Negative normal stress in semiflexible biopolymer gels.
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When subject to stress or external loads, most materials resist deformation. Any stable material,
for instance, resists compression--even liquids. Solids also resist simple shear deformations that
conserve volume. Under simple shear, however, most materials also have a tendency to expand

in the direction perpendicular to the applied shear stress, a response that is known as positive



normal stress '. For example, wet sand tends to dilate when sheared, and therefore dries around
our feet when we walk on the beach. In the case of simple solids, Poynting showed nearly one
hundred years ago that elastic rods or wires tend to elongate when subject to torsion °. Here, we
show that networks of semiflexible biopolymers such as those that make up both the
cytoskeleton of cells and the extracellular matrix exhibit the opposite tendency: when sheared
between two plates, they tend to pull the plates together. We show that these negative normal
stresses can be as large as the shear stress and that this property is directly related to the non-

linear strain-stiffening behavior of biopolymer gels °.

When viscoelastic materials are deformed by a sinusoidal shear strain, their stiffness is quantified
by the elastic storage and loss shear moduli calculated from the amplitude and phase shift of the
resulting sinusoidal shear stress. In some solids like soft hydrogels at moderate to large
deformations, an additional stress can be measured in the direction orthogonal to the shearing
force. Gels formed by flexible polymers with a linear stress-strain relationship generate a small
upward stress, but gels formed by semiflexible polymers that become stiffer the more they are
deformed, generate normal forces that are both larger in magnitude and of the opposite sign.
Figure 1A shows that during an oscillatory shear deformation of a semiflexible fibrin gel a large
negative normal stress is measured with a period exactly half of the strain period. The
frequency doubling of the normal stress compared to strain frequency occurs because the normal
stress depends only on the magnitude of the strain and not its direction. In contrast, a gel of the
flexible polymer polyacrylamide under shear deformation (Figure 1B) produces a positive
normal stress that is smaller in magnitude, even though the shear modulus of this

polyacrylamide gel is greater than that of the fibrin gel in Fib 1A. The difference in direction



and magnitude is evident in Figure 1C, which shows the momentary normal stress as a function
of shear strain during the course of an oscillatory deformation. Since both fibrin and
polyacrylamide gels have very little mechanical loss at the frequency of measurement (G'>>G"),

each oscillation can be viewed as two stress-strain curves in opposite strain directions.

The negative normal stress is not unique to fibrin, but is seen for all measured gels formed from
strain-stiffening semiflexible biopolymers. This is not, however, seen for any flexible polymer
hydrogel tested. Figure 2 shows that F-actin crosslinked by biotin-avidin (2A) collagen (2B)
fibrin (2C) neurofilaments (2D) and Matrigel, a cell-derived matrix containing primarily collagen
and the flexible macromolecule laminin (2E) all show a negative normal stress, whose magnitude
increases with strain. This increase in magnitude occurs only in the range over which the
systems stiffen under shear. When the maximal strain is reached for each system and the shear
modulus begins to decrease, due to filament rupture or elongational compliance of the polymers
or to network rearrangements, the normal stress returns to zero or slightly positive values (data
not shown). In contrast, polyacrylamide gels (2F) exhibit a positive normal stress over the entire
range of deformations and do not show any evidence of strain-stiffening, since the stress is
proportional to strain over a wider range of strains. The stiffest filaments like actin and collagen
exhibit negative normal stress only over small strains before the sample fails, but softer polymers
like neurofilaments and Matrigel exhibit negative normal stress at much larger strains where the

normal stress magnitude may become greater than the shear stress.

The consistently large negative normal stresses that we observe can be understood in terms of a
simple model that has been successfully used previously to quantitatively model strain-stiffening

in the same biopolymer systems studied here. The basis of this model is the force extension



curve of a single semiflexible filament, which has been shown to be highly nonlinear *”.
Specifically, under tension, such a filament resists extension in a way that increases much more
rapidly than, for comparison, a simple Hookeian spring. This non-linear relationship is shown in
Fig. 3A. For a network of randomly oriented filaments, an equal number of filaments can be
expected to be (equally) stretched (e.g., the red filament in Fig. 3B) and compressed (the yellow
filament in 3B) under shear. But, since those stretched filaments exert a greater tensile force than
the compressive force of those under compression, we expect a net tension that results in a
negative force normal to the plane of shear. In contrast, for linear, Hookean springs or filaments,

the positive and negative contributions to the normal stress precisely cancel for small strains.

Furthermore, the fact that the normal and shear stresses are observed to be comparable when
samples strain-stiffen is also a natural consequence of the non-linear force-extension of
semiflexible filaments. For highly strained networks the stress is dominated by the most highly
stretched filaments that are oriented approximately 45 degrees to the direction of shear (as
illustrated by the red filament in Fig. 3B). Thus, by virtue of simple geometry, these filaments
contribute equally to both normal and shear stresses. For smaller strains, however, we expect
that, as for other materials, the shear stress is linear in the strain, while the normal stress is
quadratic, as illustrated in Fig. 2F for polyacrylamide. For the biopolymer systems, however, not
only is the normal stress negative, but the expected quadratic regime is too small to be apparent

in Figs. 2A-E.

The precise details of the force-extension curve are worked out in the supplementary materials >

>. In Fig. 3A we show the result for the dimensionless force as a function of the relative



extension. Here, we see both a linear regime (much like a simple spring, in which force is
proportional to the degree of compression/extension), as well as the strongly increasing tension
for extensions exceeding some threshold. Under compression, the effective spring constant
actually decreases. This force extension curve can be used to calculate the macroscopic shear >’
and normal stresses [Supplemental Material] of a network of filaments subject to a given shear
strain. This can be done assuming that the network deforms affinely, i.e., that the strain is

everywhere uniform.

The concentration-dependence and relation of normal stress to shear stress allow more
quantitative comparisons of the experimental results with predictions of the molecular theory for
elasticity of semiflexible polymer gels. Figure 4A shows that the maximal magnitudes of shear
stress and normal stress are both proportional to the concentration of polymers, or equivalently to
the inverse square of the polymer mesh size *. This is expected for a microscopic model in
which the maximal stress is determined by network failure corresponding to a characteristic
maximal tension in each filament, independent of concentration ’. The relation of normal stress
to shear stress is shown in Figure 4B for fibrin and Matrigel. At large stresses, there is a linear
relation between normal and shear stress, with a rounding off in the limit of small stresses. The
latter is evidence of the expected (small) quadratic relationship between normal stress and both
strain and shear stress in the linear regime. In contrast, the same plot for polyacrylamide shows a
positive normal stress relationship in which a quadratic dependence is evident over a large strain
range (Figure 4C). For comparison, the theoretical results for a network of semiflexible
polymers are shown in Figure 4D, in which the normal stress is plotted as a function of the shear

stress. Here, the expected linear relationship between shear and normal stresses is shown, with



more or less of the expected quadratic dependence at small stresses, depending on the proximity

of the strain-stiffening threshold.

Negative normal stress has been shown to occur in some complex fluids at high flow rates *'°.
But, to our knowledge this has not been reported for small quasistatic deformations of elastic of
viscoelastic solids. A wide range of elastic solids, from metals to rubbers exhibit the Poynting
effect 2, for instance, in which torsion of a wire or elastic rod results in an axial elongation.
Although the elastic equations permit stable solutions with negative normal stress **, Mooney-
Rivlin theory of rubber elasticity predicts positive normal stresses 2, as seen in classic
experiments by Rivlin and Saunders **. Here, we demonstrate a class of elastic materials that
exhibit the inverse of the usual Poynting effect, together with a microscopic model that accounts
for this result. The relationship between strain-stiffening and negative normal stress reported
here is a natural consequence of the mechanical properties of thermally undulating semiflexible
polymers crosslinked in isotropic networks, but the two features are not inextricably linked.
Other geometries and force-extension relations of elastic elements might produce one effect

without necessarily the other.

The negative normal stress of semiflexible polymer gels might be exploited in biological and
technological contexts. In some settings such as the movement of micron-sized mitochondria
through the crowded cytoskeleton of a narrow axon, shear rates are similar to those used for the
studies in Figure 3, and a negative normal stress coincident with the shear deformation may
facilitate organelle motion without distending the axon diameter. Another possible example is

shear flow in a blood vessel above a fibrin gel at a local wound site that may help compress the



gel to the vessel wall rather than dislodging it into the flowing stream. In any case, these stresses
that we have shown to be generally as large as the shear stresses can be expected to significantly
affect the overall force balance in the cytoskeleton. This work also suggests a design principle

for the reduction of normal stresses, which can pose severe limitations in materials processing.
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Figure legends

Figure 1 Relationship of normal stress to shear strain for semiflexible and flexible polymer

hydrogels. Figure 1A shows the development of a negative normal stress (blue) during



oscillatory shear strain (red) of a gel formed by the semiflexible polymer fibrin. The sign of the
normal force in fibrin is opposite to that measured in a gel of the flexible polymer
polyacrylamide (Figure 1B), and the magnitude of normal stress is greater for fibrin even though
its shear modulus is smaller. Figure 1C shows the direct comparison of these two polymers
made by overlaying a series of oscillations and plotting the normal stress vs. the shear strain.
Measurements were made using a strain-controlled rheometer (RFS-III, Rheometrics). Analog
data of shear strain, shear stress, and normal stress were collected from the rheometer using a
Vernier analog/digital converter sampling the raw data from the rheometer transducers. The
normal stress was determined from the measured rheometer thrust by dividing by the sample
contact area. Sample preparation: Polyacrylamide (acrylamide (7.5%) and bis (0.02%))
polymerized with ammonium persulfate and TEMED by standard methods. Salmon fibrinogen "*

(10 mg ml™") was prepared according to °.

Figure 2 Negative normal stress is a common feature of semiflexible biopolymer gels. Shear
(red) and normal stresses (blue) are shown as the strain is gradually increased in gels made from
actin crosslinked by biotin/avidin (A), collagen (B), fibrin (C), neurofilaments (D), Matrigel, a
complex extracellular matrix containing mainly collagen and laminin (E) and polyacrylamide
(F). Shear stress and normal stress values were continuously measured at a shear rate of 2.5% s’
'. " Sample preparation: Bovine neurofilaments (2 mg ml"') were prepared as described " and
polymerized with 5 mM MgCl,; matrigel (BD Biosciences, Bedford, MA) in EMEM was

polymerized at room temperature; type I Rat tail collagen (BD Biosciences, Bedford, MA) was

diluted to 1 mg ml™" at 4°C in 1M NaOH, following by addition of 1:10 volume of 10X PBS to



neutralize pH and heating to 37°C to trigger gelation; actin (4 mg/ml) , fibrin (8.75 mg ml"), and

polyacrylamide (3%) gels were prepared as previously described °.

Figure 3. Schematic diagram of the deformations leading to negative normal stress. The
quantitative force-extension relation derived in refs > is shown in 3A. Here, the force is
measured in units of kn*/L? , where « is the bending stiffness and L is the end-to-end length of a
filament strand, e.g., between crosslinks of the network. The extension is measured relative to
the full extension. As shown in 3B, in simple shear of an isotropic network of semiflexible
polymers, some filaments are elongated (red filament), while an equal number are compressed
(yellow filament). Due to the non-linear force-extension relation for semiflexible filaments,
stretched filaments exert more force than the compressed ones, which leads to a negative net
tension in the direction orthogonal to the shear direction. In this case, the tension is along the

vertical axis.

Figure 4 Concentration dependence of normal stress in fibrin gels and comparison with
theoretical predictions. Figure 4A shows the relationship between fibrin concentration and the
magnitudes of maximal shear stress and normal stress reached just before the sample fails.
Figures 4B and 4C compare the relation of normal stress to shear stress for fibrin (10 mg ml™
circles 4B) Matrigel (triangles 4B) and polyacrylamide (7.5%, 4C) gels developed during
oscillatory deformation of 75% maximal strain amplitude. Error bars depict standard deviations

from averages of 5-10 oscillations. Figure 4D shows the predicted relation between shear and



normal stresses for a network formed from semiflexible polymers as depicted in Figure 3, based

on the model of ref °.
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Supplemental Material
81 — Theory

Following Ref. °, we model a single semiflexible polymer segment of length L with an

energy given by

E= (%K‘Vzu‘z +%17|Vu|2 )dx

o%h

where K = k,T/ , is the bending rigidity, ¢, is the persistence length, and 7 is the tension in the
filament. Here, u(x) represents the transverse displacement of the filament, e.g., relative to the

line between the endpoints. In fact, the filament can deflect in two independent directions
relative to the end-to-end line. We assume that these transverse deflections are the only degrees

of freedom. In the limit that L is much less than 7, the rod is nearly straight, and we will not
distinguish between the contour length of the filament segment L. and the end-to-end distance L,

at least for purposes of the integral above. We can, however, calculate the (small) difference

Al =L, - L using the integral

L
A/l =f%|Vu|2dx
0



The chain conformation can be decomposed into Fourier modes:

u(x) = Euq sin(qx),

q

where we include wavevectors ¢ = nsr/ L, accounting for fixed ends of the chain segment. For
: : 2 :

the harmonic energy above, the mean-square amplitudes <‘u q‘ > can be calculated using the

equipartition theorem of statistical mechanics, the result of which is

1
Kq' +T

Al = kBTE

q

where we have accounted for the two independent directions for filament deflections relative to
the line between the ends.

This is actually a calculation for the thermal average end-to-end distance as a function of
tension <AL(17 )> , about which there will be thermal fluctuations. This result can be calculated
analytically. It is convenient to express this relative to the end-to-end distance at zero tension.

This extension 8¢ (1:)= <L(1: )> - (L(O )> can be calculated analytically, and can be numerically
inverted to yield the force/tension 17(66) as a function of extension 6/ . This is shown in Fig. 3A.

From this force-extension relation, the shear stress can be obtained for a given strain y

assuming that the strain field is uniform (affine) > > '°. If the shear is in the x-direction, for a
g

filament with an orientation given by the usual polar and azimuthal angles 6 and ¢, the

contribution to the shear stress for such a filament under tension is sin (0 Jcos(¢ ) . In a shear



plane, however, there is a number density of these filaments given by cos(@ )p , where p is the
density of chains measured in length per unit volume. The tension also depends on the
orientation of the chain segment, since the extension of the chain is given by

ol =yL cos(q) )sin(@ )cos(@). Thus, the shear stress is given by the integral (over all angles

O<O<mand O<¢p=<2m)

o_= fsin(@ )COS(H )cos(q) ):[yL sin(@ )cos(@ )cos(¢ )]sin(@ )de(p .

The calculation for the thrust as measured by the rheometer is similar, except that it is the z-

component of tension cos(@)‘ , resulting in the integral

o_ = f cos(H )cos(@ ):[)/L sin(@ )cos(@ )cos(¢ )]sin(@ )a’@d(p .

This is sufficient to calculate the thrust only in the quasi-static (zero frequency) limit, since there
will also be a non-zero component of the tension in the x-direction, i.e., in the direction of shear.
Ordinarily this also contributes to the measured thrust. This gives, for instance, hoop stresses in a
cone-and plate rheometer. These hoop stresses are balanced by a radial pressure gradient in
incompressible samples, resulting in a positive contribution to the thrust. The relative openness
of biopolymer gels, however, means that these hoop stresses can relax more quickly than for

denser flexible gels. Our calculations here are for the quasistatic or zero frequency limit.



