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Motivated by recent experiments, we develop a model for DNA toroids under external tension. We find that
tori are the equilibrium states for our model up to a critical tension, above which they become only metastable.
Above this tension, we find a cascade of transitions between discrete toroid states that successively lower the
winding number, until the ground state !rod" is reached. In this process, this model predicts a nearly constant
force plateau as a function of extension, in agreement with experiment.

DOI: 10.1103/PhysRevE.80.031917 PACS number!s": 87.14.gk, 82.35.Pq, 87.15.!v, 36.20.Ey

I. INTRODUCTION

It has long been recognized that the conformation of poly-
mer chains depends on the solvent properties of the environ-
ment #1,2$. In particular, polymers in poor solvent conditions
effectively attract each other in an attempt to exclude the
solvent, forming collapsed structures that minimize surface
contact with the solvent. For flexible polymers, this leads to
compact globules of roughly spherical shape, whose kinetic
pathway has been shown to involve the formation of a pearl
necklace and gradual diffusion of large pearls to the chain
end #3–5$.

In the case of semiflexible polymers such as DNA, which
exhibits a substantial bending stiffness, the energetic penalty
for bending causes spherical globules to be energetically dis-
favored. The apparent equilibrium states for these polymers
have been shown to be toroids #6$, as these structures bal-
ance the tendency for the polymer to condense due to effec-
tive polymer-polymer attraction with the tendency to mini-
mize curvature due to bending stiffness. These condensed
states have been studied theoretically #7–13$, observed in
experiments #14–19$, and shown by computer simulation
#20–24$.

In an effort to understand the dynamics of toroid forma-
tion, recent experiments have explored the condensation of
DNA under tension #25–29$. Motivated by these experiments
we analyze theoretically a hierarchy of torus states and ex-
plore their equilibrium and metastable structures under ten-
sion, as well as transitions between toroid states. We find a
sequence of metastable tori under tension. Furthermore, we
find that for winding numbers larger than approximately 10,
a nearly constant force plateau emerges, which agrees well
with recent observations #28,29$, as illustrated in Fig. 1.

In Sec. II of this paper, we first define a simple, nonther-
mal model that incorporates the essential physical effects be-

lieved to give rise to DNA toroids: !1" the bending rigidity
and !2" the effective attractive interactions between DNA
segments, such as the one that can arise in the presence of
multivalent ions #6$. We summarize the relevant experiments
in Sec. III. We then study the equilibrium and the metastable
states of this model, as well as transitions among these states
in Sec. IV. We conclude with a discussion of the implications
of this model and the relationship of our results to the ex-
periments.

II. MODEL

The first step in examining the equilibrium and the meta-
stable structures of semiflexible polymer condensates under
tension is to identify and calculate their energy. We model
the conformational energy of a toroid as in Schnurr et al.
#13$, where we assume integer winding number toroids with
a single radius of curvature at zero temperature. Our calcu-
lations describe a simplified model of tightly packed fila-
ments of vanishing thickness. We do not take into account
any winding defects due to topological constraints #30$ or
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FIG. 1. Measured force-extension curve for condensed DNA
from Refs. #28,29$. A lambda-DNA molecule !48 502 base pairs or
%16.4 "m in length" was stretched using optical tweezers in the
presence of spermine 4+ !black line, averaged to 8 Hz, raw data at
128 Hz shown in light gray". In contrast to the force-extension
curve of uncondensed DNA !solid gray line", we find a force pla-
teau of approximately 4 pN that persists throughout the curve. In
this plateau small steps can be discerned, signifying unwinding of
loops from a toroidal DNA condensate.
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variations in curvature due to filament thickness.
We write the Hamiltonian of our system as a sum of bend-

ing and interaction terms

H = Hbend + Hint, !1"

where the bending term models the energy of the curvature
of the major radius of the torus and the interaction term
models the self-attraction of the polymer or equivalently its
poor solvent environment. The bending term can be straight-
forwardly calculated, as the energy of the idealized chain
described is simply that of a series of circular rings, given by
#31$

Hbend =
#

2
&

0

L

ds C2!s" =
#

2
L

R2 = #
2$2N2

L
, !2"

where C!s" is the curvature, L is the total filament length in
the torus, R is the torus radius, N=L / !2$R" is the torus
winding number, s is the contour length along the filament,
and # is a bending stiffness constant. We note that, since we
consider only integer winding number tori, we can write Eq.
!2" in terms of a single quantity, L.

For the interaction term, we assume a dense structure, in
which filaments pack tightly in their plane perpendicular to
their local axis. This suggests a simple hexagonal packing of
the filaments. With such tight packing, we assume that the
interactions are only of the nearest-neighbor type. In this
limit, the filament can be thought of as having six possible
binding sites per unit length, which can either form a DNA-
DNA bond with another section of the filament or can be
exposed to solvent. Bundling occurs when the attractive in-
teractions are sufficiently strong. In order to calculate the
interaction term, we define the number of bonds per cross
section to be nb= !6N−ns" /2, where ns is the number of
solvent-exposed sites. We divide by 2 to avoid double count-
ing, as a DNA-DNA bond is equivalent to the merging of
two binding sites on neighboring filaments. Our interaction
term can thus be written as

Hint = − %&
0

2$R

ds nb!s"

= −3 %L +
%

2
&

0

2$R

ds ns!s"

= − &1%L + %
&N

N
L , !3"

where % is a surface tension parameter that characterizes the
energetic cost of solvent-exposed DNA and &N is the so-
called coordination number #13$, which is equal to half the
number of solvent-exposed sites per unit length along the
torus circumference. We use the coordination number to enu-
merate these sites, and it can be found by subtracting the
number of filament-filament bonds from 3N. As an example
of this scheme, consider the cases N=5 and 10: for five fila-
ments there are seven bonds, resulting in a coordination
number of 8 !see Fig. 2", while for ten filaments there are 19
bonds, resulting in a coordination number of 11. We then
multiply the coordination number by the interaction param-

eter % to obtain the surface energy per unit length of a
bundle. Table I lists the first 24 coordination numbers. We
replace the 3%L term in the second line of Eq. !4" with %L&1
to emphasize the physical meaning of this term. The %&1L
term comes from the difference in surface energy between N
strands of unbundled filament and N bundled strands, and it
reflects the physical tendency of the torus to minimize unsat-
isfied bonds through bundling.

The packing of filaments in a hexagonal crystal brings
about particularly stable toroids for certain winding numbers,
as noted previously in Refs. #12,13$. This stability can be
attributed to a high degree of hexagonal symmetry and the
resulting low surface energy. From Table I we can see that
the difference between subsequent coordination numbers &N
is either 0 or 1 !for N'2". For instance, in the case of the
five-torus bundle shown on the right of Fig. 2, the addition of
a sixth filament to the bundle can satisfy no more than two
bonds, resulting in no fewer than four additional unsatisfied
bonds and an increase in the coordination number by 1. If
this sixth filament is added just above the filament on the
right, then the addition of a seventh filament directly above
the center results in no increase in the coordination number
since three bonds can be satisfied. Here, the result is a sym-
metric compact cross section that we refer to as a filled shell.
In such cases, where &N=&N−1, we refer to N as a magic
number, following Refs. #12,13$. Figure 3 shows toroid
cross sections for the first seven magic numbers. The
magic numbers, up to N=24, are as follows: N
=7,10,12,14,16,18,19,21,23,24. If, instead, &N=&N−1+1,
then the smaller N−1 torus is favored by both the interaction
energy, as well as the bending energy.

As the winding number goes up, we have a higher density
of magic numbers. This can be understood by the increase in
edge vs corner filaments in the filled shells for large N. For
instance, the N=16 structure in Fig. 3 can be obtained by

FIG. 2. Sketch of cross section of N=5 torus, with hexagonal
filament cross section. The perpendicular lines represent bonds be-
tween two sites on neighboring filaments.

TABLE I. Coordination numbers for tori winding numbers
1–24, with magic numbers in boldface.

Coordination numbers

&1 3 &9 11 &17 15
&2 5 &10 11 &18 15
&3 6 &11 12 &19 15
&4 7 &12 12 &20 16
&5 8 &13 13 &21 16
&6 9 &14 13 &22 17
&7 9 &15 14 &23 17
&8 10 &16 14 &24 17
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removing three edge filaments from the N=19 structure. All
but the last one of these filaments satisfy three bonds, corre-
sponding to no change in &, while the final corner filament
satisfies only two bonds, corresponding to a reduction in &.
Thus, we find sequences of increasing length of successive
magic numbers, although equilibrium tori are only found for
the largest N in each sequence.

These sequences can be identified as follows. Certain
winding numbers correspond to perfect hexagons, such as
N=7 and N=19 in Fig. 3, which we call supermagic num-
bers, as in Ref. #13$. Since these hexagons consist of six
equilateral triangles of length k=1,2 ,3 , . . . filaments on each
side plus one filament in the middle of the hexagon, the
supermagic sequence is given by N=3k!k+1"+1. The coor-
dination number in this case is &N=3!2k+1". Thus, the dif-
ference between successive supermagic & is 6, although the
difference in N is 6k, where k corresponds to the larger N.
Hence, the length of each sequence of N with the same co-
ordination number is k, on average. In fact, as suggested by
Table I, the actual lengths of the sequences of successive N
with equal coordination number are given by k
−1, k ,k ,k ,k ,k+1.

As noted before, semiflexible polymer condensates ge-
nerically form toroids due to the competition between their
tendency to minimize surface area due to short-range attrac-
tive forces and their tendency to straighten out due to their
substantial bending stiffness. Balancing these two effects,
i.e., setting # /L'%L, lets us define a natural length scale for
our problem, which we call the condensation length Lc
=(# /%. Physically, this length is the approximate length
scale at which we expect condensation to occur. Below this
length DNA will rarely self-intersect and thus rarely con-
dense, while above it a DNA filament will self-intersect
many times and thus form collapsed intermediate structures.

We can also define an analogous energy scale: the con-
densation energy Uc=(#%. Given these scales, we can
present our conformational energies in dimensionless units,
with physical values of length and energies normalized by
their condensation values: FN)UN /Uc, where UN is the con-
formational energy of an N torus, and ()L /Lc. The presen-
tation of our results in dimensionless units clarifies the rel-
evant parameters in our theory, namely, the stiffness constant
# and the interaction parameter %. Combining our expres-
sions for bending and surface energy and normalizing by the
condensation energy gives us the dimensionless free energy
for an N torus

FN =
2$2N2

(
+ (*&N

N
− &1+ . !4"

A. Equilibrium torus states

Plotting Eq. !4" for various N gives a family of curves that
tend to negative infinity. While there is no definite global
minimum in the free energy for all lengths, for a specific
reduced length (, there is an associated optimal winding
number N!(", which corresponds to the equilibrium state at
that length. For ()4$, the uncondensed rod, N!("=0, is the
equilibrium state. From N=2 to N=7, every state is an equi-
librium solution except for N=6, which we expect from our
discussion of magic numbers. !These results differ somewhat
from Ref. #13$ since we focus on only tori of integer winding
number."

Above N=7, all equilibrium states are magic-number
states, although not all magic-number states are equilibrium
states. Instead, only the largest in each sequence of consecu-
tive magic-number winding numbers correspond to equilib-
rium tori in the absence of tension. This can be understood as
follows. For N'12, the ratio &N /N, and therefore the inter-
action energy, has local minima at each value of N such that
both &N=&N−1 and &N+1=&N+1. This forms a sequence of
winding numbers N=14,16,19,24, . . . for which particularly
stable tori are expected. As can be seen in Table I, these all
correspond to magic numbers. Including the effect of bend-
ing energy, which always favors smaller winding numbers,
consistent with Ref. #13$, we find stable tori for this se-
quence, as well as for the other magic numbers N
=7,10,12.

It has been noted before #12,13$ that the equilibrium radii
of the tori do not increase monotonically as a function of
reduced length. In fact, as the reduced length is increased,
the radii of subsequent equilibrium torus states are marked
by discontinuous jumps. Figure 4 shows the reduced radius *
of the equilibrium states as a function of reduced length, up
to N=19. The discrete transitions between the radii of differ-
ent winding numbers are again an effect of the hexagonal
packing, which creates islands of stability for certain wind-
ing numbers. An equilibrium toroid grows in radius until it
reaches a contour length at which the next equilibrium wind-
ing number is favored, at which point it transitions to this
state. The extra length needed for the additional loops of the
higher winding number torus drives the toroid to take on a

FIG. 3. Sketch of toroid cross sections for the first seven magic
numbers. Note that while all have high degrees of symmetry, the
N=7 and the N=19 cross sections correspond to perfect hexagons,
and we dub these winding numbers supermagic.
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FIG. 4. Plot of reduced radius vs reduced length for equilibrium
tori up to N=19. The dashed line indicates the prediction based on
an approximation valid for large N #9,13$. We note that the mini-
mum size of the first stable torus predicted by this model is 4$Lc. A
somewhat smaller length closer to 11 times Lc is found if partial
winding of tori is allowed #13$.
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smaller radius for the same contour length. For comparison,
we also show as the dashed line in Fig. 4 the prediction
based on a continuous approximation valid for large N
#9,13$.

B. Tori under tension

The dimensionless free-energy expression given in Eq. !4"
is a measure of the internal energy of the toroid. At zero
temperature this is analogous to the Helmholtz free energy of
our system. This free energy depends on the reduced length
of the filament or the volume of our essentially one-
dimensional system. Since we also want to consider the ef-
fect of tension, which as a force variable plays the role of
pressure in a classical thermodynamics analogy, we perform
a Legendre transform on the internal energy of the toroid to
get our energy expression in terms of force,

EN = UN −
dUN

dL
L = UN + fL , !5"

where we equate −dUN /dL= f . Here, EN is analogous to the
Gibbs free energy, where tension is the control variable.

The dimensionless form of the Gibbs free energy is ob-
tained again by normalizing Eq. !5" by Uc,

GN =
2$2N2

(
+ (*&N

N
− &1+ + +( , !6"

where += f /% is the dimensionless tension. Equation !6" rep-
resents the dimensionless result for the toroid’s conforma-
tional energy under tension that we will generally be refer-
ring to when we discuss toroidal energy.

III. REVIEW OF EXPERIMENTS

Over the past few years, a number of single-molecule
experiments have probed the mechanics of DNA condensa-
tion under tension #25–27,32,33$. Generally, in these experi-
ments a single DNA molecule is stretched and relaxed using
optical or magnetic tweezers. Under conditions appropriate
for condensation, most of these studies reported a nearly
constant force plateau of several pN for DNA extensions
lower than '85% of the full contour length. While exact
numbers differ between experiments, similar qualitative be-
havior was observed for a wide range of condensing agents
and concentrations.

It has been generally believed that the force plateau re-
gime consists of a continuous unraveling of DNA under ten-
sion. In order to test this hypothesis, we measured the force-
extension relationship of a single condensed DNA molecule
with high resolution using optical tweezers. Lambda-DNA
!48 502 bp" was attached on both ends to two optically
trapped polystyrene beads #28,29$ and allowed to condense
in the presence of 1 mM spermine 4+. The condensed DNA
was subsequently unraveled by displacing one of the beads.
In these experiments, as shown in Fig. 1, the force was al-
lowed to vary freely, while the extension was varied by dis-
placing the trap. We observed a roughly constant force pla-
teau that was consistent with previous experiments. In detail,
however, we found that this plateau consists of a sawtooth-

like pattern, which suggests a steplike unraveling of the
DNA under increasing extension. With the model above, we
can account for these discrete steps in terms of jumps be-
tween toroid states with different winding numbers. In addi-
tion, this model can also account for the nearly constant
force plateau. We focus in the present work on the model and
its predictions, while the experimental results will be pub-
lished separately #29$.

IV. RESULTS OF THE MODEL

We find that—for finite filament length and zero
tension—torus states are, indeed, the equilibrium states
within our model, as discussed above. The filament length
dictates which torus state has the lowest free energy. For a
given filament length ( and winding number N, there exists a
finite tension +crit at which the N torus begins to unravel. For
tension +) !&1−&N /N", the free energy GN strictly decreases
with increasing (, resulting in a stable or metastable state in
which the torus incorporates the full polymer length. Even
before this point, however, the free energy GN!+ ;(" may be-
come greater than zero, indicating that the thermodynami-
cally stable state is the extended polymer conformation. In
this case, the tori are actually metastable states.

With increasing tension +' !&1−&N /N", a local minimum
in GN develops for ( less than the full polymer length. Physi-
cally, this corresponds to a mechanical metastable state, or
local energy minimum, in which a torus coexists with a seg-
ment of unwound straight polymer under tension. The con-
dition for this to occur is

+ ' −
!FN

!(
, !7"

where the derivative on the right is evaluated at the full poly-
mer length. As the tension increases, more filaments are
pulled out of or unwound from the torus, which then shrinks
in size. !Here and throughout, we assume that the torus is
able to relax by internal relative sliding of polymer." As the
tension increases and the torus shrinks in size, the increased
bending energy eventually results in destabilization of the N
torus relative to tori of smaller winding number. We identify
below a series of transitions under tension to tori of smaller
winding number.

A. Transitions

As tension is increased from zero, the slope of the free-
energy curve for each N increases. With increasing tension,
the N!(" torus initially in equilibrium in the absence of ten-
sion for a given total length ( remains the lowest-energy
state until a critical tension is reached. At this critical tension
+crit, the asymptotic slope of the free energy becomes zero
for large (. For tensions above this critical tension, the N!("
torus becomes only metastable, as the !N=0" rod is now
energetically more favorable !with a free energy of zero" and
is thus the equilibrium state of the system. As the tension
continues to increase, a local minimum of the free energy
develops and starts to shift to lower values of (. Once this
minimum shifts to values of ( less than the full length of the
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DNA strand, then the metastable state consists of a compact
N torus, with a segment of filament pulled out of the torus—
i.e., the torus begins to unravel. With increasing tension, as
more of the filaments are pulled out of the torus, larger N tori
become unstable to tori with smaller winding numbers. This
unraveling process is sequential, with transitions to smaller
and smaller values of N as the tension increases.

With an eye toward addressing the experiments in Refs.
#28,29$, we consider a process in which the reduced length (
in the torus is controlled and slowly reduced, while the ten-
sion is allowed to vary. As the N torus is slowly unraveled,
the tension + will increase. However, as + increases, we ex-
pect at some point to develop a local minimum of Eq. !6" for
N−1 that becomes less than or equal to that of the !meta-
stable" N toroid. Once a transition to the N−1 toroid occurs,
if the length ( is fixed, then the tension will fall as a new
!metastable" N−1 toroid is formed at (. This describes most
of the unraveling transitions, at least for large N, where
&N−1=&N. However, given the discrete nature of the coordi-
nation number &N, it can happen that the N−1 state is itself
unstable to the N−2 state at (. This occurs for N'9 when-
ever &N−2)&N−1, i.e., when N−2 is a magic number. Thus,
the N−1 state can be expected to make a transition to the
N−2 state: in the limit of a slow unraveling of the torus, the
N−1 state is skipped. The resulting sequence of states and
the corresponding tensions vs reduced polymer length ( are
shown in Fig. 5. Note that the extension of polymer pulled
out of the torus varies inversely with (, meaning that meta-
stable branch corresponds to a stable force-extension rela-
tion, in which force increases as more polymer is pulled out
of the torus. We find, interestingly, for N greater than about
7, a nearly constant force plateau at +,2.5. This is consis-
tent with several recent experimental observations of a nearly
constant force for tori under tension #25,26,28,29$, as illus-
trated in Fig. 1.

The force plateau can be interpreted as the average force
needed to pull off a loop from the torus. Since the number of
bonds broken when pulling off a loop is either 2 or 3, de-
pending on whether or not the toroid has a magic winding
number, it is not surprising that we should see a force plateau
at +,2.5. As we go to higher and higher winding number,
however, the force plateau asymptotes to 3. We can see why

this is so by considering the average number of bonds per
filament as a function of the winding number. In Fig. 6, the
most weakly bound filaments are the corner ones, which sat-
isfy only three bonds. The remaining filaments along one
edge adjacent to this corner can also be removed at the cost
of just three bonds each, until the final corner filament along
that edge is reached; the removal of which involves the
breaking of just two bonds to form the magic-number bundle
with the next lowest coordination number !N=16 and N
=33 for the bundles in Fig. 6". With increasing winding num-
ber, the fraction of filaments forming three bonds increases,
and +→3, although this convergence is slow.

B. Large N behavior

For large winding number N, the number of exposed un-
satisfied bonds at the perimeter of a torus cross section in-
creases as (N, so that &N'(N. The prefactor here is easy to
calculate for perfect hexagons, as illustrated in Fig. 6. As
noted in Sec. II, these occur for N=3k!k+1"+1, where k
=1,2 ,3 , . . ., for which the coordination number is

&N = 3!2k + 1" = (3!4N − 1" . !8"

This actually represents a lower bound on &N, in general,
since less symmetric cross sections have increased surface-
to-volume or circumference-to-area ratio. A more rigorous
derivation of this bound can be found in Ref. #34$. As we are
interested in the large-N behavior, we will approximate

&N % 2(3N , !9"

as in Ref. #13$.
We use this large-N approximation to determine the meta-

stable states and transitions between them, as we have done
in the previous section. Specifically, we consider fixed but
decreasing condensed length (. In Figs. 7 and 8, we indicate
the predicted sequence of metastable states and the corre-
sponding values of tension + and toroid size * in reduced
units. We find many of the same qualitative features in this
large-N approximation as were found in the previous section.
In particular, we find an apparent force plateau, much as in
Fig. 5. Although both models predict the same asymptotic
convergence of the metastable tension +→3 for large (,
where N is also large, we see that the approximate value of
&N from Eq. !9" yields a consistently smaller value of the
tension than for the discrete model in Sec. IV A. This can be
understood as follows. In the discrete model, we account for
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FIG. 5. Tension vs reduced length for preferred tori states from
N=2 to N=24, only plotted at tensions and lengths where we expect
them. We note that only magic winding numbers appear for N'7
and that a rough force plateau appears at +,2.5. Transitions be-
tween winding numbers are characterized by discontinuous jumps
in tension and length.

FIG. 6. !Color online" Cross sections of N=19 and N=37 tori
with the lighter circles corresponding to corner filaments. As wind-
ing number increases the number of corner filaments always re-
mains six, so the overall density of corner filaments goes down for
large N tori.
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the hexagonal packing of filaments, which results in a se-
quence of &N in which there are discrete jumps in &N !at
nonmagic numbers", between which ranges of constant &N
are found. For transitions from N to N−1 toroid states, the
N−1 state is thus destabilized in the discrete model as com-
pared to the large-N approximation, when &N=&N−1. This
enhanced relative stability of the N toroid means that the
tension + is larger at the transition. For the same reasons, the
corresponding toroid sizes are smaller in the discrete model
than in the large-N model. Nevertheless, the general features,
and especially the force plateau, are seen for both models.

C. Energy barriers

We estimate the energy barrier between N and N−M tori
!M )N" first by calculating the energy difference between an
N torus and N−M +M tori !see Fig. 9". This is not to suggest
that Fig. 9 represents the actual reaction pathway for the
transition between tori: calculating the energy in this way, by
considering the separation of full loops from the original
torus, can only provide an upper bound on the transition
energy. From our model, and as suggested by experiment, we
expect that toroids make stepwise jumps between different
winding numbers.

Intuitively, we expect the transition to depend primarily
on the difference in surface area exposed to solvent, and not
on the bending energy, since the torus radii vary only weakly
with N. In what follows, we shall assume that the radii are
constant. We can see from Fig. 9 that the following relations
hold since the total amount of the reduced length (N is un-

changing and all the loop radii are equal: (N=(N−M +(M,
where (N−M = N−M

N (N and (M = M
N (N. Here, (N is the length in

the N torus, (N−M is the length in the N−M torus, and (M is
the length in the M torus.

With these identifications we can straightforwardly calcu-
late the energy difference between the N torus and the N
−M +M tori from the energy expression given by Eq. !6",

,EN,N−M =
2$2!N − M"2

(N−M
+ (N−M* &N−M

N − M
− &1+ + +(N−M

+
2$2M2

(M
+ (M*&M

M
− &1+ + +(M −

2$2N2

(N

− (N*&N

N
− &1+ − +(N =

(N

N
!&N−M + &M − &N" ,

!10"

which depends only on the surface parameters, as expected.
We calculate (N in the above equation as follows: starting
from an N torus we assume downward sequential transitions
in the winding number, as previously described, occurring
for (N where the metastable N and N−1 states have equal
free energy. For unstable tori, we assume a direct transition
to the subsequent winding number at the same value of (. It
is not our purpose to calculate realistic rates of such transi-
tions. Instead, we focus on identifying the most relevant se-
quence of metastable torus states in a fixed-( ensemble, cor-
responding to experiments in which the total length is the
control variable. Figure 10 shows the energy barriers be-
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FIG. 7. The range of reduced tensions + predicted for the meta-
stable states, beginning with the 4→3 transition, using the large-N
approximation of Eq. !9".
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FIG. 8. The range of reduced torus radii * predicted for meta-
stable states, beginning with the 4→3 transition, using the large-N
approximation of Eq. !9".

FIG. 9. Sketch of N, N−M, and M tori. Physically we expect the
energy barrier between these to be dependent only on the surface
energy difference, as the bending energy and the tension are
unchanged.
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FIG. 10. Estimated energy barriers !dimensionless" vs torus
winding number, using Eq. !10", for all N to N−1 transitions be-
tween N=2 and N=24. The energy barriers are between N and N
−1 tori, e.g., the energy barrier plotted at N=12 is the energy barrier
between N=12 and N=11.
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tween N→N−1 transitions, from N=24 down. We find that
transitions from N to N−M for M '1 have substantially
higher energy barriers and are thereby strongly suppressed.

As noted above, it is unlikely that the transitions sketched
in Fig. 9 represent the real reaction pathway between torus
states. Nevertheless, our estimates suggest that transitions
corresponding to a change in the winding number by more
than 1 are strongly suppressed. For ,N=1, however, it is
also possible that DNA peels off continuously from the torus.
This will, in general, induce additional bending as the DNA
is pulled off the torus. !We assume that twist is relaxed." In
fact, a bend of approximately 90° is expected on simple me-
chanical grounds since the force in the plateau region in Fig.
5 is comparable to the total binding energy per unit length of
filament, as discussed in Sec. IV A. Under a force f , the
radius of curvature r for such a bend can be estimated by
balancing the total bending energy $# / !4r" and the virtual
work against the applied tension !$ /2−1 "rf . This yields an
optimal radius of curvature r=($# / #f!2$−4"$ and a total
energy for two such bends of (+$!2$−4",4.2–4.6 in re-
duced units for +,2.5–3. This is about a factor of 2–3
smaller than the estimates from Eq. !10".

Other effects may change the energy barriers as well, such
as next-nearest-neighbor interactions. As these interactions
are effectively attractive, they will favor more compact struc-
tures, thus lowering the length needed for an N torus !i.e.,
shifting minima in the energy to lower values of (". This will
lower the energy barriers given above for nearest-neighbor
interactions, but there will be an additional contribution to
the energy barrier from the attraction of next-nearest neigh-
bors that must be overcome to pull off a loop. Without an
explicit inclusion of these effects in our model, it is unclear
what net effect these interactions will have on energy barri-
ers.

V. DISCUSSION

Of the two parameters in our model, the bending stiffness
# is known to be approximately #=kT!p%50kT nm, where
!p is the persistence length of DNA. The interaction param-
eter % is expected to depend on the counterions present in
solution, and it is unfortunately not known. In order to esti-
mate %, we use the experimentally observed plateau value of
the force in Fig. 1. This is consistent with the plateau we find
in Fig. 5. By matching the measured force plateau with our
!dimensionless" tension += f /%, we estimate %%1.6 pN.
This is similar to DNA-DNA interaction strengths on the
order of a few pN !%0.1kT per base pair" reported for os-
motic stress measurements in Ref. #35$, although such mea-
surements were performed under different solution condi-
tions and for different condensing agents. This allows us to
estimate the condensation length Lc%11 nm and the con-
densation energy Uc%4.5kT. This corresponds to energy bar-
riers of order 20kT, using the lower estimates at the end of
Sec. IV C for ,N=1 transitions. By contrast, we find sub-
stantially larger barriers of more than 50kT for transitions as
sketched in Fig. 9 for ,N'1.

Figure 5 shows a typical transition length !i.e., the differ-
ence in the reduced length between an N torus and an N−1

torus at constant tension" of '10, suggesting a typical torus
loop size !and also a minimum size of the first stable torus in
the absence of tension" of '110 nm, a value larger than that
reported in Ref. #29$ by a factor of about 2–3. Given the
simplicity of our model being off by such a factor is perhaps
not so bad, as there are many effects that we have not taken
into account. One notable effect that we have neglected is
next-nearest-neighbor interactions. Such interactions will
have the same attractive tendency as nearest-neighbor bonds
and thus will tend to favor more compact structures, trans-
lating into smaller loop sizes.

Another possible effect is the stability of the toroids be-
yond the transition regime. We have predicted the loop sizes
from our model assuming immediate transitions once in the
transition regime; in reality, toroids may not transition imme-
diately. At higher tensions there are smaller differences in the
reduced length between subsequent toroid force-extension
curves. If, for example, we instead assume a force plateau at
the higher-than-expected value +=3 !which raises Lc to
12nm", and average over the same range of winding num-
bers, we get an average step size of (%6.5, translating into a
loop size of 78 nm.

One very important effect that must be taken into account
in comparing with the measured extensions in the experi-
ments is the finite extensibility of the uncondensed DNA
strand, which is expected to be well approximated by a
wormlike chain #28,29,36$. We can account for this by con-
sidering a thermally fluctuating filament in series with the
torus. The length of this filament is equal to the full contour
length L0 of the DNA in the absence of condensation minus
the length L contained in the torus. In dimensionless form,
the extension -=x /Lc of the free DNA in series with the
toroid is approximately given by

- = !. − ("*1 −
kT

2Uc
(+
+ , !11"

where the full contour length of uncondensed DNA is given
by .Lc, of which (Lc is contained in the toroid. In Fig. 11
we show the combined force-extension curves of the various
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FIG. 11. The predicted force !in units of %" as a function of the
apparent extension - !in units of Lc" of DNA toroids in series with
freely fluctuating uncondensed DNA. Here, we have used 16.4 "m
as the full contour length and Lc=11 nm. A few of the individual
force-extension curves are labeled by the corresponding winding
numbers N/10. The thin continuous curve represents the force-
extension curve of the bare DNA.
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toroid states in Fig. 5, corresponding to Uc%4.5kT and the
full contour length of 16.4 "m in Refs. #28,29$. Interest-
ingly, this model predicts multiple metastable states with
winding numbers in the range of approximately 2–10 near
the transition to the fully unraveled toroid. This may explain
the significant hysteresis reported for forward !extension"
and reverse force-extension measurements near the transition
between toroid and fully extended DNA #28,29$. As the fully
extended state is allowed to condense when reducing the
extension, the force drops and toroid states with small N are
expected to form at a smaller extension than required, e.g.,
for the transition from %7 to fully extended DNA.

We have developed a highly simplified model, in which
we assume, e.g., perfect hexagonal packing without topologi-
cal defects, a single radius of curvature in the toroid, and
only nearest-neighbor interactions. Nevertheless, this model
is able to capture a number of features observed in the ex-
periments. We find that toroid unraveling under tension oc-
curs via a series of discrete transitions, as observed in Refs.
#28,29$. In addition, this model provides an explanation for
the existence of the approximately constant force plateau for
DNA condensations under tension, as reported in a number
of experiments #25–29$.
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