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Recent experiments show that networks of stiff biopolymers cross-linked by transient linker proteins

exhibit complex stress relaxation, enabling network flow at long times. We present a model for the

dynamics controlled by cross-links in such networks. We show that a single microscopic time scale for

cross-linker unbinding leads to a broad spectrum of macroscopic relaxation times and a shear modulus

G�!1=2 for low frequencies !. This model quantitatively describes the measured rheology of actin

networks cross-linked with �-actinin-4 over more than four decades in frequency.
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Reconstituted biopolymers such as actin are excellent
models for semiflexible polymers, with network mechanics
and dynamics that are strikingly different from flexible
polymer networks [1–8]. One essential feature setting bio-
polymer networks apart from rubberlike materials is the
intrinsic dynamics of their cross-links. Such systems rep-
resent a distinct class of polymeric materials whose long-
time dynamics are not governed by viscosity or reptation
[9], but rather by the transient nature of their cross-links.
This can give rise to a complex mechanical response,
particularly at long times, where the network is expected
to flow. Such flow can have important implications for
cells, where their internal networks are constantly remod-
eling, reflecting the transient nature of their cross-links
[10]. The simplest possible description of a material that
is elastic on short time scales while flowing on long time
scales is that of a Maxwell fluid; this exhibits a single
relaxation time �, as depicted in Fig. 1. Indeed, some recent
experiments on transient networks have been modeled with
a single relaxation time [11,12]; however, those experi-
ments and others [13,14]—probing longer relative time
scales compared to the linker unbinding time—evince a
more complex viscoelastic behavior, indicative of multiple
relaxation times. Thus, the basic physical principles gov-
erning transient networks remain a mystery. A predictive
theoretical model is essential to elucidate the effect of
dynamic cross-linking and to help explain the reported
complex viscoelastic behavior.

Here, we develop a microscopic model for long-time
network relaxation that is controlled by cross-link dynam-
ics. This cross-link-governed dynamics (CGD) model
describes the structural relaxation that results from many
independent unbinding or rebinding events. Using a com-
bination of Monte Carlo simulations and an analytic
approach, we demonstrate that this type of cross-link

dynamics yields power-law rheology arising from a broad
spectrum of relaxation rates. Our predictions are in excel-
lent quantitative agreement with experiments on actin net-
works with the transient linker protein �-actinin-4.
The CGD model can be qualitatively understood in sim-

ple physical terms.We assume each filament is cross-linked
to the network, with an average spacing ‘c. Only filament
bending modes between cross-links can relax (Fig. 1, lower
inset), and the thermalization of these results in an entropic,
springlike response. To account for transient cross-linking,
we assume that the linkers unbind at a rate 1=�off (Fig. 1,
upper inset), which may depend on temperature [13]. This
initiates the relaxation of long-wavelength (> ‘c) modes,

FIG. 1 (color online). A schematic of the frequency dependent
shear modulus G� ¼ G0 þ {G00. Nonpermanent networks can
exhibit a response ranging from a single time scale (�)
Maxwell-like behavior (blue lines) to a power-law regime with
an exponent <1 governed by a broad distribution of relaxation
times (> �) (red lines). Upper inset: For times longer than the
unbinding time �off , large scale conformational relaxation can
occur via linker unbinding (open circle) and subsequent rebind-
ing at a new location. Lower inset: For shorter times, only small-
scale bend fluctuations between cross-links can relax, resulting
in a plateau in G0 for frequencies >1=�off .
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giving rise to a reduced macroscopic modulus. However,
the relaxation of successively longer wavelength modes
becomes slower, as an increasing number of unbinding
events are needed for such a relaxation. This simple physi-
cal picture suggests a broad spectrum of relaxation times,
as opposed to the single relaxation time of the Maxwell
model. As outlined below, both simulations and an analytic
treatment of this model yield power-law behavior with

G�!1=2 below the characteristic frequency !0 ¼
2�=�off [Figs. 2(a) and 2(b)].

We compare the basic predictions of this model to the
rheology of a representative transiently cross-linked actin
network. As a cross-linker, we use �-actinin-4 [14,15],
whose unbinding time �off is reported to be in the range
1–10 s. These gels [16,17] exhibit a low-frequency elastic
shear modulus G0 with a pronounced decay over three

decades in frequency, while the viscous modulus G00
exhibits a broad local maximum located near the character-
istic frequency of cross-link unbinding [11–13,16,17]
[Fig. 2(b)]. In the asymptotic low-frequency range, both
moduli exhibit power-law rheology with an approximate
exponent of 1=2, in agreement with our predictions. Such
behavior clearly indicates a more complex stress relaxation
than captured by the Maxwell model, which is governed by
a single relaxation time (Fig. 1). Taken together, the theo-
retical and experimental results demonstrate a distinct
cross-link-governed regime of network dynamics.
To develop a predictive microscopic model, we first

consider a single polymer within the network, and then
extend the description to the macroscopic level. On length
scales longer than ‘c, the motion of the polymer is con-
strained by its cross-linking to the surrounding network
(Fig. 1). When a linker unbinds, a local constraint is
released, allowing for the relaxation of the freed segment.
This thermal relaxation occurs within a time �eq, which is

typically of order milliseconds [3,4,7]. We assume that this
process is completed before the segment rebinds to the
network at a new location; thus, �eq � �on, where �on is

the rebinding time of the linkers. Furthermore, assuming
�on � �off , only a small fraction of cross-links will be
unbound at any given time, and simultaneous unbinding
of neighboring cross-links can be neglected. This suggests
a coarse-grained description on length scales >‘c, in
which independent unbinding events occur at a rate
1=�off . Since the relaxation of wavelengths <‘c occurs at
a much faster rate 1=�eq, we use the wormlike chain model,

where the equilibrated short wavelength fluctuations mani-
fest themselves as an entropic stretch modulus �th � �2=
‘3ckBT [2,4]. Here, � is the bending rigidity, kB is
Boltzmann’s constant, and T is the temperature. In this
description the coarse-grained energy is given by

HCG ¼ 1

‘c

X
n

�
�

2
j�tnj2 þ�th

2
ðj�rnj � ‘cÞ2

�
; (1)

where the sum extends over all cross-link positions rn, tn is
the unit tangent vector, and, e.g., �rn ¼ rnþ1 � rn.
UsingHCG, we study the dynamics arising frommultiple

linker unbinding events, by performing 2D simulations of a
single polymer. An initial chain conformation with periodic
boundary conditions is randomly drawn from a Boltzmann
distribution. Cross-link unbinding events are independent
and result in the complete thermal equilibration of the two
neighboring polymer segments. This is numerically imple-
mented via a Metropolis Monte Carlo algorithm. These
simulations allow us to determine the equilibrium fluctua-
tions of a single polymer, treating its surrounding network
as a rigid medium. According to the fluctuation dissipation
theorem, the linear mechanical response of the polymer is
encoded in the fluctuations of the extension, �‘, of the
polymer. Interestingly, the simulations demonstrate that
the power spectrum Cð!Þ ¼ hj�‘ð!Þj2i depends on

FIG. 2 (color online). (a) The simulated rheology for frequen-
cies below !0. The shear modulus is normalized by the elastic
plateau valueG0. The inset shows the total power spectrum Cð!Þ
(blue circles) of distance fluctuations, as well as the fraction Ck
coming from effective stretch fluctuations originating in undu-
lations on length scales shorter than the cross-linking distance.
The distance fluctuations are determined over a length 16‘c of a
polymer with a persistence length ‘p ¼ 32‘c and a total length

32‘c. The solid black line represents our analytical mean-field
CGD prediction. (b) Measured linear rheology of a 23:8 �M
actin network cross-linked with various concentrations of
�-actinin-4. The low-frequency behavior is consistent with
G� ð{!Þ1=2. The solid and dashed lines are global fits utilizing
our mean-field CGD model for the low-frequency regime
together with the known high frequency response [3,4].
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frequency as a fractional power law, as shown in the inset of
Fig. 2(a), indicating a broad underlying distribution of
relaxation times. The exponent is consistent with �3=2.
Although this exponent also arises in the Rouse model for
flexible polymers due to the viscous dynamics of longitu-
dinal stretch modes [9], this is not the origin of the behavior
found here. Our model does exhibit longitudinal modes;
however, their contribution Ck to the full spectrum is sub-

dominant [inset of Fig. 2(a)]. This demonstrates that the
polymer’s response to an applied tension is dominated by
the dynamics of transverse modes.

The dynamical description of a single polymer can be
extended to the network level by assuming that the network
deforms affinely. The macroscopic shear modulus G� is
then related to the complex response function � of relative
length extension of a single polymer in response to a tensile
force:G� ¼ �=ð15�Þ, where � is the length of polymer per
unit volume [3,4]. Ignoring end effects, the relative exten-
sion �‘=‘ of a polymer segment of length ‘ is conjugate
to the uniform tension f, with �‘ð!Þ=‘ ¼ �ð!Þfð!Þ. We
use the fluctuation dissipation theorem to calculate the
imaginary part of the extensional response function
‘�00ð!Þ ¼ !h�‘2ð!Þi=2kBT. Using a Kramers-Kronig
relation, we compute the response function � and the net-
work shear modulus [18]. Below !off , the shear modulus
depends on frequency as a power law with an exponent of
1=2 [Fig. 2(a)], consistent with experiments [Fig. 2(b)].

To obtain further insight, we develop a continuum ana-
lytical treatment. We calculate the polymer displacement
due to the unbinding and subsequent rebinding of a linker to
the nth cross-link site. We separate the local equilibration
step into a move to the minimum energy position, together
with a stochastic thermal contribution set by the form of the
energy around themechanical equilibrium. Themechanical

relaxation step rðiÞn ! r
ðmeqÞ
n , from the initial (i) position to

the local equilibrium position (meq), is determined by

0 ¼ @HCG

@rn

��������rn¼r
ðmeqÞ
n

: (2)

This condition replaces the usual force balance of drag and
conservative terms in the low-Reynolds number regime. By
performing the discrete calculation solving Eq. (2) and
taking the continuum long-wavelength limit, the leading
order evolution equations are [17,19]

�off@trk ¼ ‘2c
2
@2xrk þ êx � �?; (3)

�off@tr? ¼ ‘2c
2
@2xr? þ �?: (4)

Here r? and rk are the transverse and longitudinal deflec-

tions of the polymer with respect to its average direction
êx. The noise �? captures both thermal effects and
local bucking contributions due to thermally induced
compression [17,19]. While thermal contributions can be
calculated from a quadratic expansion of HCG around its

local mechanical equilibrium, the state of the surrounding
polymer influences the form of the Hessian, inducing cor-
relations in the noise. In the inextensible limit, the longitu-
dinal component of � is subdominant and is neglected
[17,19].
Importantly, the noise �? depends nonlinearly on the

local state of the polymer and couples Eqs. (3) and (4).
To explore this coupling, we artificially reduce the stretch
modulus �. In the limit � � �th, the equations decouple
and become exactly solvable; the resulting transverse

contribution approaches C? �!�7=4. This can also be
seen in our simulations with variable �<�th in
Figs. 3(a) and 3(b). As� is reduced below�th, C? evolves

toward C? �!�7=4, which can be seen by the flattening of
the normalized spectrum in Fig. 3(b). In the limit� � �th,
the transverse bending dynamics are effectively those
of a stiff filament fluctuating in a viscous solvent, for

which the time-dependent fluctuations are hj�‘ðtÞj2i �
t3=4 [3,4,20]. Only in this decoupled limit can one under-
stand the dynamics within the framework of an effective
viscosity provided by the transient cross-links [19].
The nonlinear nature of the noise �? precludes a full

analytical solution of the model. Instead, further insight is

FIG. 3 (color online). The power spectrum C?ð!Þ of longitu-
dinal fluctuations originating from transverse undulations on
length scales longer than ‘c, multiplied with !3=2 (a) and
!7=4 (b) for a range of polymer backbone compliances.
(c) The simulated amplitude of the power spectrum Cð!Þ=�‘2c
plotted against the 2D mean-field prediction for a range of
polymer lengths and bending rigidities.
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gained by approximating the amplitude of the noise term
by its mean-field value calculated from the equilibrium
fluctuations of the polymer [19]. In this approximation,
the stochastic contributions are uncorrelated in both time
and space, resulting in the response function [19]

�MFð!Þ � 0:0036
kBT‘

3
c

��2

Z dq

q2 � 2{!�off
:

This response function captures the cross-link-governed
dynamics dominating on time scales >�off . Further, we

calculate the mean-field correlator, CMF �!�3=2, in good
agreement with the simulations presented in the inset of
Fig. 2. As a further test, we perform simulations over a
wide range of � and polymer lengths L; the predicted
amplitudes are in excellent agreement with simulated
amplitudes, as shown in Fig. 3(c). This further validates
the assumptions made in our analytical approach.

To obtain a complete description of the behavior in the
experimentally accessible range we include the viscous
polymer dynamics in our model [3,4]. This extension relies
on the separation of time scales of the fast viscous polymer
dynamics and the slow CGD, which implies that their
contributions to the fluctuation spectra add in quadrature.
The model agrees with the experimental data—over the
full range of frequencies—with just three parameters:
the plateau modulus, the equilibration time �eq, and the

unbinding time �off (see Fig. 2). We have globally fitted all
data over a decade of cross-linking concentrations with a
single value for �off ¼ 2:7 s. This provides strong evidence
that the low-frequency rheology of actin networks with
the physiological linker �-actinin-4 is governed by the
linker-controlled dynamics. Furthermore, the fitting proce-
dure yields �eq < 0:07 s consistent with �eq � �off; this,

together with the quality of the fit, lends credence to the
separation of time scales assumed in our model. Such a
separation of time scales also implies that the fluid viscos-
ity does not affect the rheology in the linker-governed
regime, consistent with observations in other experiments
[11,12]. By contrast, for low enough cross-linking den-
sities �eq becomes so large that the viscous dynamics and

CGD are no longer expected to be well separated. For an
expected diffusive propagation of edge effects, we estimate
a terminal relaxation time �r � �offðL=‘cÞ2 [19]. As few
as 10 cross-links per filament can account for the absence
of a terminal relaxation in our experiments (Fig. 2). The
possibility of observing a terminal relaxation for shorter
filaments presents an interesting avenue for future
experiments.

Many physiological actin cross-linking proteins are

dynamic and should induce a G� / ð{!Þ1=2 behavior at
low frequencies. This may enable the cell to regulate
its response; on time scales short compared to �off , the
network is effectively permanently connected—thereby
providing mechanical resilience—while on longer time
scales, dynamic linkers allow for complex network flow.

This ability to flow and remodel is required for many vital
cellular functions, ranging from motility to division. The
extent to which transient cross-linking affects the mechani-
cal properties of the cell is, however, still unknown.
Interestingly, some rheological measurements on living
cells have suggested a 1=2 power-law behavior on time
scales ranging from several seconds to hours, consistent
with our model for transient networks [21,22]. Further
experiments are needed to determine whether this regime
is due to the transient nature of the cross-links.
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