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When subject to stress or external loads, most materials resist deformation. Any stable material, 

for instance, resists compression--even liquids. Solids also resist simple shear deformations that 

conserve volume. Under simple shear, however, most materials also have a tendency to expand 

in the direction perpendicular to the applied shear stress, a response that is known as positive 



normal stress 1.  For example, wet sand tends to dilate when sheared, and therefore dries around 

our feet when we walk on the beach.  In the case of simple solids, Poynting showed nearly one 

hundred years ago that elastic rods or wires tend to elongate when subject to torsion 2. Here, we 

show that networks of semiflexible biopolymers such as those that make up both the 

cytoskeleton of cells and the extracellular matrix exhibit the opposite tendency: when sheared 

between two plates, they tend to pull the plates together. We show that these negative normal 

stresses can be as large as the shear stress and that this property is directly related to the non-

linear strain-stiffening behavior of biopolymer gels 3. 

 

When viscoelastic materials are deformed by a sinusoidal shear strain, their stiffness is quantified 

by the elastic storage and loss shear moduli calculated from the amplitude and phase shift of the 

resulting sinusoidal shear stress.   In some solids like soft hydrogels at moderate to large 

deformations, an additional stress can be measured in the direction orthogonal to the shearing 

force.  Gels formed by flexible polymers with a linear stress-strain relationship generate a small 

upward stress, but gels formed by semiflexible polymers that become stiffer the more they are 

deformed, generate normal forces that are both larger in magnitude and of the opposite sign.    

Figure 1A shows that during an oscillatory shear deformation of a semiflexible fibrin gel a large 

negative normal stress is measured with a period exactly half of the strain period.   The 

frequency doubling of the normal stress compared to strain frequency occurs because the normal 

stress depends only on the magnitude of the strain and not its direction.   In contrast, a gel of the 

flexible polymer polyacrylamide under shear deformation (Figure 1B) produces a positive 

normal stress that is smaller in magnitude, even though  the shear modulus of this 

polyacrylamide gel is greater than that of the fibrin gel in Fib 1A.    The difference in direction 



and magnitude is evident in Figure 1C, which shows the momentary normal stress as a function 

of shear strain during the course of an oscillatory deformation.  Since both fibrin and 

polyacrylamide gels have very little mechanical loss at the frequency of measurement (G'>>G"), 

each oscillation can be viewed as two stress-strain curves in opposite strain directions.    

 

The negative normal stress is not unique to fibrin, but is seen for all measured gels formed from 

strain-stiffening semiflexible biopolymers. This is not, however, seen for any flexible polymer 

hydrogel tested.   Figure 2 shows that F-actin crosslinked by biotin-avidin (2A)  collagen (2B) 

fibrin (2C) neurofilaments (2D) and Matrigel, a cell-derived matrix containing primarily collagen 

and the flexible macromolecule laminin (2E) all show a negative normal stress, whose magnitude 

increases with strain.  This increase in magnitude occurs only in the range over which the 

systems stiffen under shear.   When the maximal strain is reached for each system and the shear 

modulus begins to decrease, due to filament rupture or elongational compliance of the polymers 

or to network rearrangements, the normal stress returns to zero or slightly positive values (data 

not shown).  In contrast, polyacrylamide gels (2F) exhibit a positive normal stress over the entire 

range of deformations and do not show any evidence of strain-stiffening, since the stress is 

proportional to strain over a wider range of strains. The stiffest filaments like actin and collagen 

exhibit negative normal stress only over small strains before the sample fails, but softer polymers 

like neurofilaments and Matrigel exhibit negative normal stress at much larger strains where the 

normal stress magnitude may become greater than the shear stress.  

 

The consistently large negative normal stresses that we observe can be understood in terms of a 

simple model that has been successfully used previously to quantitatively model strain-stiffening 

in the same biopolymer systems studied here. The basis of this model is the force extension 



curve of a single semiflexible filament, which has been shown to be highly nonlinear 3-5. 

Specifically, under tension, such a filament resists extension in a way that increases much more 

rapidly than, for comparison, a simple Hookeian spring. This non-linear relationship is shown in 

Fig. 3A.  For a network of randomly oriented filaments, an equal number of filaments can be 

expected to be (equally) stretched (e.g., the red filament in Fig. 3B) and compressed (the yellow 

filament in 3B) under shear. But, since those stretched filaments exert a greater tensile force than 

the compressive force of those under compression, we expect a net tension that results in a 

negative force normal to the plane of shear. In contrast, for linear, Hookean springs or filaments, 

the positive and negative contributions to the normal stress precisely cancel for small strains. 

 

Furthermore, the fact that the normal and shear stresses are observed to be comparable when 

samples strain-stiffen is also a natural consequence of the non-linear force-extension of 

semiflexible filaments. For highly strained networks the stress is dominated by the most highly 

stretched filaments that are oriented approximately 45 degrees to the direction of shear (as 

illustrated by the red filament in Fig. 3B). Thus, by virtue of simple geometry, these filaments 

contribute equally to both normal and shear stresses. For smaller strains, however, we expect 

that, as for other materials, the shear stress is linear in the strain, while the normal stress is 

quadratic, as illustrated in Fig. 2F for polyacrylamide. For the biopolymer systems, however, not 

only is the normal stress negative, but the expected quadratic regime is too small to be apparent 

in Figs. 2A-E.  

 

The precise details of the force-extension curve are worked out in the supplementary materials 3, 

5. In Fig. 3A we show the result for the dimensionless force as a function of the relative 



extension. Here, we see both a linear regime (much like a simple spring, in which force is 

proportional to the degree of compression/extension), as well as the strongly increasing tension 

for extensions exceeding some threshold. Under compression, the effective spring constant 

actually decreases. This force extension curve can be used to calculate the macroscopic shear 3, 5-7 

and normal stresses [Supplemental Material] of a network of filaments subject to a given shear 

strain. This can be done assuming that the network deforms affinely, i.e., that the strain is 

everywhere uniform.  

 

The concentration-dependence and relation of normal stress to shear stress allow more 

quantitative comparisons of the experimental results with predictions of the molecular theory for 

elasticity of semiflexible polymer gels.  Figure 4A shows that the maximal magnitudes of shear 

stress and normal stress are both proportional to the concentration of polymers, or equivalently to 

the inverse square of the polymer mesh size 8.    This is expected for a microscopic model in 

which the maximal stress is determined by network failure corresponding to a characteristic 

maximal tension in each filament, independent of concentration 7. The relation of normal stress 

to shear stress is shown in Figure 4B for fibrin and Matrigel.   At large stresses, there is a linear 

relation between normal and shear stress, with a rounding off in the limit of small stresses.    The 

latter is evidence of the expected (small) quadratic relationship between normal stress and both 

strain and shear stress in the linear regime.  In contrast, the same plot for polyacrylamide shows a 

positive normal stress relationship in which a quadratic dependence is evident over a large strain 

range (Figure 4C).   For comparison, the theoretical results for a network of semiflexible 

polymers are shown in Figure 4D, in which the normal stress is plotted as a function of the shear 

stress. Here, the expected linear relationship between shear and normal stresses is shown, with 



more or less of the expected quadratic dependence at small stresses, depending on the proximity 

of the strain-stiffening threshold.  

 

Negative normal stress has been shown to occur in some complex fluids at high flow rates 9, 10. 

But, to our knowledge this has not been reported for small quasistatic deformations of elastic of 

viscoelastic solids. A wide range of elastic solids, from metals to rubbers exhibit the Poynting 

effect 2, for instance, in which torsion of a wire or elastic rod results in an axial elongation. 

Although the elastic equations permit stable solutions with negative normal stress 11, Mooney-

Rivlin theory of rubber elasticity predicts positive normal stresses 12, as seen in classic 

experiments by Rivlin and Saunders 13. Here, we demonstrate a class of elastic materials that 

exhibit the inverse of the usual Poynting effect, together with a microscopic model that accounts 

for this result.   The relationship between strain-stiffening and negative normal stress reported 

here is a natural consequence of the mechanical properties of thermally undulating semiflexible 

polymers crosslinked in isotropic networks, but the two features are not inextricably linked.  

Other geometries and force-extension relations of elastic elements might produce one effect 

without necessarily the other.   

 

The negative normal stress of semiflexible polymer gels might be exploited in biological and 

technological contexts.  In some settings such as the movement of micron-sized mitochondria 

through the crowded cytoskeleton of a narrow axon, shear rates are similar to those used for the 

studies in Figure 3, and a negative normal stress coincident with the shear deformation may 

facilitate organelle motion without distending the axon diameter.   Another possible example is 

shear flow in a blood vessel above a fibrin gel at a local wound site that may help compress the 



gel to the vessel wall rather than dislodging it into the flowing stream. In any case, these stresses 

that we have shown to be generally as large as the shear stresses can be expected to significantly 

affect the overall force balance in the cytoskeleton.  This work also suggests a design principle 

for the reduction of normal stresses, which can pose severe limitations in materials processing. 
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Figure legends 

Figure 1 Relationship of normal stress to shear strain for semiflexible and flexible polymer 

hydrogels.  Figure 1A shows the development of a negative normal stress (blue) during 



oscillatory shear strain (red) of a gel formed by the semiflexible polymer fibrin.   The sign of the 

normal force in fibrin is opposite to that measured in a gel of the flexible polymer 

polyacrylamide (Figure 1B), and the magnitude of normal stress is greater for fibrin even though 

its shear modulus is smaller.    Figure 1C shows the direct comparison of these two polymers 

made by overlaying a series of oscillations and plotting the normal stress vs. the shear strain.  

Measurements were made using a strain-controlled rheometer (RFS-III, Rheometrics).  Analog 

data of shear strain, shear stress, and normal stress were collected from the rheometer using a 

Vernier analog/digital converter sampling the raw data from the rheometer transducers.  The 

normal stress was determined from the measured rheometer thrust by dividing by the sample 

contact area.  Sample preparation: Polyacrylamide (acrylamide (7.5%) and bis (0.02%)) 

polymerized with ammonium persulfate and TEMED by standard methods. Salmon fibrinogen 14 

(10 mg ml-1) was prepared according to 3.   

 

Figure 2  Negative normal stress is a common feature of semiflexible biopolymer gels. Shear 

(red) and normal stresses (blue) are shown as the strain is gradually increased in gels made from 

actin crosslinked by biotin/avidin (A), collagen (B), fibrin (C), neurofilaments (D), Matrigel,  a 

complex extracellular matrix containing mainly collagen and laminin (E) and polyacrylamide 

(F).  Shear stress and normal stress values were continuously measured at a shear rate of 2.5% s-

1.      Sample preparation: Bovine neurofilaments (2 mg ml-1) were prepared as described 15 and 

polymerized with 5 mM MgCl2; matrigel (BD Biosciences, Bedford, MA) in EMEM was 

polymerized at room temperature; type I Rat tail collagen (BD Biosciences, Bedford, MA) was 

diluted to 1 mg ml-1 at 40C in 1M NaOH, following by addition of 1:10 volume of 10X PBS  to 



neutralize pH and heating to 37°C to trigger gelation; actin (4 mg/ml) , fibrin (8.75 mg ml-1), and 

polyacrylamide (3%) gels were  prepared as previously described 3. 

 

Figure 3.  Schematic diagram of the deformations leading to negative normal stress.   The 

quantitative force-extension relation derived in refs 3, 5 is shown in 3A. Here, the force is 

measured in units of κπ2/L2 , where κ is the bending stiffness and L is the end-to-end length of a 

filament strand, e.g., between crosslinks of the network. The extension is measured relative to 

the full extension. As shown in 3B, in simple shear of an isotropic network of semiflexible 

polymers, some filaments are elongated (red filament), while an equal number are compressed 

(yellow filament).   Due to the non-linear force-extension relation for semiflexible filaments, 

stretched filaments exert more force than the compressed ones, which leads to a negative net 

tension in the direction orthogonal to the shear direction. In this case, the tension is along the 

vertical axis.      

 

 

Figure 4 Concentration dependence of normal stress in fibrin gels and comparison with 

theoretical predictions.   Figure 4A shows the relationship between fibrin concentration and the 

magnitudes of maximal shear stress and normal stress reached just before the sample fails.  

Figures 4B and 4C compare the relation of normal stress to shear stress for fibrin (10 mg ml-1 

circles 4B) Matrigel (triangles 4B) and polyacrylamide (7.5%, 4C) gels developed during 

oscillatory deformation of 75% maximal strain amplitude.  Error bars depict standard deviations 

from averages of 5-10 oscillations.   Figure 4D shows the predicted relation between shear and 



normal stresses for a network formed from semiflexible polymers as depicted in Figure 3, based 

on the model of ref 3. 
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Supplemental Material 

 

S1 – Theory 

 

Following Ref. 5, we model a single semiflexible polymer segment of length L with an 

energy given by 
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where 
PB

Tk l=!  is the bending rigidity, 
P

l  is the persistence length, and !  is the tension in the 

filament. Here, )(xu  represents the transverse displacement of the filament, e.g., relative to the 

line between the endpoints. In fact, the filament can deflect in two independent directions 

relative to the end-to-end line. We assume that these transverse deflections are the only degrees 

of freedom. In the limit that L is much less than 
P

l , the rod is nearly straight, and we will not 

distinguish between the contour length of the filament segment 
c
L  and the end-to-end distance L, 

at least for purposes of the integral above. We can, however, calculate the (small) difference 

LL
c
!="l  using the integral 
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The chain conformation can be decomposed into Fourier modes:  
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where we include wavevectors Lnq /!= , accounting for fixed ends of the chain segment. For 

the harmonic energy above, the mean-square amplitudes 
2

q
u  can be calculated using the 

equipartition theorem of statistical mechanics, the result of which is 5 
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where we have accounted for the two independent directions for filament deflections relative to 

the line between the ends.  

This is actually a calculation for the thermal average end-to-end distance as a function of 

tension ( )!L" , about which there will be thermal fluctuations. This result can be calculated 

analytically. It is convenient to express this relative to the end-to-end distance at zero tension. 

This extension ( ) ( ) ( )0LL != ""#l  can be calculated analytically, and can be numerically 

inverted to yield the force/tension ( )l!"  as a function of extension l! . This is shown in Fig. 3A.  

From this force-extension relation, the shear stress can be obtained for a given strain !  

assuming that the strain field is uniform (affine) 3, 5-7, 16. If the shear is in the x-direction, for a 

filament with an orientation given by the usual polar and azimuthal angles !  and ! , the 

contribution to the shear stress for such a filament under tension is ( ) ( )!"# cossin . In a shear 



plane, however, there is a number density of these filaments given by ( )!"cos , where !  is the 

density of chains measured in length per unit volume. The tension also depends on the 

orientation of the chain segment, since the extension of the chain is given by 

( ) ( ) ( )!!"#$ cossincosL=l . Thus, the shear stress is given by the integral (over all angles 

!" ##0  and !" 20 ## ) 

 

( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) !""!""#$!""% ddL
xz

sincoscossincoscossin&= . 

 

The calculation for the thrust as measured by the rheometer is similar, except that it is the z-

component of tension ( )!"cos , resulting in the integral  

 

( ) ( ) ( ) ( ) ( )[ ] ( ) !""!""#$""% ddL
zz

sincoscossincoscos&= . 

 

This is sufficient to calculate the thrust only in the quasi-static (zero frequency) limit, since there 

will also be a non-zero component of the tension in the x-direction, i.e., in the direction of shear. 

Ordinarily this also contributes to the measured thrust. This gives, for instance, hoop stresses in a 

cone-and plate rheometer. These hoop stresses are balanced by a radial pressure gradient in 

incompressible samples, resulting in a positive contribution to the thrust. The relative openness 

of biopolymer gels, however, means that these hoop stresses can relax more quickly than for 

denser flexible gels. Our calculations here are for the quasistatic or zero frequency limit.  

 

 


