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Motivated by recent experiments showing nonlinear elasticity of in vitro networks of the biopolymer

actin cross-linked with filamin, we present an effective medium theory of flexibly cross-linked stiff

polymer networks. We model such networks by randomly oriented elastic rods connected by flexible

connectors to a surrounding elastic continuum, which self-consistently represents the behavior of the rest

of the network. This model yields a crossover from a linear elastic regime to a highly nonlinear elastic

regime that stiffens in a way quantitatively consistent with experiment.
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The mechanical response of living cells depends largely
on their cytoskeleton, a network of stiff protein polymers
such as filamentous actin (F-actin), along with various
associated proteins for cross-linking and force generation.
In addition to their importance for cell mechanics, cytos-
keletal networks have also demonstrated novel elastic
properties, especially in numerous in vitro studies [1–6].
The cellular cytoskeleton, however, is an inherently com-
posite structure, consisting of elements with highly varied
mechanical properties, and there have been few theoretical
or experimental studies of this aspect [7–11]. Recent ex-
periments on F-actin with the physiological cross-linker
filamin have demonstrated several striking features; while
their linear modulus is significantly lower than for rigidly
cross-linked actin systems, they can nonetheless withstand
remarkably large stresses and can stiffen by a factor of
1000 with applied shear [7,9,12]. This behavior appears to
result from the highly flexible nature of filamin, although
the basic physics of such a network, in which the elasticity
is dominated by cross-linkers, is not understood. Apart
from their physiological importance, such networks sug-
gest new principles that may be extended to new synthetic
materials with designed cross-links [8].

Here we develop a theoretical model for composite net-
works of rigid filaments connected by flexible cross-
linkers, in which the macroscopic network elasticity is
governed by the cross-links. We examine this model in a
limit in which the basic elastic element is a single rigid rod,
directly linked by numerous compliant cross-linkers to a
surrounding linear elastic medium. We show that such a
network stiffens in a manner determined by the mechanics
of individual cross-links, which we model both as linear
springs with finite extension and also as wormlike chains.
We analyze our model in both a fully 3D network as well as
a simplified 1D representation, which already captures the
essential physics of the nonlinear behavior. The finite
extension ‘0 of the cross-links along with the length of
the filaments/rods L implies that there exists a character-

istic strain !c ! ‘0=L for the onset of the nonlinear re-
sponse of the network. Indeed, prior in vitro experiments,
in which the length of the cross-linkers was varied [8], have
reported this linear dependence on ‘0. We extend this
model in a fully self-consistent manner, replacing the
embedding medium by an effective medium whose elastic
properties are determined by those of the constituent rods
and linkers. This self-consistent model can quantitatively
account for the nonlinear response found in prior experi-
ments on actin-filamin networks [7,9].
In a flexibly cross-linked stiff polymer network, ran-

domly oriented stiff filaments or rods are interconnected
by relatively short but highly flexible cross-linkers (Fig. 1).
The compliance of this network is dominated by the flex-
ible cross-linkers, while the much stiffer filaments act
mainly as a scaffold for the cross-linkers, ensuring rigidity
of the network as a whole. Recent experiments have dem-
onstrated that flexible biological cross-linkers such as fil-
amin can be described as a semiflexible polymer using the

FIG. 1 (color online). Schematic figure of an isotropic stiff
polymer network with highly compliant cross-linkers. The inset
illustrates the proposed nonuniform deformation of the cross-
linkers on a single filament in a sheared background medium.
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wormlike chain (WLC) model [13,14]. The cross-linkers
are characterized by their contour length ‘0 and persistence
length ‘p [15]. A realistic force-extension curve of a
typical biological cross-linker is shown as a solid black
line in the inset in Fig. 2. It is instructive to simplify this
curve by assuming linear response with a spring constant
kcl and a finite extensibility ‘0. This simplification retains
the essential features and is shown in Fig. 2 as a dashed
blue line. We refer to this as simple cross-link behavior.

To determine the elasticity of the network, we use an
effective medium approach and divide the network into
two mechanically connected subsystems. The first consists
of a stiff filament of length L decorated by n flexible cross-
linkers, which we refer to as a hairy rod (HR). The other is
the network connected to it, which we treat as an elastic
continuum. Although the medium is assumed to deform
affinely, we allow the local strain of the cross-linkers to
depend on their position on the HR. By averaging over all
orientations, we may express the macroscopic stress in
terms of the tension in a single HR connected to a medium,
which is subject to a 1D strain " along its backbone. The
tension # in the center of this HR is the sum of the forces
exerted by all cross-linkers on one-half of the rod. To
calculate these forces, we treat the cross-linker as a spring
connected in series with the medium, which we describe
with a spring constant KEM. We are primarily interested in
densely cross-linked networks for which KEM " kcl. The
extension of the cross-linker-medium system is given by
"x at a distance x from the center of the rod. If the cross-

linkers are homogeneously distributed over the rod with a
high density n=L, we can write the sum over forces as an
integral:

#ð"Þ ¼ n

L

Z ‘0="

0
dx

kclKEM

kclþKEM
"x

þ n

L

Z L=2

‘0="
dx

!
kclKEM

kcl þKEM
‘0 þKEMð"x' ‘0Þ

"
: (1)

For strains " ( ‘0
L=2 , only the first integral is present and the

integration extends to L=2. In this case, the tension de-
pends linearly on the strain. Using Eq. (1), we compute the
1D modulus G1D ¼ #=", which is shown as a dashed blue
line in Fig. 2. For small strains, the system is linearly
elastic with G1D ¼ 1

8n
kclKEM

kclþKEM
L. Above a threshold strain

‘0
L=2 , a crossover occurs to a second linear regime in which

G1D asymptotically approaches 1
8nKEML.

The nonlinear response of a cross-linker is more realisti-
cally modeled with the WLC model [14] (Fig. 2). We
calculate the tension in a rod with WLC cross-linkers
analogously to Eq. (1). The 1D modulus G1D is shown as
a dashed-dotted purple line in Fig. 2. Though quite similar
to the simple cross-linker model, the more realistic force-
extension curve has introduced a considerable smoothing
of the crossover resulting in a gradual onset of nonlinear
behavior of the HR with WLC cross-linkers. Nevertheless,
the characteristic strain "c for the nonlinear behavior is
proportional to ‘0=L independent of the exact nonlinear
response of the linkers.
Using the 1D model presented above, we can compute

the macroscopic stress of a network. A 3D isotropic net-
work with a polymer length density $ is modeled by an
effective medium consisting of randomly oriented HRs.
We can compute the macroscopic stress % and shear
modulus G ¼ %=! by averaging over all orientations
[2,6]. The shear modulus is shown in Fig. 2 for the simple
cross-linkers and for the WLC cross-linkers. The 3D
curves are largely similar to the 1D results, save for a
factor of 2 shift, which may be understood by noting that
the rods at a 45) angle to the stress plane, which bear most
of the stress, experience an extensional strain " of !=2.
At large strains, when many of the cross-linkers are

extended well into their nonlinear regimes, it is no longer
realistic to assume a linear background medium. To ad-
dress this, we shall now require the elasticity of the back-
ground medium to self-consistently represent the nonlinear
elasticity of its constituent HRs.
Under strain the cross-links deform the surrounding

elastic medium. The resulting longitudinal displacement
&‘ of the medium leads to a restoring force per unit length
along the rod given approximately by the shear stiffness
d%
d! * &‘ [16]. The shear modulus of the medium depends

on the density $ of rods and the longitudinal stiffness d#
d" ,

where " is the 1D extensional strain of the medium along
the rod:

FIG. 2 (color online). The shear modulus G normalized by the
linear modulus G0 as a function of strain " (1D) or ! (3D) for
simple cross-linkers and WLC cross-linkers in the 1D and 3D
versions of the linear medium hairy rod model. In this plot we
have chosen KEM ¼ 100kcl as an example. The upper left inset
shows the force-extension curve of a simple cross-linker (dashed
blue curve) and of a WLC cross-linker (solid black curve). The
lower right inset shows the normalized shear modulus as a
function of strain ! for various ratios of L=‘0 calculated with
the self-consistent model.

PRL 101, 118103 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

12 SEPTEMBER 2008

118103-2



d%

d!
¼ A$

d#

d"
: (2)

Here A is a dimensionless geometric factor that depends
on the architecture of the network. For an isotropic network
in 3D, this is 1=15. (We note that this is a small-strain
approximation and thatA will be different for anisotropic
networks.) Thus, the effective stiffness KEM per cross-link
is given by

KEM ¼ A$
L

n

d#

d"
: (3)

When subject to a shear strain !, the resulting stress %
within a network of rods can be expressed in terms of the
tension # in each rod, which depends on its orientation
relative to the shear plane. It is given by

#ð"Þ ¼ n

L

Z L=2

0
dx0x0
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(4)

where kclð&‘Þ is the derivative of the force-extension curve
of the cross-linker. Equivalently, we may write for #ð"Þ

2
d#
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n
d#
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n
d#
d"

if "< l0
L=2 ;

1
4A$L2 d#

d" if " + l0
L=2 :

(5)

We first investigate the properties of this model using the
simple force-extension curve (see inset in Fig. 2). For a
densely cross-linked network, we find a linear regime
below !c ¼ ‘o

L=2 . For larger strains, the system enters a

highly nonlinear regime for which

d#

d"
! #1'1=½ð1=4ÞA$L2'1-: (6)

This is in marked contrast with the linear medium model in
which there is only a crossover between two distinct linear
regimes.

A real network with compliant cross-linkers is more
realistically modeled by solving Eq. (5) (numerically) us-
ing the WLC force-extension curve for the cross-linkers.
The shear modulus in this case, computed exactly as
before, is graphed in the lower right inset in Fig. 2. At
low strains, G! nkcl$L, and there is a gradual onset of
nonlinear response originating from the nonlinear entropic
elasticity of the cross-linkers (see the upper left inset in
Fig. 2). At a strain!‘0=L, the cross-linkers at the edges of
the rods become effectively rigid, which marks the onset of
the nonlinear network behavior.

In view of the nonlinearity of this system, it is more
appropriate to use a differential modulus K ¼ d%

d! rather

than G. The differential modulus is plotted in Fig. 3. Up to
a critical stress %c, the elasticity is dominated by WLC
cross-linkers placed on a rigid rod connected to a much
stiffer medium. At larger stresses, the cross-linkers at the

edges of the HR reach full extension and, consequently,
couple strongly to the surrounding network. In this limit,
the slope in a logðKÞ vs logð%Þ plot approaches . 1'
1=ð14A$L2 ' 1Þ, as it does for simple cross-linkers. This
exponent is a consequence of the composite nature of the
network and its nonlinear constituents, although it is inde-
pendent of the exact form of the nonlinear response of the
cross-linkers. For a dense flexibly cross-linked network,
$L2 " 1, and, therefore, we expect a slope of 1. This is
consistent with recent experimental data on actin networks
cross-linked by the highly compliant cross-linker filamin in
which a slope of 1 was found [7,9] in contrast to a slope of
3=2 found for rigidly cross-linked networks [2].
Interestingly, in vivo experiments show that cells also
exhibit power-law stiffening with an exponent of 1 [17,18].
We compare our results to the linear medium model and

a model based on the nonlinear response of the semiflex-
ible actin segments between cross-links that has been used
successfully to describe rigidly cross-linked actin networks
[2,19] in Fig. 3. Although the three curves coincide for
small stresses, at intermediate stresses % * %c the linear
medium model curve rolls over to a linear regime. Clearly,
our self-consistent model and the model for rigidly linked
networks begin to differ in the nonlinear regime.
So far, we have considered only the midpoint tension. In

networks of elastic filaments of finite length, however, the
tension along a single filament is not uniform but decreases
towards its ends [20–22]. The inset in Fig. 3 shows the ratio
' of the tension at point x along the rod to the maximum
tension. This maximum occurs at the midpoint x ¼ 0 and is

FIG. 3 (color online). Differential modulus K ¼ d#=d! nor-
malized by the linear modulus G0 as a function of stress %
normalized by %c for the self-consistent (Self.-Con.) model. We
also plot K=G0 for the linear medium (Lin. Med.) model and a
model for rigidly cross-linked semiflexible polymer networks
(Rig. C.-L.). The black line indicates a slope of 1. The inset
shows the reduced tension profile' along the rod, normalized by
the midpoint tension # in Eqs. (4) and (5).
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given by # in Eqs. (4) and (5). The tension at a point x can
be obtained by replacing the lower limit of the x0 integral in
Eq. (4) by x. The tension profile is parabolic below !c and
quickly converges to a more flattened out profile in the
nonlinear regime. We can use the tension profile to relate
the maximum tension in a single HR to the macroscopic
stress % [23]. For typical experimental conditions in an
actin-filamin gel [12], we estimate a maximum force on a
single cross-link to be at most 5 pN for isotropic rods and
of order 1 pN or less for oriented rods.

A feature shared by the linear medium model and the
self-consistent model is the characteristic strain !c ’
4‘0=L for the onset of nonlinear response. The proportion-
ality with ‘0 is consistent with the results of Wagner et al.,
where cross-linker length was varied, although they ob-
served larger values of !c than expected either from our
model or based on Refs. [7,9]. Recent experiments on
actin-filamin networks also show a dependence of the
critical strain that is approximately inverse in actin fila-
ment length L [24] in agreement with our results. This
sensitivity of network response to filament length, both in
experiments and in our model, appears to be one of the
hallmarks of actin-filamin networks. On the one hand, this
may explain the apparent difference between the critical
strains reported in Refs. [7–9]. On the other hand, it also
suggests that it may be more important to directly measure
the filament length distribution in such experiments than in
other similar in vitro studies. In Wagner et al., for instance,
the filament length was not measured but was inferred from
prior reports of the length dependence on the capping
protein gelsolin [25].

In previous work, DiDonna and Levine have assumed a
sawtooth force-extension curve for the cross-linkers to
mimic domain unfolding. They report a fragile state with
shear softening when an appreciable number of cross-
linkers are at the threshold of domain unfolding [10].
Our model is based on the stiffening of the cross-linkers,
which occurs at forces far below those required for domain
unfolding [13,14]. This leads to strain stiffening at a point
where only a fraction of cross-linkers are at their threshold
for nonlinear response. Thus in both our model and that of
Ref. [10] the network responds strongly to small-strain
changes, though in an opposite manner: stiffening in the
present case vs softening in Ref. [10]. In related work,
Dalhaimer, Discher, and Lubensky show that isotropic
networks linked by large compliant cross-linkers exhibit
a shear induced ordering transition to a nematic phase [11].
Our model accounts for the architecture of the network
through an averaging procedure in a scalar quantityA. We
are presently investigating the effect of an ordering tran-
sition on the nonlinear response of the network.

We have introduced a model for flexibly cross-linked
stiff polymer networks based on cross-linker elasticity. Our
model yields an exponent of 1 in the asymptotic power-law

behavior of a K vs % curve in agreement with experiments
on in vitro filamin-actin networks [7,9]. The exact form of
the nonlinear response predicted by our model can be
tested by further experiments [12].
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