
Correlated fluctuations of microparticles in viscoelastic solutions: Quantitative measurement
of material properties by microrheology in the presence of optical traps

M. Atakhorrami,1 J. I. Sulkowska,1,* K. M. Addas,2,† G. H. Koenderink,1,‡ J. X. Tang,2,§ A. J. Levine,3,�

F. C. MacKintosh,1 and C. F. Schmidt1,¶

1Vrije Universiteit, Department of Physics and Astronomy and Laser Center, de Boelelaan 1081,
1081 HV Amsterdam, The Netherlands

2Department of Physics, Indiana University, 727 East Third Street, Bloomington, Indiana 47405, USA
3Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, USA

�Received 20 September 2005; revised manuscript received 2 February 2006; published 2 June 2006�

The Brownian motions of microscopic particles in viscous or viscoelastic fluids can be used to measure
rheological properties. This is the basis of recently developed one- and two-particle microrheology techniques.
For increased temporal and spatial resolution, some microrheology techniques employ optical traps, which
introduce additional forces on the particles. We have systematically studied the effect that confinement of
particles by optical traps has on their auto- and cross-correlated fluctuations. We show that trapping causes
anticorrelations in the motion of two particles at low frequencies. We demonstrate how these anticorrelations
depend on trap strength and the shear modulus of viscoelastic media. We present a method to account for the
effects of optical traps, which permits the quantitative measurement of viscoelastic properties in one- and
two-particle microrheology over an extended frequency range in a variety of viscous and viscoelastic media.
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I. INTRODUCTION

Complex fluids are commonly characterized by their vis-
coelastic properties. Considerable interest has in recent years
also been devoted to biomaterials. These materials typically
show a very complex time-dependent behavior related to
their intrinsic length scales ranging from nm to �m. To probe
this mechanical behavior over a wide frequency range, new
rheological techniques are needed since most conventional
rheometers are restricted to frequencies less than about
50 Hz due to the inertia of the macroscopic probes �1�.

In part in an effort to increase the bandwidth �up to MHz�,
various active and passive �fluctuation based� microrheology
�MR� techniques have been developed in recent years �2–11�
that explore the viscoelastic properties of soft complex fluids
by measuring the response of the medium to the motion of
embedded micron-sized particles. In passive MR the samples
are in thermal equilibrium and the probe particles execute
Brownian motion. The complex response function of the par-
ticle is obtained via the fluctuation-dissipation theorem and a
Kramers-Kronig integral, which relates the real and imagi-

nary parts of the response function. A generalized Stokes-
Einstein �GSE� relation relates the complex shear modulus of
the medium to the complex response function of the particle
�2,4,5,12�.

Microrheology in its simplest form can be done with a
single probe particle �1PMR� where the rheological proper-
ties of the material are extracted from the displacement au-
tocorrelation function of individual fluctuating particles.
Such measurements probe the dynamics on length scales
comparable to that of the particle. Two-particle microrheol-
ogy �2PMR�, on the other hand, uses the correlated fluctua-
tions of two particles at a separation distance r, which can be
much larger than the probe particle size and thus probe the
mechanics of the medium on a length scale comparable to
the interparticle separation �11,13–15�.

Tracking of particles in transparent media can be done by
video microscopy �16� which has the advantage of imaging
�100 particles simultaneously and thereby rapidly obtaining
good statistics. Standard video microscopy, however, is lim-
ited in frequency to 50/60 Hz with a spatial resolution of
10 to 50 nm. An alternative method giving higher spatial and
temporal resolution is based on laser trapping of individual
particles combined with interferometric displacement detec-
tion �4,5�. To apply this method to 2PMR, one uses a pair of
focused laser beams to produce two optical traps in the
sample holding a pair of �spherical� particles at a separation
distance r �10,30,33,37�. Position fluctuations of each of the
trapped particles are detected with quadrant photodiodes,
with a bandwidth from �0.1 Hz to 100 kHz with a spatial
resolution of better than 1 nm �17,5,18�. The detection range
of the laser focus is on the order of only 1 �m. Therefore the
particle has to be kept in focus if one wants to record mo-
tions over longer times. In a predominantly viscous solution
the particle can be confined and moved about by the laser
traps themselves. In a viscoelastic medium, such as a poly-
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mer solution or network, the probe particles are confined by
the medium, and the laser has to be targeted on the particle.
Even in that case, elevated laser power can be necessary to
avoid shot noise when detecting particle motion at high fre-
quencies.

Optical trapping introduces an additional force on the par-
ticles that is determined by the laser power rather than by the
inherent mechanical properties of the medium. This will in-
fluence the thermal motions, so we must reexamine the rela-
tionship between the observed fluctuations of the particles
and the rheological properties of the medium in which they
are embedded. If not corrected for, the trapping potential
introduces a systematic artifact in the magnitude of the stor-
age modulus derived from the particle fluctuations, which
can be dominant at low frequencies. In this paper we quan-
tify both theoretically and experimentally the effects of the
traps on the measured particle response functions in viscous
and viscoelastic fluids using water and an aqueous solution
of fd virus. We demonstrate that the response functions mea-
sured with 1PMR and 2PMR at low frequencies reflect a
combination of the viscoelastic confinement by the medium
and the trapping forces on the particles and we present a
procedure to correct microrheology data for the trap effect.

II. MATERIALS

As an example of a purely viscous fluid we have used
pure water. As an example of a viscoelastic medium we have
used a 10 mg/ml solution of monodisperse filamentous virus
particles, fd virus. The fd bacteriophages were prepared by a
standard method �19�, and details are described elsewhere
�20�. The concentrated stock solution of virus rods was di-
luted to 10 mg/ml at pH 7 by adding a buffer solution with
an ionic strength I=50 mM �5 mM imidazole, 1 mM NaN3,
and 46.5 mM KCl�.

As probe particles we used silica beads of radius R
=0.58 �m±5% �Van ’t Hoff Laboratory, Utrecht University,
Utrecht, Netherlands�, diluted to a final volume fraction of
�10−5. After mixing the particles with the water or the virus
solutions, we pipetted the solutions into sample chambers
with a�20 �l volume, made of a coverslip and microscope
slide attached with two narrow strips of double-stick tape
�inner height �70 �m�. After filling, the sample chambers
were sealed at both ends with Apiezon H vacuum grease
�M&I Materials LTD, Manchester, UK�.

III. EXPERIMENTAL METHOD

Two independent polarized laser beams with wavelengths
�=1064 nm �cw, Nd:YV04, Compass, Coherent� and �
=830 nm �diode laser, cw, IQ1C140, Laser 2000� provided a
pair of optical traps in a custom-built light microscope
�14,21�. A schematic sketch of the experiment is shown in
Fig. 1 where two particles, labeled 1 and 2, at a separation
distance r are trapped in the two laser foci. To avoid surface
effects, particles were trapped at a minimum distance of
20 �m away from all chamber surfaces. The laser intensity
was varied for each wavelength individually using � /2 plates
and polarizers placed in the laser paths. The position fluctua-

tions of each of the particles relative to the centers of the trap
were detected in the x and y directions �normal to the optical
axis� simultaneously using a back focal plane interferometric
method with quadrant photodiode �QPD� detection �22�. The
�=1064 nm laser was detected with a PIN photodiode oper-
ated with a reverse bias voltage of 100 V �10 mm diameter,
YAG-444-4A, Perkin Elmer, Vaudreuil, Canada� �18�, while
the �=830 nm light was detected with a standard silicon-
type PIN photodiode, operated with a reverse bias voltage of
15 V �10 mm diameter, Spot9-DMI, UDT, Hawthorne, CA�.
The particle position signals were digitized using an A/D
board �195 kHz, ChicoPlus, Innovative Integration, Simi
Valley, CA� at 195 kHz, antialias filtered at 100 kHz and
recorded with a Labview program �National Instruments,
Austin, TX, USA� for 80 sec per run. Data was averaged
over 8 runs.

Position measurements were calibrated using the power
spectrum method �23�. For fd solutions we used calibration
data taken with beads from the same batch of particles,
trapped in buffer. For water, we calibrated with the very
same particles that were used for the measurements. The trap
stiffness was obtained in water as a function of the laser
power �23�. The laboratory temperature was stabilized to
21.4±1 °C.

IV. DATA ANALYSIS METHOD

Thermal �Brownian� particle motions are exactly de-
scribed by linear response theory �24�. We therefore relate
the Fourier transform of the displacement u�

�j���� of particle j
�1 or 2� in direction � �x or y� to the Fourier transform of the
applied force F�

�k���� applied to particle k in direction � via
the response function ���

�j,k���� as: u�
�j����=���

�j,k����F�
�k�. Here,

�=2	f is the radial frequency and we have used the Einstein
summation convention in which both coordinate directions
�Greek indices� � and particle numbers �Latin indices� k
are summed over. The single-particle response functions
���

�1,1���� and ���
�2,2���� refer to the displacement responses of

particles 1 and 2 to forces applied to the same particle. The

FIG. 1. �Color online� Schematic sketch of the two-particle mi-
crorheology experiment. A pair of silica particles �radius R� is
trapped by a pair of laser traps at a separation distance r. The
position fluctuations of each particle in the x and y directions are
simultaneously detected with quadrant photodiodes. The cross-
correlated position fluctuations are measured parallel and perpen-
dicular to the line connecting the centers of the particles.
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���
�j,k���� for j�k refer to the inter-particle response func-

tions, e.g., describing how particle 1 responds to forces on
particle 2. Each of these, in general complex, response func-
tions can be separated into real �in phase� and imaginary �out
of phase� parts in the usual way: ���

�j,k����=���
��j,k����

+ i���
��j,k����.

In thermal equilibrium and in the absence of external
forces the fluctuation-dissipation theorem �24� relates the
imaginary part of the �single—or inter-particle� response
functions to the equilibrium fluctuation spectrum of u�

�j����

�����j,k���� =
�

2kBT
S��

�j,k���� , �1�

where kBT is the thermal energy and the S��
�j,k���� are given

by

S��
�j,k���� =� �u�

�j��t�u�
�k��0�	ei�tdt . �2�

In our experiments we chose a coordinate system with x and
y spanning the plane perpendicular to the optical axis �laser
propagation direction�, and in which the x axis lies along the
line connecting the centers of the two particles. In this coor-
dinate system all S��

�j,k� are identically zero for ��� �here
and throughout this paper we shall assume that the viscoelas-
tic medium is homogeneous and isotropic in the absence
of probe particles�. For the remaining and only nonzero com-
ponents of S��

�j,k� we introduce the shorthand notation:
S� 
Sxx

�j,k�, S
�

�j,k�
Syy
�j,k�. We do not analyze particle fluctua-

tions along the z axis, perpendicular to the focal plane. Such
fluctuations would also be given by S

�

�j,k� if neither the me-
dium nor the laser trap breaks the axial rotational symmetry
of the two-particle system. In practice, the laser trap does
break this symmetry, as the effective trapping potential is
broader along the optical axis than in the plane perpendicular
to that axis. In the event that these Szz

�j,k� correlations were
measured, the resulting data could be analyzed using a trivial
extension of the theory presented in this work.

At the risk of only apparent ambiguity, we shall also use a
shorthand notation for the single-particle correlation func-
tions, in which S�

�j�
S�
�j,j� and S

�

�j�
S
�

�j,j�. Furthermore, in a
medium that respects time-reversal invariance �assumed
hereafter�, all correlation functions must be symmetric under
time reversal so that S�

�1,2����=S�
�2,1����
S���� and corre-

spondingly for S�. Thus, there are six nonzero correlation
functions S�,�

�j� and S�,� which can be used to directly deter-
mine the imaginary parts of the six corresponding response
functions ��,�

�j� and ��,� for j=1,2 using the fluctuation-
dissipation theorem. Finally, for isolated particles �i.e., in the
absence of another particle trapped close by� in isotropic and
homogeneous media, or for large separations between par-
ticles, the isotropy of the system requires that S�

�j�=S
�

�j�. In
this case, the four S�,�

�j� �or ��,�
�j� � reduce to just two correlation

�response� functions S�j� �or ��j��.
From the various imaginary parts of the response func-

tions ���
�j,k����, we obtain the real parts �and hence, the full

complex quantities� via a Kramers-Kronig integral �24,5�

�����j,k���� =
2

	
P�

0


 �

�2 − �2�����j,k����d�

=
2

	
�

0




cos�t��dt�
0




d������j,k����sin�t�� , �3�

where P denotes a principal value integral. For isolated par-
ticles in the absence of optical traps, the complex response
functions ��j� are related to the complex shear modulus G of
inhomogeneous, isotropic and incompressible medium by a
generalized Stokes-Einstein relation �25,4–6�

��j���� → ��j���� =
1

6	RG���
, �4a�

where we have assumed the same particle radius R for both
particles j=1,2, which is the case for our experiments. Here,
we have introduced a new symbol � for the response func-
tions, since it will be important to distinguish the measured
response functions in the presence of traps �for which we
shall consistently use ��, from those response functions that
would be observed in the absence of traps ���. The latter
characterize the part of the response due entirely to the me-
dium, and they are thus the quantities of interest for rheol-
ogy. Thus, we shall refer to these � as either corrected or
medium response functions. The arrow in the above equation
signifies that the measured response function � directly re-
flects the actual rheology of the medium only in the absence
of the trapping potentials.

Likewise, in the absence of traps, the inter-particle re-
sponse functions ��,� are given by generalizations of the
Oseen tensor �6,12�

����� → ����� =
1

4	rG���

and

����� → ����� =
1

8	rG���
, �4b�

where r is the separation between the particles. These expres-
sions neglect inertia �29,33,34�, which is a good approxima-
tion in the low frequency range studied here. While both of
these expressions can be used to determine the modulus G,
we find experimentally that the perpendicular channel is
noisier than the parallel one.

In the presence of optical traps, additional forces are ap-
plied to the particles from the laser potentials. Thus, the dis-
placements of each of the particle u�

�j���� are modified by
both trap potentials on the pair of particles. We model an
optical trap as a Hookean spring characterized by a single
isotropic trap stiffness or spring constant. In frequency rep-
resentation, the additional trapping force in the �th direction
on particle j is −k�j�u�

�j����, where k�j� is the trap stiffness
holding particle j in the laser focus �here, no summation on j
is implied�. Thus, given an external force applied to that
particle, F�

�j����, the total force acting on it is F�
�j����

−k�j�u�
�j����. In terms of the �medium� response functions �,

we can now write the displacements
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ux
�1���� = ��1���� � �Fx

�1���� − k�1�ux
�1����� + �����

� �Fx
�2���� − k�2�ux

�2����� , �5a�

and

ux
�2���� = ����� � �Fx

�1���� − k�1�ux
�1����� + ��2����

� �Fx
�2���� − k�2�ux

�2����� . �5b�

There is a similar pair of equations with x replaced by y and
parallel by perpendicular.

Of course, the measured response functions � are those
that relate the u�

�j� to F�
�j� alone. These can be found by solv-

ing the above equations for u�
�j�. This results in expressions

for the � that are nonlinear in the �. For example, the linear
response coefficient relating ux

�1� to Fx
�1� is

�xx
�1,1� = ��

�1�

=
��1� + k�2���1���2� − k�2�����2

1 + k�1���1� + k�2���2� + k�1�k�2���1���2� − k�1�k�2�����2 .

�6a�

This nonlinear relationship should be distinguished from the
fundamental linear response assumption that we make. Al-
though the relationships among the various � and � are non-
linear, we are still describing the linear response of the me-
dium. Thus, for instance, we assume that forces and
corresponding displacements are sufficiently small for the
linear relationships in Eqs. �5a� and �5b� to be valid. In con-
trast, the higher-order terms beyond the leading term ��1� do
not depend on the amplitude of the displacement or force.
These higher-order terms give relative contributions of order
k /GR, kR /Gr2, k2 / �Gr�2, and k2 / �GR�2, which depend on
the trapping potentials k and the geometry of our experi-
ments. Since these corrections do not depend on the ampli-
tude of motion, they cannot be assumed to be small. Note
also that the presence of the pair of traps breaks the rota-
tional symmetry of the single-particle response, since

�yy
�1,1� = ��

�1�

=
��1� + k�2���1���2� − k�2�����2

1 + k�1���1� + k�2���2� + k�1�k�2���1���2� − k�1�k�2�����2

�6b�

differs from the expression in Eq. �6a� by terms second order
in both trap stiffness and interparticle response. For the other
particle, the corresponding expressions can be obtained by
interchanging indices 1 and 2. The inter-particle response
functions are given by

�xx
�1,2� = ��

=
��

1 + k�1���1� + k�2���2� + k�1�k�2���1���2� − k�1�k�2�����2 ,

�6c�

and

�yy
�1,2� = ��

=
��

1 + k�1���1� + k�2���2� + k�1�k�2���1���2� − k�1�k�2�����2 .

�6d�

From an examination of the above equations, it is clear
that in the limit of vanishing trapping potentials, the experi-
mentally measured response functions � reduce to the appro-
priate medium response functions �. These latter response
functions, which are thus �in the presence of optical traps�
not directly accessible via experiment, need to be known in
order to determine the rheological properties of the medium.
The experimentally accessible �measured� response functions
�, however, can be used to calculate the rheologically useful
response functions � by inversion of the above equations.
This inversion is facilitated by the observation that, within
linear response, the parallel and perpendicular motions
and/or response functions completely decouple. This, to-
gether with the symmetry properties mentioned above, leads
to two separate sets, each of three nonlinear equations, that
must be inverted. The resulting expressions for the parallel
case are

��1� =
��

�1� + k�2�����2 − k�2���
�1���

�2�

1 − k�1���
�1� − k�2���

�2� − k�1�k�2�����2 + k�1�k�2���
�1���

�2� ,

�7a�

��2� =
��

�2� + k�1�����2 − k�1���
�1���

�2�

1 − k�1���
�1� − k�2���

�2� − k�1�k�2�����2 + k�1�k�2���
�1���

�2� ,

�7b�

�� =
��

1 − k�1���
�1� − k�2���

�2� − k�1�k�2�����2 + k�1�k�2���
�1���

�2� .

�7c�

Similarly, for the perpendicular motion

�� =
��

1 − k�1���
�1� − k�2���

�2� − k�1�k�2�����2 + k�1�k�2���
�1���

�2� .

�7d�

Here, the additional pair of equations obtained for perpen-
dicular motion can be obtained from Eqs. �7a� and �7b� by
replacement of parallel with perpendicular throughout, which
must give the same values for ��1� and ��2� in isotropic and
homogenous media. We also note that among the various
second-order correction terms, the ones involving the inter-
particle response are smaller than those involving the single-
particle response by a factor of order �R /r�2. Thus, for in-
stance, the broken rotational symmetry of the single-particle
response functions is expected to be small, even if second-
order corrections due to the traps are otherwise relevant.

Here k�1� and k�2� are linearly dependent on the laser
power and are known for each experiment. Specifically in
our experiments k�1� is the trap stiffness of laser focus with
�=1064 nm and k�2� is the trap stiffness of laser focus with
�=830 nm.
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Using Eqs. �4a� and �4b� we can extract the rheological
properties of the medium as measured with one- and two-
particle microrheology from the response functions � after
correcting the measured response functions � using Eqs.
�7a�–�7d�. Through this manipulation of the raw data we can
thus prevent systematic errors that would otherwise be intro-
duced by the trapping potentials.

V. RESULTS AND DISCUSSION

In this section we verify experimentally how the optical
trapping potential modifies the complex particle response
functions. We demonstrate how this effect can be corrected
to for measure shear moduli of viscous and viscoelastic flu-
ids with 1PMR and 2PMR. We first present results for
1PMR, then for 2PMR, in both cases for water and fd solu-
tions. The measured response functions � are compared with
the predictions of Eqs. �6a�–�6d�. Then, we obtain the cor-
rected �medium� response functions � from the measured
response functions using Eqs. �7a�–�7d�. The shear moduli of
the medium were calculated from the complex response
functions after the correction for the traps. In order to dem-
onstrate the necessity of correcting for trapping effects, we
also calculated the �apparent� complex shear moduli without
correcting for the trapping potential, i.e., directly from the
correlation data using Eqs. �4a� and �4b�.

We measured the auto- and cross-correlated displacement
fluctuations of the two particles simultaneously in each
sample and for every power setting, so that the trap stiffness
of each individual optical trap was the same for the measured
single- and inter-particles response functions. The silica par-
ticle pairs �radius R=0.58 �m� were trapped at a separation
distance of r=2.9 �m. The strength of the laser traps was
varied by changing the laser intensity from 3 to 200 mW
�measured with a power meter before the incident beam en-
tered the microscope path�. Here we present the single-
particle response functions measured with the laser trap of
wavelength �=1064 nm. Results for the second trap with �
=830 nm �not shown� were equivalent. The inter-particle re-
sponse functions are similar in the parallel and perpendicular
direction with respect to the line connecting the centers of
the particles. We thus present just the results for parallel
channel. Data are presented as a function of frequency
f =� /2	.

A. One-particle microrheology (1PMR)

In 1PMR we measure the displacement autocorrelations
of a single particle in a laser trap. The Fourier transform of
this correlation function as defined in Eq. �1� for a thermally
excited particle in a purely viscous fluid and laser trap takes
the form of a Lorentzian �23,26�

S�2	f� =
kBT

	2�fc
2 + f2�

, �8�

where fc is the characteristic �corner� frequency which
divides the curve S�2	f� into two regimes. For frequencies
f � fc, the laser trap provides the dominant force on the
particle and S�2	f� is essentially constant, S�2	f�

�S0�2	f�=4kBT /k2. At higher frequencies f � fc, hydrody-
namic drag forces acting on the particle dominate the trap-
ping forces and S�f� decays as 1/ f2, which is equivalent to
free Brownian motion in a purely viscous solution. The trap
stiffness can be calculated most conveniently from the corner
frequency as k=2	fc, where =6	�R is the Stokes drag
on a spherical particle with radius R.

Figure 2 shows a log-log plot of the position autocorrela-
tion S�1��2	f� of a silica particle �R=0.58 �m� trapped in
water at different laser powers. The laser intensity was varied
from 3 to 150 mW, corresponding to corner frequencies be-
tween 30 Hz and 1 kHz. As expected, the corner frequency
shifts to higher frequencies as the trap stiffness increases.
Also, the area under S�1��2	f� decreases as the particle is
more tightly trapped �larger k� indicating that the rms ampli-
tude of the position fluctuations decreases in accordance with
the equipartition theorem. At high frequencies, where the
particle is freely diffusing, all the measurements for different
laser powers fall onto one line with a power-law slope of −2.
The sampling frequency for low laser powers of 3 and 7 mW
was 20 kHz, while for higher laser intensities of 15, 25, 70,
150, and 200 mW a sampling rate of 100 kHz was used.

Figure 3 shows that the trap stiffness depends linearly on
laser intensity. The quoted laser powers were measured be-
fore the laser beams entered the microscope objective and
are about a factor of 2 higher than power in the sample, with
the absorption of light being different for the two different
wavelengths �27� and the power passed through the objective
also dependent on how much of the laser beam overfills the
objective back aperture. Due to slightly varying alignments,
the quoted laser powers are only a rough indication of trap-
ping strengths and for calculations of the trap effect on the
complex response functions, we used the measured trap stiff-
nesses, obtained from the corner frequencies of the autocor-
relation spectra measured for the same silica particles in wa-
ter.

In viscoelastic solutions the autocorrelation spectra are
not Lorentzian, and we cannot fit for a corner frequency to

FIG. 2. Displacement autocorrelations of a particle trapped in
water as a function of frequency f =� /2	. The laser intensity
�wavelength �=1064 nm� was varied between 3 and 150 mW. The
corner frequency fc changes with laser intensity; the high frequency
power-law slope is −2. Laser noise �increasingly prominent for
stronger confinement at higher powers� was cut off at the low-
frequency end of the curves.
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obtain the trap stiffness k for the same particle as used for the
experiments. There are two alternative methods to find k, �i�
one can trap a particle from the same batch at the same laser
power in water, introducing an error due to particle polydis-
persity or �ii� one can use the low-frequency data points for
G���� to extract k provided that the low frequency apparent
G���� is dominated by the trap. The error of this method
increases with the elastic modulus of the solution.

A prediction for the measured response function of one
particle trapped in a laser focus in water can be calculated
from Eqs. �6a� and �6b�, using the known trap stiffness k�1�

and k�2� in each measurement. From the stationary Stokes
results �28�, the response function of one particle in a simple
viscous fluid of viscosity � and subject to no trapping poten-
tial is ��1�=��2�=1/ �6	R��−i���, while the inter-particle re-
sponse function of two such particles along their centers is
given by �� =2��=1/ �8	r��−i��� �29�. We insert these
quantities in Eqs. �6a� and �6b� and obtain a theoretical pre-
diction of the measured response function in water.

Figures 4�a� and 4�b� show log-log plots of the real and
imaginary parts of the measured single-particle response
function in water, compared to the predicted ones. The
���

�1��2	f� and ���
�1��2	f� are plotted for different laser inten-

sities between 7 and 150 mW �same data as in Fig. 2�. Fig-
ures 4�a� and 4�b�, show very good agreement of the experi-
mental data with the theoretical predictions with no
adjustable parameters. In this calculation we used the trap
stiffnesses k�1� and k�2� shown in Fig. 3. The filled symbols in
Fig. 4�b� represent the imaginary part of the medium single-
particle response function, ���1��2	f�, calculated from the
measured one using Eq. �7a�. The ���1��2	f� thus obtained
should be equal to the simple Stokes result for a viscous fluid
of 1 / �6	R��−i2	f�� �grey line in Fig. 4�b��. This is evi-
dently the case at high frequencies for all the different laser
powers, where all of the ���

�1�=���1� collapse onto the gray
line. At lower frequencies, however, the ��� diverge from the
gray line in a power dependent way. The corrected response
functions ���1� collapse onto the Stokes result except for

some residual deviations for even lower frequencies. These
are due to noise created by laser beam pointing fluctuations.

If one calculates an �apparent� shear modulus from the
uncorrected response function ���, one finds a nonzero stor-
age modulus in the purely viscous medium, which is due to
the laser traps. Figure 5 shows this apparent storage modulus
as a function of frequency for different laser powers from
3 to 150 mW. Since water by itself does not have a storage
modulus, the measured �frequency independent� values of
0.07 to 6.2 Pa are completely due to the laser trap and are
therefore proportional to the laser intensity. The solid lines
are calculated from the independently measured trap stiff-
nesses k�1� / �6	R�.

Unlike water, solutions of semiflexible fd particles have a
storage �real� component to the shear modulus. Thus the re-
sponse functions measured with 1PMR contain a contribu-
tion of the actual elasticity of the medium as well as of the
laser trap.

The autocorrelation function S�1� of one particle in an fd
solution is plotted in Fig. 6 as a function of frequency

FIG. 3. Trap stiffnesses of two laser traps generated by indepen-
dent lasers ��=1064 and 830 nm� measured from the fluctuations of
two silica particles �R=0.58 �m� in water. The trap stiffnesses in-
creased linearly with the laser intensities �measured before the
beams entered the objective� for both traps.

FIG. 4. Frequency dependence of �a� the real part ���
�1� and �b�

the imaginary part ���
�1�, of the measured single-particle response

functions in water, for x displacements �empty symbols�. The data
agree well with theoretical prediction �solid dark lines� calculated
from Eq. �6a� without any adjustable parameters. In �b� the solid
symbols are medium response functions ���1�, calculated from ���

�1�

and ���
�1� by eliminating the trap effect according to Eq. �6a�. The

solid gray line is the expected Stokes result for a sphere in a viscous
fluid.
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f = � /2	 for different laser powers. As the laser power is
increased, the rms amplitude �area under the curve� of the
position fluctuations becomes smaller, similar to the behavior
observed for a particle in water. Due to the viscoelastic na-
ture of the fd solution, the autocorrelation functions of one
particle are not Lorentzian �20�, but, as in water, the spectra
S�1� for all the different laser powers coincide at frequencies
larger than a characteristic frequency that is linearly depen-
dent on the trap strength.

To highlight the systematic effect of the laser trap on the
data, we calculated the storage modulus G��2	f� as mea-
sured by the 1PMR method without first removing the effect
of the trap �Fig. 7�a� and 7�b��. These data were obtained
with the same particle size and laser power settings as the
water data in Fig. 6. The trap stiffnesses were calculated
from the fluctuations of trapped particle from the same batch
at the same laser powers in buffer as mentioned above. The
uncorrected G� increase proportionally to the laser intensity

at low frequencies. The uncorrected moduli, determined us-
ing low power settings �3, 7, and 15 mW�, converge at high
frequencies to the actual storage modulus �Fig. 7�b�� of the
medium. At larger laser powers �25, 70, and 150 mW�, the
uncorrected storage moduli are affected by the trap up to the
largest probed frequency of 2 kHz. At low frequencies the
trap dominates the moduli which can be seen from the com-
parison to grey lines in Fig. 7 reflecting the pure trap effect.

We used Eq. �7a� to correct the measured single-particle
response functions ��1� for the trap effect, and obtain the
single-particle response functions ��1�. We then applied Eq.
�4� to calculate the complex shear moduli G. The results for
the storage modulus G� are plotted in Fig. 7�b�. As expected,
the moduli G� fall onto one curve for all laser powers, which
represents the storage modulus of the fd solution �20�.

The uncorrected loss moduli G� from 1PMR at various
laser powers are plotted in Fig. 8�a�. There is no significant
effect from the trapping laser on the uncorrected G�, and all
the measurements fall onto one curve even before correction,
which does not change much with correction �Fig. 8�b��

FIG. 5. Apparent storage moduli �caused by the trap� as a func-
tion of frequency, measured in water with 1PMR for different laser
powers �measured before the objective, see text�. The solid lines are
the theoretical predictions based on the measured trap stiffnesses.

FIG. 6. Displacement autocorrelations as a function of fre-
quency of a particle of radius R=0.58 �m in a 10 mg/ml fd virus
solution for different laser intensities �measured before the objec-
tive, see legend�. The sampling rate was 100 kHz.

FIG. 7. �a� Uncorrected storage moduli G� for a 10 mg/ml fd
solution measured with 1PMR using different laser powers �mea-
sured before the objective, see legend�. The gray lines are the ex-
pected moduli corresponding to the G� measured in water for the
same power settings. �b� Actual storage moduli G� calculated using
the response functions corrected for the traps using Eq. �7a�. �Data
are shown versus frequency, f =� /2	�.
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�since G� is negative, we report its absolute value in all fig-
tures�.

We note that, in order to record the single- and inter-
particle response functions simultaneously, in all of these
measurements two particles are trapped, so both k�1� and k�2�

have nonzero values. In measurements with just one trapping
laser �k�1��0 and k�2�=0�, Eq. �7a� simplifies to 1/��1�

=1/��1�−k�1�.
We conclude that to correct for the trap effect in 1PMR

and to get the actual storage modulus of a viscoelastic solu-
tion, it is sufficient to subtract a constant of k / �6	R� from
the uncorrected storage modulus.

B. Two-particle microrheology

To obtain the shear modulus of a medium from 2PMR we
calculate the cross-correlation displacement of two hydrody-
namically coupled particles trapped in two separate laser
foci. In this case the correction for trap effects becomes
slightly less straightforward.

Again, we first show data for particles trapped in water, as
a purely viscous fluid. The Fourier transforms of the cross-

correlation functions, S�,��2	f�, of two thermally fluctuating
particles in a viscous solution have a power-law slope of −2
at high frequencies just as was the case for single particles
�21�. Figure 9 shows inter-particle correlation function �S��
obtained using Eq. �2� at different laser powers for both traps
with the trap stiffness of both traps as shown in Fig. 2. At
low frequencies, where the confinement by the traps is domi-
nant, the motion of the particles becomes anticorrelated, i.e.,
S� becomes negative �not visible in the ln-ln plot�. At high
frequencies, the viscous drag is dominant so that the S� are
independent of trap power and overlap with a �power law�
slope of −2.

Figures 10�a� and 10�b� show linear-ln plots of the mea-
sured real and imaginary parts of the inter-particle response
functions ��� and ��� for different powers. Using an approach
similar to that of the previous section, we calculated �� in
water from Eq. �6c�. The predictions from the measured trap
stiffnesses �lines� are in good agreement with the measured
��� and ���. It is evident that the maxima in ��� shift up in
frequency and down in amplitude with increasing the laser
power. This can be calculatedformally from Eq. �6c� with the
Stokes assumption for the frequency of the maximum of ���
which corresponds to the frequency of the zero crossing of
the ���: fMax= (�k�1�k�2��4−9�R /r�2�) /24	2�R and for the
amplitude of the maximum: �Max

�1� =3k�2� / �2Rk�1��k�1�+k�2���.
The apparent storage and loss moduli calculated from the

response functions ��� and ��� at various trapping powers
without correcting for the laser trapping potentials are plot-
ted in Fig. 11�a� and 11�b�. As expected, in water this results
in a constant apparent G� which is entirely due to the laser
traps �Fig. 11�a��. Noise at low frequencies is due to laser
beam pointing fluctuations and is particularly visible for the
higher laser intensities because the particle fluctuations are
smaller.

The �apparent� loss moduli G� for different laser powers
calculated from the uncorrected response functions are

FIG. 8. �a� Uncorrected loss moduli G� and �b� actual loss
moduli G� �obtained with Eq. �7a��, measured in x direction with
1PMR for a 10 mg/ml fd solution for different laser powers �mea-
sured before the objective, see legend�. The gray line shows the loss
modulus of the buffer. The trapping laser does not have a significant
effect on G�.

FIG. 9. Inter-particle displacement correlation functions as a
function of frequency, f =� /2	 of a pair of particles �radius R
=0.58 �m� separated by a distance r=2.9 �m, trapped with differ-
ent laser powers in water. Laser intensities were varied in parallel in
the two traps �measured before the objective, legend: 1064/830 nm
powers�. Low-frequency anticorrelations are not plotted in this ln-ln
plot. At high frequencies, all curves superimpose onto one curve
with slope −2.
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shown in Fig. 11�b�. The frequency-dependent anticorrela-
tion of ��� caused by the trap �shown in Fig. 10� is observed
here as missing data points at low frequencies in the ln-ln
plot of G�. The solid gray lines in both figures show the
theoretical predictions of the apparent moduli determined
from the uncorrected response functions ��� and ��� using
measured trap stiffnesses and Stokes assumptions in water.

In Figures 11�a� and 11�b�, we obtain the actual moduli
G� and G� from ��� and ���, the corrected response functions
according to Eq. �7c�. The storage modulus G� is scattered
around an average value of close to 0, as expected for water
�data not shown�; G� now extends to lower frequencies. The
data are consistent with the expected value of G��f�
=−2	f� for water, plotted as a broken line.

Finally, we examined the effect of the traps on the inter-
particle response functions in viscoelastic solutions of fd vi-
rus. Fig. 12 shows S� for different laser powers. At high
frequencies all curves fall on top of each other, as expected.
At low frequencies anticorrelated motion is observed again
�negative values of S� not plotted�, below a frequency that
depends on the trap strength. The anticorrelation occurs at

frequencies that are about two decades smaller than for the
same measurements in water due to the higher viscosity and
elasticity of the fd solution.

Figures 13�a� and 13�b� compare the storage moduli of
the fd solutions measured with 2PMR derived from uncor-
rected and from corrected response functions. Figure 13�a�
shows the uncorrected results, while Fig. 13�b� shows the
corrected or actual G�. The trap potentials make the appar-
ent storage moduli G� approach a constant at low frequencies
for high laser powers and change the slope of the curves at
higher frequencies �Fig. 13�a��. The curves for the corrected
G� �corrected for both laser traps� collapse onto one curve
for all laser powers �Fig. 13�b��, independent of trapping
force.

Figures 14�a� and 14�b� demonstrate that the loss moduli
of the fd solution measured with 2PMR are much less af-
fected by the traps than the storage moduli. Figure 14�b�
shows the uncorrected G� derived from the uncorrected re-
sponse functions, while Fig. 14�b� shows the corrected G�.

FIG. 10. �a� Real part and �b� imaginary part of the inter-
particles response functions of two particles in water as a function
of frequency, f =� /2	 in the parallel direction, trapped with differ-
ent laser powers varied in parallel in the two traps �measured before
the objective, legend: 1064/830 nm powers�. The theoretical pre-
dictions of Eq. �6c�, calculated with the trap stiffness determined
from corner frequency are plotted for comparison �lines�.

FIG. 11. �a� Apparent storage modulus G� and �b� apparent loss
modulus G� �empty symbols� measured in parallel direction with
2PMR in water as a function of frequency, f =� /2	 with different
laser powers varied in parallel in the two traps �measured before the
objective, legend: 1064/830 nm powers�. The gray lines are the
calculated apparent moduli G� and G� from the predicted response
�� as in Eq. �6c�. Filled symbols in �b� show the corrected loss
modulus of water calculated using �� and the expected loss modulus
for water, G��f�=−2	f� plotted as a broken line.
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The missing low-frequency range in the uncorrected case of
G� is due to the trap-induced anticorrelation, observed for a
high power of 200 mW for �=1064 nm and 150 mW for �
=830 nm. The trap correction to the response functions re-
moves the anticorrelation effect and therefore extends the
frequency range to lower frequencies �Fig. 14�b��.

As can be seen in Figures 7, 8, 13, and 14, noise in the
results tends to become large below about 5 Hz. There is a
multitude of reasons and possible cures for that, depending
on the system studied and the method used. Averaging data
decreases noise. Here we averaged 8 data sets taken over
80 s. A practical limit might be about 100 data sets. 2PMR
results suffer from the 1/r decay of the signal and are there-
fore noisier than 1PMR results. Laser beam-pointing fluctua-
tions tend to become relevant below a frequency that de-
pends on the amplitude of the fluctuations of the probe
particle which in turn depends on the viscoelastic modulus of
the sample. Typically laser effects become noticeable below
�1 Hz. Note furthermore that in all our figures we show the
direct data, not smooth fits to the data. The latter is often
done in the field, but it obscures the actual errors.

VI. DISCUSSION

Correlations in the motion of trapped particles in the time
domain have been studied in purely viscous solutions before
�30,31�. Hough and Ou-Yang �32� derived formally different
but in essence equivalent results for the response functions.

Because we use correlated Brownian fluctuations in opti-
cal traps to measure viscoelastic properties of soft materials
we need to correct for such additional correlations. We have
here used our formal representation of single- and inter-
particle response functions to develop a correction procedure
for one and two particle microrheology. We have shown that
it is straightforward to correct 1PMR results by subtracting a
constant from G����. If there is a second particle trapped in
the vicinity, in principle, there will be an effect of both traps

on the observed particle. The effect of the second trap pre-
dicts an asymmetry in the measured response function,
which was found to be negligible under the conditions
�R /r=0.2� we used. In 2PMR, however, the effect of both
traps on both particles has to be taken into account in a
symmetric way. In 2PMR it is simpler to correct the particle
response functions before calculating medium shear moduli.
The correction is more involved, including higher order
terms in the storage constants, even if linear elasticity is
assumed. It is particularly notable and at first glance counter
intuitive, that trapping two particles leads to anticorrelated
fluctuations at low frequencies, an effect that is more pro-
nounced in purely viscous media than in viscoelastic media.
This is different from the anticorrelated fluctuations occur-
ring at very high frequencies due to solvent inertia �33,34�.
The Fourier transform of the cross-correlation function of
particle displacement thus becomes negative at low frequen-
cies �and cannot be ln-ln plotted as usual�.

Intuitively, the anticorrelations seen at low frequency can
be understood in the following way. For simple liquids,
along any particular axis, the thermal position fluctuations of
two particles �1 and 2� around the centers of their respective

FIG. 12. Inter-particle correlation functions in the parallel direc-
tion of two particles separated by a distance r=2.9 �m in a
10 mg/ml fd solution, as a function of frequency. The trap powers
were varied in parallel �measured before the objective, legend:
1064/830 nm powers�. A power-dependent anticorrelation is ob-
served at low frequencies.

FIG. 13. Storage shear modulus of a 10 mg/ml fd solution as a
function of frequency G�, measured with 2PMR in parallel direc-
tion. The trap powers were varied in parallel �measured before the
objective, legend: 1064/830 nm powers�, with the �a� uncorrected
modulus G� and �b� the actual modulus G� calculated using the
corrected response functions in Eq. �7c�.
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optical traps can be transformed into a relative coordinate
system by xs= 1

2 �x1+x2� and xa= 1
2 �x1−x2�, where xs describes

the in- phase and xa the out of phase motion. Since the mo-
tion at the colloidal scale is strongly over damped, both am-
plitudes on average decay exponentially. Due to the hydro-
dynamic interactions between the two particles, the out of
phase amplitude experiences a greater drag or dissipation and
thus decays more slowly. Furthermore, as noted in Ref. �30�,
since the mean-square amplitudes of the two modes are
equal, the correlation function �x1�t�x2�0�	 is at all times
dominated by the anticorrelated mode. More precisely

�x1�t�x2�0�	 � kBT�e−t/�s − e−t/�a� , �9�

is always negative, where �s��a are the decay rates of the
two modes.

By contrast, when plotting correlation functions in the
frequency domain, as we do in our experiments, the correla-
tions are negative at low frequency and positive at high fre-
quency. This is because the faster decaying symmetric mode
has greater high-frequency content. More precisely, the
Fourier-transformed correlation function

� dt�x1�t�x2�0�	ei�t � kBT� �s

1 + ���s�2 −
�a

1 + ���a�2 ,

�10�

is positive for large � and negative for small �.
Equivalently, this can be seen from a simple force-balance

argument. At high frequencies, the forces due to the vis-
coelastic medium dominate the trapping forces, and the in-
stantaneous propagation of stress means that one particle
tends to move with the other. At frequencies below the char-
acteristic relaxation time of a single trapped particle, how-
ever, the trapping forces tend to dominate. This means that
when one particle is displaced to one side of its trap, the
restoring force from the trap, which is directed in the direc-
tion opposite to the displacement, is transmitted by the me-
dium to the second particle. The second particle in turn is at
this frequency effectively undamped in its motion in re-
sponse to the first particle, i.e., it has time to relax in its own
trap to equilibrium. This means that it will be displaced to
the opposite side of its trap. The frequency scale for the
crossover from anticorrelated to �positively� correlated mo-
tion and/or fluctuations is determined by the relaxation fre-
quency of a single particle in its trap. This frequency will
increase with increasing laser power �observed above�, and is
also expected to decrease for more viscoelastic media �also
observed above�. Furthermore, since the anticorrelations are
the direct result of the traps, they also tend to disappear �or
shift to lower frequencies� with increasing storage modulus
of the medium.

With the rigorous and complete correction procedure we
have developed here it is simple to extract the true medium
response parameters from either particle fluctuation record-
ings or responses to actively driven particles when optical
trapping is used. We have applied these methods in
microrheology experiments presented in references
�20,15,35,36�. In these experiments the laser powers were
high enough to hold particles far from surfaces as well as
preventing the diffusion of particles from the trap. In our
experiment with actin �5�, the laser power was low and the
moduli were so high that a correction was not necessary.

We expect the method we have developed in this paper to
be useful in applications of laser-interferometry based active
and passive microrheology in many different soft media.
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