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Reconstituted filamentous actin networks with myosin motor proteins form active gels, in which motor

proteins generate forces that drive the network far from equilibrium. This motor activity can also

strongly affect the network elasticity; experiments have shown a dramatic stiffening in in vitro networks

with molecular motors. Here we study the effects of motor generated forces on the mechanics of

simulated 2D networks of athermal stiff filaments. We show how heterogeneous internal motor stresses

can lead to stiffening in networks that are governed by filament bending modes. The motors are

modeled as force dipoles that cause muscle like contractions. These contractions ‘‘pull out’’ the floppy

bending modes in the system, which induces a cross-over to a stiffer stretching dominated regime.

Through this mechanism, motors can lead to a nonlinear network response, even when the constituent

filaments are themselves purely linear. These results have implications for the mechanics of living cells

and suggest new design principles for active biomemetic materials with tunable mechanical properties.
Introduction

The mechanics of living cells is largely governed by the cyto-

skeleton, a complex assembly of various filamentous proteins.

Cross-linked networks of actin filaments form one of the major

structural components of the cytoskeleton. However, this cyto-

skeleton is driven far from equilibrium by the action of molecular

motors that can generate stresses within the meshwork of fila-

ments.1–3 Such motor activity plays a key role in various cellular

functions, including morphogenesis, division and locomotion.

The nonequilibrium nature of motor activity has been demon-

strated in simplified reconstituted filamentous actin networks

with myosin motors.4–8 Even in the absence of motor proteins,

such in vitro networks of cytoskeletal filaments already constitute

a rich class of soft matter systems that exhibit unusual material

properties, including a highly nonlinear elastic response to

external stress.9–15 This nonlinear response can be exploited using

molecular motors;4,7 the network stiffness can be varied by orders

of magnitude, depending on motor activity. A quantitative

understanding of such active biological matter poses a challenge

for theoretical modeling.3,16–21

The nonlinear mechanical response of reconstituted

biopolymer networks in many cases reflects the nonlinear

force-extension behavior of the constituting cross-links or

filaments.9–11,14,22 For such networks, there is both theoretical

and experimental evidence that internal stress generation by

molecular motors can result in network stiffening in direct

analogy to an externally applied uniform stress.4,7,18–20,23

However, the mechanical response of semiflexible polymers is

highly anisotropic and is typically much softer to bending than to
Department of Physics and Astronomy, Vrije Universiteit, Amsterdam, The
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stretching. In some cases, this renders the network deformation

highly non-affine with most of the energy stored in bending

modes.24–28 Such non-affinely deforming stiff polymer networks

can also exhibit a nonlinear mechanical response, even when the

network constituents have a linear force-extension behavior.29–33

However, the effects of internal stresses generated by molecular

motors in such networks are unknown.

Here we study the effects of motor generated forces on the

network mechanics in 2D networks of athermal, stiff filaments

using simulations. In the absence of motors, these networks can

exhibit strain stiffening under an externally applied shear. This

behavior has been attributed to a cross-over between two

mechanical regimes; at small strains the mechanics is governed by

soft bending modes and a non-affine deformation field, while at

larger strains the elastic response is governed by the stiffer stretch

modes and an affine deformation field.29 We show that motors

that generate internal stresses can also stiffen the network. The

motors induce force dipoles leading to muscle like contractions,

which ‘‘pull out’’ the floppy bending modes in the system. This

induces a cross-over to a stiffer stretching dominated regime.

Through this mechanism, motors can lead to network stiffening

in non-affine stiff polymer networks in which the constituting

filaments in the network are themselves linear elements. These

results have implications for the mechanics of living cells and

propose new design principles for active biomemetic materials

with highly tunable mechanical properties.
I. The model

To study the basic effects of internal stress generated by

molecular motors on the macroscopic mechanical properties of

stiff polymer networks we employ a minimalistic model, which is
This journal is ª The Royal Society of Chemistry 2011
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illustrated in Fig. 1. Filamentous networks in 2D are generated

by arranging filaments spanning the system size on a triangular

lattice. Since physiological cross-linking proteins typically form

binary cross-links, we randomly select two out of the three fila-

ments at every vertex between which we form a binary cross-link.

The remaining filament crosses this vertex as a phantom chain,

without direct mechanical interactions with the other two fila-

ments. The cross-links themselves hinge freely with no resistance.

With this procedure we generate disordered phantom networks,

based on a triangular network, but with local 4-fold (z ¼ 4)

connectivity corresponding to binary cross-links. The use of

a triangular lattice avoids, for example, well-known mechanical

pathologies of the 4-fold square lattice. To create quenched

disorder in the network, we cut and remove filament segments

between vertices with a probability q. This also has the effect of

shortening the filaments.

The filaments in the network are described by an extensible

wormlike chain (EWLC) model with an energy

H ¼ 1

2
k

ð
ds

�
d^t

ds

�2

þ 1

2
m

ð
ds

�
dlðsÞ

ds

�2

; (1)

where k is the bending rigidity, t̂ is the tangent vector at a

position s along the polymer backbone and
dlðsÞ

ds
is the local

relative change in contour length, or longitudinal strain. We can

quantify the relative importance of the stretch and bend

contributions by the lengthscale lb ¼
ffiffiffiffiffiffiffiffi
k=m

p
; this length scale

forms one of the key control parameters for the network

mechanics. For simple cylindrical beams with a radius r, the

stretch modulus m is related to k through mmech ¼ 4k/r2, and

lb¼ r/2. In contrast, a thermally fluctuating semiflexible polymer
Fig. 1 Example of a portion of the diluted 2D phantom triangular

network at q¼ 1/4 and k¼ 10�3. The freely hinging binary cross-links are

indicated in black. Motors generate muscle-like contractions, which we

model with force dipoles. The segments along which these contractile

force dipoles are indicated with red dumbbells. The inset shows an

enlargement of the network.

This journal is ª The Royal Society of Chemistry 2011
segment cross-linked in a network on a length-scale lc also has an

entropic thermal stretch modulus mth ¼ 90k2/kBTl3
c,

34 where kB is

Boltzmann’s constant and T is the temperature. In this case,

lb ¼ lc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lc= 90lp

q
, where lp ¼ k/kBT is the persistence length.

The most relevant values of lb/lc for biopolymer systems range

from 10�2–10�1. This range extends from relatively stiff actin

filaments to the more flexible intermediate filaments. Various

actin binding proteins are capable of forming tightly coupled stiff

bundles of actin filaments, which further reduces lb. The

mechanical and thermal moduli add as springs in series and the

total modulus is given by m�1 ¼ m�1
mech + m�1

th . In the remainder of

this paper all lengths are determined in units of the distance

between lattice vertices l0 and the bending rigidity k is measured

in units of ml2
0. Here, we focus on nonlinearities arising in

networks of purely linear elements. Thus, we do not include

intrinsic nonlinearities associated with the force-extension curve

of thermal filaments. This has been examined theoretically in

refs. [18–20].

In our numerical simulations we use a discretized version of

eqn (1) with a node at and between every lattice vertex. The mid-

node allows us to capture buckling down to the single segment

length-scale. To model the effect of muscle like contractions

induced by molecular motors, we introduce force dipoles in the

network.4,18,19,23 These force dipoles are randomly placed at

neighboring cross-links. The force dipoles fij only act along

existing bonds and, therefore, do not introduce additional

constraints in the network. The total energy of the system

includes a sum of the EWLC Hamiltonian over all filament

segments and the work extracted by the force dipoles

E ¼
X

i

Hi �
X
hiji

fijrij ; (2)

where rij is the distance between cross-link i and j. The force

dipoles are numerically implemented by shortening the effective

rest length of the bond along which the motors acts in the stretch

term of the energy (eqn (1)). The rest length is reduced by an

amount dr(0)
ij ; the resulting force is given by mdr(0)

ij /l0 # m. The

effects of internal motor generated stresses modeled in this way is

illustrated in Fig. 1.

To investigate the mechanical response of the network, an

external strain g is applied by translating one of the horizontal

boundaries to which the filaments are attached. The internal

degrees of freedom of the network are relaxed by minimizing the

energy using a conjugate gradient algorithm.35 To reduce edge

effects, periodic boundary conditions are employed at all

boundaries. The linear shear modulus of a network of size W2 is

related to the energy G ¼ 2

W 2A0

E

g2
for small strains, where A0 is

the area of a unit cell. In the nonlinear regime it is common to

determine the differential modulus K ¼ 1

W 2A0

d2E

dg2
, which

reduces to G for small g. Similarly, the stress can be calculated in

the nonlinear regime through sext ¼
1

W 2A0

dE

dg
. These measure-

ments allow us to quantify the mechanical response of the

system. Here we use system sizes ranging from W2 x 3000 to

8000. In all cases W is always at least 4.5 times as large as hLi to

avoid filaments that span the system between shear plates.
Soft Matter, 2011, 7, 3186–3191 | 3187
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II. Results and discussion

A. Passive networks

We probe the 2D phantom triangular networks by determining

both the linear and nonlinear elastic response of the networks in

the absence of motors. The linear mechanical response of diluted

networks (q < 1) exhibits two distinct mechanical regimes. At low

k, the shear modulus G scales directly with k, as shown in the

upper inset of Fig. 2. This demonstrates that in this regime the

macroscopic mechanics is governed by filament bending defor-

mation modes. By contrast, at large k the shear modulus

asymptotically approaches a limit in which G is independent of k

indicative of a stretching dominated regime. These result are

consistent with previous observations on 2D mikado

networks.24–26

These mechanical regimes have important implications for the

nonlinear elastic response. When a large external shear is

imposed on a network that is initially in the bending dominated

regime, the differential modulus K ¼ ds

dg
increases strongly as

a function of external stress sext, as shown in Fig. 2 (the same

data are shown as a function of the applied shear strain g in the

lower inset of Fig. 2). Previous studies have observed similar

stiffening in networks with strictly linear elements.29–32 This

remarkable behavior has been explained in terms of a
Fig. 2 The differential shear modulus K ¼ ds/dg as a function of the

applied external stress sext for various ratios of bending rigidities k and

fixed q ¼ 1/4. K and sext are measured in units of m/l0. The affine

prediction is shown as a red dashed line, which constitutes an upper

bound to the elastic response. Although definite power law regimes

appear to be absent, the stiffening curves for floppy systems with k ( 10�3

initially show a stiffening behavior of approximately K�s that crosses

over to a regime K�s1/2 at large stress, as shown by the dashed lines

indicating slopes of 1 and 1/2. For stiffer systems with k T 10�2, only the

second of these regimes is apparent. The upper inset shows the linear

shear modulus G as a function of k, and the red dashed line indicates the

affine prediction. The lower inset shows the same data as shown in the

main figure as a function of the applied shear strain g.

3188 | Soft Matter, 2011, 7, 3186–3191
strain-induced cross-over from a bending to a stretching domi-

nated regime. At low stresses the network mechanics is governed

by bending modes, which for small k constitute the softest modes

in the system. However, when the stress is increased the defor-

mations become correspondingly large and the stretching of

filaments is no longer avoidable. This picture is consistent with

our simulations. When a substantial shear is imposed the stiff-

ening curves—over a large range of bending rigidities—converge

to a single curve that is consistent with the affine prediction,10–36

shown as a red dashed line in Fig. 2. This calculation also

demonstrates that even an affinely deforming network of strictly

linear elements stiffens under shear. This stiffening behavior is

purely due to geometric effects; under shear the network becomes

increasingly anisotropic and the filaments reorient to line up in

the shear direction.36 The extent of this purely geometric stiff-

ening is, however, limited, as can be seen in the figure. Moreover,

this geometrically-stiffened limit represents an upper bound on

the stiffness of networks with purely linear elements.

In addition to k, the average length of filaments in the system

hLi constitutes an important control parameter for the linear

response. We can probe this by varying q, since the average

length of filaments is given by hLi ¼ 1/q.37 Consistent with

previous work,24–26 a cross-over from a non-affine bending

regime and an affine stretching regime can also be achieved by

increasing hLi, as shown in the upper inset of Fig. 3. In the high

molecular weight limit, hLi/ N, the connectivity in the system
Fig. 3 The differential shear modulus K ¼ ds/dg as a function of the

applied external stress sext for various values of hLi at fixed bending

rigidity k ¼ 10�3. K and sext are measured in units of m/l0. Although

definite power law regimes appear to be absent, the stiffening curves for

hLi ( 5 initially show a stiffening behavior of approximately K�s that

crosses over to a regime K�s1/2 at large shear, as shown by the dashed

lines that indicate a slope of 1 and 1/2. For longer filaments, only the

second, weaker stiffening response is apparent. The upper inset shows the

linear shear modulus G as a function of the average filament length hLi,
and the red dashed line indicates the affine prediction in the high

molecular weight limit. The lower inset shows the same data as shown in

the main figure as a function of the applied shear strain g.

This journal is ª The Royal Society of Chemistry 2011
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approaches the central force isostatic point in 2D above which

the network is completely constrained by the filament stretching

modes and will thus deform affinely.33, 37 We estimate that in

experimental biopolymer systems hLi varies a over a range of

order 5–30, in units of the network mesh size. The strong

dependence of the linear elastic response on hLi is also reflected

in the nonlinear response (Fig. 3 and the lower inset of Fig. 3).

Networks with shorter filaments are increasingly governed by

soft bending modes and thus exhibit a greater degree of stiffening

under shear.

In the absence of motors, we find that our diluted phantom

triangular networks exhibit a linear and nonlinear response to

external shear that is consistent with previous work on 2D

off-lattice networks of stiff filaments.24–26 Our phantom

triangular networks thus provide a good model system to study

the effects of internal stresses generated by molecular motors in

athermal networks.
B. Active networks

To investigate the effect of motor generated stresses we introduce

force dipoles in the network at various densities rM. Here, rM

represents the effective density of motors generating contractile

forces at any given time. Thus, rM is directly proportional to the

duty ratio of the motors, i.e. the fraction of the time that a motor

is attached to its filament.38 The shear modulus G increases

strongly when the force exerted by a single motor f0 is increased

beyond a threshold value, as shown in Fig. 4. Interestingly, the

motor forces at which the system becomes nonlinear for

low motor densities is close to the buckling force threshold

fb ¼ p2k/l2
c z 2 � 10�3. The buckling force threshold has been

identified as an important force-scale for stiffening of these

networks under external shear.29,32 In addition, these data imply

that a minimum motor density is required for motor generated
Fig. 4 The shear modulus G as a function of force exerted per motor f0

for various motor densities rM at fixed q ¼ 1/4 and k ¼ 10�3. The shear

modulus G is normalized by the shear modulus G0 of the passive network.

The inset shows the shear modulus G0 as a function of the generated stress

sM. The apparent collapse of these curves supports the hypotheses that

sM is the appropriate control variable.

This journal is ª The Royal Society of Chemistry 2011
stiffening, consistent with recent experiments.7 The characteristic

motor-generated stress can be expressed as sM ¼ rMl0f0.

Remarkably, all stiffening curves can be collapsed by expressing

the shear modulus as a function of sM (inset Fig. 4). This

demonstrates that the characteristic motor generated stress sM is

a useful quantity, even though the distribution of stress is likely

to be highly heterogeneous.

To explore the nature of the stiffening induced by motors we

study the networks’ response at various values of k. We observe

that motor activity dramatically increases the network stiffness

over a range of k values, as shown in Fig. 5. Interestingly, the

degree of stiffening induced by motors stress is substantially

larger for networks with lower k, while for large k we observe no

stiffening at all. To compare the stiffening between the active and

passive networks, we determine the critical stress for the onset of

stiffening. When the linear mechanics of the networks is

controlled by bending modes (G�k) we find that sc scales linearly

with k for both active and passive networks, as shown in the inset

Fig. 5. At larger bending rigidities sc saturates to a value inde-

pendent of k. Interestingly, the values of sc for active floppy

networks are substantially lower than for the passive networks.

This indicates that internally generated motor stress is more

effective in network stiffening than an external stress.

To identify the role of filament length in motor generated

stiffening we vary q to tune hLi. Interestingly, only networks with

relatively short filaments stiffen strongly (Fig. 6). Networks with

longer filaments are governed increasingly by the stretching

modes in the system. This is consistent with the numerical data in

Fig. 5, for which we observed that only bending dominated

networks are capable of stiffening by motor activity. The critical

stress for the onset of stiffening scales in the same way with hLi
Fig. 5 The linear shear modulus G as a function of motor generated

stress sM for various bending rigidities k at fixed q ¼ 1/4. The stiffening

curves for networks with floppy filaments for k ( 10�3 show an

approximate scaling behavior given by K�s, as shown by the dashed lines

that indicate a slope of 1. The inset shows the critical stress for the onset

of stiffening as a function of k for both the active (red squares) and the

passive (black circles) systems. Here we define sc as the stress at which K

has increased by an amount approximately 25% of G0. At large k the

active networks show little or no stiffening and a sc has not been assigned

to these networks.

Soft Matter, 2011, 7, 3186–3191 | 3189
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Fig. 6 The linear shear modulus G as a function of motor generated

stress sM for various values of L at fixed bending rigidity k ¼ 10�3. The

stiffening curves for hLi( 5 show an approximate scaling behavior given

by K�s, as shown by the dashed lines that indicate a slope of 1. The inset

shows the critical stress for the onset of stiffening as a function of L for

both the active (red squares) and the passive (black circles) systems.

Fig. 7 The non-affine component of the deformation field under an

external shear for a passive (a) network (k ¼ 10�3and q ¼ 1/4) and for the

same network with motors (rM ¼ 0.061, f0�10�2) deep into the stiffened

regime (b). The greyscale of the arrow heads indicate the magnitude of

the non-affine deformation; black indicates a large magnitude (�0.01)

and light grey a small magnitude (�0.001). The motors are shown as red

dumbbells.
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for the active networks as for the passive networks (inset Fig. 6),

similar to what we observed for the scaling of sc with k (inset

Fig. 6). Taken together, these results provide evidence that the

motor generated stiffening in the active networks derives from

the same origin as the stiffening of passive networks under

external shear.

The analogy between external stress and motor generated

stress can be further explored by determining the effect of motor

activity on the microscopic deformation field. The stiffening in

passive networks has been attributed to a shear-induced cross-

over between soft bending modes and stiffer stretching modes;

concomitant with this cross-over the deformation becomes

increasingly affine for larger strains.29 Our simulations suggest

that the same basic mechanism is responsible for the motor

generated stiffening in non-affine networks. To further test this

picture we investigate the microscopic deformation field of the

these networks under a small external shear. We subtract the

affine deformation dr(A)
i of a cross-link i from the actual defor-

mation dri to isolate the non-affine contribution,

dr(NA)
i ¼ dri � dr(A)

i (3)

Consistent with prior work24 for a passive network deep in the

bending dominated regime, we observe large non-affine defor-

mations, as shown in Fig. 7a. In contrast, when motors are

present the non-affine contribution to the deformation field is

substantially reduced, as shown in Fig. 7b. Note, that the motors

will initially generate highly non-affine deformations and large

bends. These results show, however, that the subsequent defor-

mation of this active network under a small external shear is

considerably more affine than in the passive case. This provides

insight into the motor induced stiffening we observe in our

simulations (Fig. 5 and 6). Motor activity pulls out the floppy

bend modes—thereby effectively constraining the network—

which renders the network deformation more affine. This induces
3190 | Soft Matter, 2011, 7, 3186–3191
a cross-over from a response governed by bending modes to a

response governed by stretching modes, which results in a

stiffening of the networks response.
III. Conclusion

Here we have shown that molecular motors—modeled as force

dipoles—stiffen non-affine networks. Interestingly, we find that

only networks that are strongly governed by bending modes are

capable of stiffening through motor activity. The internal stresses

generated by the motors pull-out the floppy bending modes in the

system, leaving the stiff stretching modes. In this way, motors
This journal is ª The Royal Society of Chemistry 2011
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induce a cross-over to a stretching dominated regime, in analogy

to prior results on externally-stressed networks.29,32 The absence

of motor-induced stiffening of our networks in the stretching

dominated regime can be attributed to the purely linear force-

extension behavior in our model. Analytical studies based on

affine stretching dominated networks 18–20 and recent network

simulations39 have shown that motor activity can lead to stiff-

ening when the expected non-linear force-extension relation of

the network constituents is taken into account.

Nevertheless, within the model we consider, with purely linear

elements, our results support the qualitative equivalence of

external and internal stress in the nonlinear network

response.4,7,18 So far, this correspondence has been understood in

the context of stretching-dominated networks, with nonlinear

filaments.18–20 The present work shows that this analogy is more

general. Interestingly, however, there are some quantitative

differences between network stiffening by external load

vs. internal motor stresses. Specifically, our results support the

idea that motor stresses can be more effective in generating

stiffening, since they act in all directions.7 By contrast, when

a network is externally sheared most stress is focused on a small

fraction of the filaments that are oriented in the direction of

extension. Furthermore, there are quantitative differences in the

form of the stiffening response with stress in the present model.

We find that motor contractility leads to an increase in the shear

modulus with motor stress sM (Fig. 4, 5) that is approximately

given by G�sx
M, where x z 1. By contrast, the stiffening by

external shear exhibits a more complex dependence on the stress,

with two distinct regimes, corresponding to x x 1 and x x 1/2.

One important difference that sets the passive networks apart,

are the geometric effects that arise at large external shears

through the collective alignment of filament in the direction of

maximum extension.

The results presented here provide further insight into the

mechanisms available for the active cellular cytoskeleton to

regulate the mechanical behavior of the cell. Furthermore, these

principles can inspire the design of novel active biomemetic

materials with tunable elastic properties.
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