorbthe melting transitiorj39]. They find that single-bilayer tu-
there. Such preferential diffusion of impurities to orienta-bules undergo a second-order melting transition, with strong
tional domain walls has been observed directly in Langmuimpretransitional effects, while multi-bilayer tubules undergo a
monolayerd 38]. first-order melting transition. Furthermore, single-bilayer tu-
Of course, this interpretation of the observed helicalbules show an anomalous peak in the specific heat about 3°
markings provides only indirect support for our theory. For abelowthe main peak associated with melting into the untilted
more direct test of our theory, one would need an experimernphase. This anomalous peak is consistent with our predicted
that can directly probe the local direction of molecular tilt. transition between the modulated and the uniform states of
One possible experimental technique is fluorescence microsdbules. The modulated state should occur in the 3° window
copy with polarized laser excitation. This technique has beebetween the anomalous peak and the main melting peak,
used to observe variations in the local tilt direction in Lang-where the membrane elastic constants are low, and the uni-
muir monolayerg38]. To apply this technique to tubules, form state should occur at lower temperatures, below the

(a) (b) (©)

FIG. 12. Scenario for the kinetic evolution of flat membranes into tubules, as discussed in tii@ Mten a membrane is cooled into
a tilted phase, it develops stripes in the tilt direction and then breaks up along the domain walls to form (ipbBash ribbon twists in
solution to form a helix.(c) A helical ribbon may remain stable or may grow wider to form a tubule. Reprinted from[B&f.with
permission(© 1994 American Association for the Advancement of Scigénce
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anomalous peak. Thus our theory may explain this heatthat large spherical vesiclgsvith diameter greater than 1
capacity anomaly. pum) form tubules upon cooling, while small spherical
As a final point, we note that our theory for the modulatedvesicles(diameter less than 0.0sm) do not[40,41. Thus
state of tubules leads to an interesting scenario for the kinetighe theoretical prediction of stripes in the tilt direction gives
evolution of flat membranes or large spherical vesicles intaome insight into the kinetics of the tubule-formation pro-
tubules. This scenario, proposed in R&7], is illustrated in  ¢ess.
Fig. 12. When a flat membrane or large spherical vesicle is |n conclusion, in this paper we have shown the range of
cooled from an untilted into a tilted phase, it develops tiltpossible states that can occur in tubules. Tubules can have a
order. Because of the molecular Chirality, the tilt order formSuniform state, as was considered by earlier investigatorS, but
a series of stripes separated by domain walls, as shown ifey can also have a modulated state, with a periodic helical
Fig. 12a). Each stripe forms a ripple in the membrane cur-yariation in direction of molecular tilt and in the curvature of
vature and each domain wall forms a ridge in the membranghe membrane. There is at least indirect evidence that the
Thus the domain walls are narrow regions where differeninodulated state occurs in actual experimental systems. A
parts of the amphiphilic molecules come into contact withmore definitive test of this theoretical prediction requires di-

neighboring molecules and with the solvent. As a result, theect experimental probes of variations in the molecular tilt
domain walls become weak lines in the membrane and thgjrection.

membrane tends to fall apart along those lines. The mem-

brane thereby forms a series of narrow ribbons. These rib-

b(_)ns are free to twist.in solution to fo_rm helices, as s_hown in ACKNOWLEDGMENTS
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