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Abstract – Motivated by recent experiments showing the compressive buckling of microtubules
in cells, we study theoretically the mechanical response of and force propagation along elastic
filaments embedded in a non-linear elastic medium. We find that embedded microtubules buckle
when their compressive load exceeds a critical value fc, and that the resulting deformation is
restricted to a penetration depth that depends on both the non-linear material properties of the
surrounding cytoskeleton, as well as the direct coupling of the microtubule to the cytoskeleton.
The deformation amplitude depends on the applied load f > fc as (f − fc)

1/2. This work shows
how the range of compressive force transmission by microtubules can be tens of microns and is
governed by the mechanical coupling to the surrounding cytoskeleton.

Copyright c© EPLA, 2008

The mechanical response of most eukaryotic cells
depends on their cytoskeleton, a composite network of
filamentous proteins [1]. Microtubules (MTs) are the
stiffest of these cytoskeletal filaments, and they play an
important role in organization of, and transport within
the cell. Their mechanical rigidity allows them to support
significant stresses in the cytoplasm. These stresses can
be highly inhomogeneous, with compressive/tensile forces
directed along stiff MTs, permitting directed force trans-
mission and mechanical signaling over several microns
within the cell. As with macroscopic elastic rods, however,
even the comparatively rigid MTs cannot, on their own,
withstand as large compressive loads as tensile loads.
This is because of the classical Euler buckling instability
limiting the compressive force to a maximum value, which
actually vanishes for long rods. It was recently shown,
however, that even long MTs can bear large compressive
loads, as a result of their coupling to the surrounding
elastic matrix of the cytoskeleton [2]. This composite
aspect of the cytoskeleton has important consequences
for cell mechanics and mechanotransduction [3–7] —the
generation, transmission, and sensing of forces by the cell.
Here, we develop a model for compressively loaded

elastic filaments such as MTs embedded in an elastic
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continuum. When their compressive load f exceeds a
critical force fc, an oscillatory buckling of the filament
is expected, with a wavelength depending on both the
stiffness of the elastic filament and the shear modulus
of the surrounding medium [2,8,9]. In the classical Euler
buckling problem, and even in the presence of a (linear)
elastic background, an elastic rod becomes unstable for
f > fc. We include non-linear elastic properties expected
for the cytoskeleton, and show that the system is stable
to supercritical loads, with a buckling amplitude that
increases above threshold as |f − fc|1/2. In addition,
both the buckling amplitude and the compressive load
decay away from the point of force application in a way
that depends sensitively on the longitudinal mechanical
coupling of the filament to its surroundings. This suggests
that the range of force transmission in the cell can be
effectively controlled by microtubule-associating proteins
that couple MTs to the rest of the cytoskeleton. Surpris-
ingly, the experiments in ref. [2] (see fig. 6 therein) also
found evidence that, despite the existence of a threshold
force for buckling, the deformation of the microtubule
was attenuated, suggesting a spatially varying force.
In studying the mechanical response of intracellular

MTs, we extend the classical buckling theory of rods in an
elastic medium [2,8,9] to take into account the mechanical
coupling of both longitudinal and transverse deformations
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of the MT to the surrounding nonlinear elastic cytoskele-
tal network. We use a variational theory, numerical (conju-
gate gradient) minimization, and asymptotic analysis of
the deformation of the MT. On applying a compressive
load at one end, the microtubule bends and deforms the
surrounding elastic network which resists this deforma-
tion. These competing effects determine the characteris-
tic force and length scales associated with the buckling
of the MT. The nonlinear elastic properties and longitu-
dinal coupling of the MT to its surroundings determine
the attenuation of both the force and deformation of the
MT along its arclength away from the point of loading.
While the details of the deformation profile depend on
the precise form of the nonlinearity, the force penetration
depth generically decreases with increasing strength of the
longitudinal coupling between the MT and the medium.
We consider a linear elastic theory for the MT and the

surrounding medium and include the leading nonlinearity
for the elasticity of the surrounding matrix. The MT is
subjected to a compressive load f at one end denoted
by x= 0. The resulting elastic deformation energy can
be written in terms of its transverse and longitudinal
displacements, u(x) and v(x), respectively:

E = −fv(0)+

∫ ∞

0

[κ

2
u′′(x)

2
+
α⊥
2
u(x)2

]

dx

+

∫ ∞

0

[

α‖
2
v(x)2+

β

4
u(x)4

]

dx, (1)

where v(x) =
∫∞
x
1
2u
′(y)2dy as is required for an

incompressible rod. The first term represents the
axial compression energy released by bending. The second
term corresponds to the bending energy of the rod; κ is
the bending rigidity. Classical Euler buckling, in which
a long-wavelength bend of a rod of length L occurs at a
threshold force of π2κ/L2, results from just the first two
terms [8,10]. The elastic constants α⊥, α‖ correspond to
the linear elastic transverse and longitudinal mechanical
couplings between the MT and the surrounding actin
network. The transverse coupling is directly related to
the (linear) shear modulus G of the surrounding medium:
α⊥ = 4πG/ln(λ/a), where λ is the characteristic wave-
length of lateral displacement and a is a small wavelength
cut-off. Adding just this third term leads to buckling on
a short wavelength λ= 2π&0, where &0 = (κ/α⊥)1/4 [2,8],
and at a force threshold fc = 8π2κ/λ2 = 2(κα⊥)1/2 that
is significantly larger than for Euler buckling. The
longitudinal coupling, in contrast, is not directly related
to the elasticity of the surrounding medium, but also
depends on the strength/degree of attachment between
the MT and the surrounding network. Thus, it falls in
the range 0! α‖ ! 2πG/ln(λ/a). Here, the lower limit
corresponds to an uncoupled MT that slides freely along
its axis, while the upper limit corresponds to the strong
coupling of the MT to the medium along its length.
Finally, the term proportional to β > 0 represents the
leading non-linear transverse coupling to the medium.
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Fig. 1: The deformation of a stiff elastic filament embedded
in a nonlinearly elastic medium decays as an oscillatory
exponential (from numerics). The material parameters are
κ= β = α⊥ = 1.0, and α‖ = 0.1. The deformation u has been

nondimensionalized by scaling it by $0 = (κ/α⊥)
1/4.

In fact, both terms in the second integrand of eq. (1)
are non-linear in the transverse displacement u since the
first of these is effectively fourth-order in u, due to the
quadratic relationship between u and v.
We examine the effect of the nonlinear terms in eq. (1)

by numerically determining the deformation of a MT
in the surrounding matrix that is subjected to symmet-
ric compressive loads applied at both ends: x= 0 and
x=L. In the limit of large L, the solution near x= 0 is
equivalent to that of a MT loaded at just one end, and the
symmetrized loading is simply for computational conve-
nience. Using a conjugate gradient technique [11], we mini-
mize the energy of the loaded system given by eq. (1) with
an additional term +fv(L) representing the load at x=L
and subject to hinged boundary conditions. We find that
the buckling threshold fc and wavelength λ= 2π&0 remain
approximately the same as in the linear system, but that
the amplitude of the undulatory deformation u(x) just
above threshold (i.e., for small f − fc > 0) is highly atten-
uated (see fig. 1). The buckling amplitude scales with the
applied force f as (f − fc)1/2 reminiscent of a supercritical
pitchfork bifurcation [12]; it also scales with the nonlinear
elastic constant β as a power law with exponent −1/2 as
shown in the inset of fig. 2. At a given force, the oscillatory
deformation field decays with an apparently exponential
envelope as one moves along the axis of the MT away
from the loading point, with a penetration depth or decay
length that scales as (β/α‖)

1/2 (fig. 3).
We propose a variational ansatz for the form of the

transverse deformation field based on the numerical solu-
tions shown in fig. 1:

u(x) = u0 exp (−x/&) sin (qx). (2)

Substituting this into the our energy expression, eq. (1),
we determine u0, & and q so as to minimize that energy. For
applied loads less than a threshold given approximately
by fc = 2(κα⊥)1/2, the minimum requires a straight MT:
u0 = q= 0. Above this threshold, the minimum is at a
finite value of u0 and q" 1/&0. Once again, the buckling
amplitude grows with applied load as u0 ∼ (f − fc)1/2 and
decreases with an increasing nonlinear elastic constant β
as β−1/2 as found numerically (see fig. 2). At a given load
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Fig. 2: The amplitude u0 (scaled by $0) as function of
compressive load f for κ= α⊥ = 1.0,α‖ = 0.1, at β = 1 (circles)
and β = 10.0 (squares). Inset shows the amplitude as a function
of β, with f/fc = 1.25. In both the main figure and the inset,
filled symbols correspond to the numerics, open symbols to
the variational calculation. The dashed line represents the
prediction of the asymptotic analysis.
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Fig. 3: Decay length $ (scaled by $0) as a function of the
longitudinal coupling constant α‖ for κ= β = α⊥ = 1.0, f/fc =
1.25. Inset shows the variation of the decay length with the
nonlinear elastic constant β for κ= α⊥ = 1.0 and α‖ = 0.01 and
f/fc = 1.25. Filled symbols in both the main figure and inset
correspond to the numerics, open symbols to the variational
calculation and the dashed lines to the asymptotic analysis.

above threshold, f > fc, the penetration depth of the oscil-
latory deformation field scales as (β/α‖)

1/2 (fig. 3). The
results of the variational calculation, therefore, corrobo-
rate all of the observations from the numerics.
We nondimensionlize the energy in eq. (1) by scaling x

and all displacements u, v by &0 —e.g., ũ(x̃) = u(x/&0)/&0.
We also scale the energy by f0&0, where f0 = (κα⊥)1/2.
The resulting dimensionless energy Ẽ = E

f0!0
can be
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Fig. 4: Collapsed data from figs. 2 and 3. The main figure
shows the scaled amplitude as a function of the dimensionless
force φ. The inset shows the dimensionless decay length Λ
as a function of ε/η the relative strength of the nonlinear
terms for longitudinal and transverse coupling. Filled symbols
correspond to the numerics, open symbols to the variational
calculation and the dashed lines to the asymptotic analysis.

written as

Ẽ = −φṽ(0)+

∫ ∞

0

[

1

2
ũ′′(x̃)

2
+
1

2
ũ(x̃)2

]

dx̃

+

∫ ∞

0

[ ε

2
ṽ(x̃)2+

η

4
ũ(x̃)4

]

dx̃, (3)

where φ= f/f0 is the dimensionless applied force and
x̃= x/&0. We have also introduced dimensionless material
parameters ε= α‖/α⊥ and η= β&

2
0/α⊥. Based on the

estimates above for α‖,⊥, we expect that ε< 1/2. The local
strain is approximately given by u′ " ũ. For cytoskeletal
networks, significant stiffening is expected for strains less
than 1 [13,14]. Thus, we expect η" 1. Our calculations are
all for η/ε# 10, 0.5< η< 100, and 0.001< ε< 0.1.
In terms of the dimensionless variables, the ansatz in

eq. (2) becomes ũ(x̃) =ψ exp (−x̃/Λ) sin (q̃x̃), with Λ=
&/&0 and q̃= &0q. Using this to minimize eq. (3), we find the
dependence of Λ and ψ on the applied load near threshold,
(φ−φc)/φc$ 1, in the case of weak longitudinal coupling
(ε$ 1), as follows. In this limit, Λ% 1 so we expand the
energy eq. (3) in 1/Λ and keep the leading terms, which
are of order Λ and εΛ3. Dropping corrections that are
suppressed by a factor of either ε or 1/Λ2, we determine
the minimum of the truncated, asymptotic expansion of
the energy with respect to ψ, Λ, and q̃. We find q̃= q&0 = 1,
and

Λ=

√

12η

ε
, ψ=±

√

4

3η
(φ−φc). (4)

To lowest order in 1/Λ and ε, the critical force fc is
unchanged from that of the linear theory. Specifically, φc =
2+4Λ−2+ · · ·. In fig. 4 we show results of the numerics
(filled symbols), and variational analysis (open symbols)
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Fig. 5: The transverse displacement u(x) (scaled by $0) in
the buckled state of the MT in the presence of higher-order
nonlinearity (from numerics). The solid line (black) envelope
corresponds to an asymptotic exponential (1.4 exp(−x/28.8))
fit, with the same decay length as for the simple u4 nonlinearity.
The material parameters are ε= 0.01, η= 1, φ= 3.5. Inset: The
circles (blue) show u(x) at odd multiples of λ/4 (corresponding
to the peaks in u(x)) as a function of axial length x on a
semilog scale for the higher order nonlinearity, while the solid
line (black) shows the exponential decay with the simple u4

nonlinearity.

as well as from the asymptotic analysis (lines) demonstrat-
ing the excellent agreement of these approaches.
The ũ4 term in eq. (3) represents only the initial nonlin-

ear correction to the elasticity of the matrix. We expect
a stronger nonlinear response for crosslinked cytoskeletal
networks. Prior theory and experiment suggest an inverse
quadratic divergence of the stress versus strain [13–15]
for F-actin networks. Motivated by this, we replace the
transverse elastic terms in eq. (4) by a term of the form
(ũ2s/4)[|(ũ/ũs)+ 1|

−1+ |(ũ/ũs)− 1|−1− 2]. This is chosen
to reproduce the ũ2 term in eq. (3) to leading order. For
small ũ, in fact, this should be equivalent to eq. (3) with
η= 2/ũ2s. With this more physical nonlinearity, we find a
clear departure from the exponential envelope for buck-
ling oscillations observed earlier. In fig. 5 we show the
amplitude of the buckled MT for ũs = 1.4; there appears
to be a transition from a regime of slow amplitude decay
near the point of loading to an exponential decay with
the same rate as for the model in eq. (3) with η= 1. The
inset compares the actual decay envelopes for the simple
and higher-order nonlinearities. The latter decreases the
amplitude of buckling near the point of loading, however,
the envelope asymptotes to exponential decay with a decay
length equal to that for the simple nonlinearity of eq. (3).
Finally, we note that we have assumed the MT to be

incompressible. Finite compressibility introduces another
decay length; the compressive strain on an elastic rod with
compression modulus µ and longitudinal coupling to the

network of α‖ decays over a length scale
√

µ/α‖ in the
unbuckled limit. Treating a MT as an elastic rod of radius
a" 10 nm and Young’s modulus 1GPa [16], we estimate
this decay length to be ∼ 10µm for the largest α‖ " 1 kPa.
At smaller ε, where our model is applicable to intracellular
MTs, the actual decay length will be larger than this, likely
spanning the whole cell.
Motivated by observations of MT buckling in the

cytoskeleton, we have explored force propagation and
compressive buckling of stiff rods embedded in model
nonlinear elastic matrices. Consistent with prior exper-
iments [2], we find oscillatory buckling with a decaying
amplitude and finite spatial extent &. We have focussed
on the limit of weak longitudinal coupling α‖, where the
penetration depth & is large compared with the buckling
wavelength λ. We estimate these lengths using the exper-
imental values from ref. [2]. From κ" 2× 10−23Nm2 and
G" 1 kPa, we estimate that λ" 2µm and &0 " 0.3µm.
The local strain in the network induced by a dimension-
less displacement ũ is of order ũ. Thus, for a typical
cytoskeletal network that becomes nonlinear for strains
of order 10–20%, we estimate that η is no less than unity,
and may be as large as 10. Thus, Λ= &/&0 " 5 since
ε< 1/2.
Even for an isolated elastic rod, there are intrinsic

nonlinearities that arise from the geometry of a buckled
shape [17,18]. These nonlinearities are best described in
terms of the angle θ(s) that the rod makes with respect
to the x-axis as a function of the arc length s along
the rod, u′ = tan θ. In terms of θ, for instance, v(s) =
∫∞
s (1− cos θ) ds, while the curvature is dθ/ds. We have
evaluated the corresponding energy for our problem of a
rod in an embedded medium in the asymptotic limit of
ε→ 0, or Λ→∞. Near the critical force at which buckling
sets in, where the deflection u is small, a consistent
expansion in u is still possible, and the leading quadratic
order energy terms that arise from the first three terms
in eq. (3) are unaffected. The nonlinearities, however,
generate additional terms of order u4 that also depend
on q, in general. Near the critical point, however, where
such an expansion is valid, the equilibrium q̃= 1 up
to order u2, and the leading-order nonlinear effects can
be incorporated in our phenomenological parameter η.
Specifically, we find that the combined effects of the
nonlinearities arising from the longitudinal displacement
ṽ, the curvature dθ/ds, and performing the integrals with
respect to the measure ds are equivalent to a simple
replacement η→ η− 1/3 near the critical point. Thus, for
realistic systems, where 1$ η$ 10, we expect the extrinsic
nonlinearities of the surrounding medium to dominate the
geometric nonlinearities of the buckled shape. Therefore,
these geometric nonlinearities will change our estimates
of the amplitude ψ and decay length Λ by only a small
amount for realistic values of η" 1. Furthermore, it is
interesting to note that the existence of a decay length
for the buckling amplitude still depends crucially on the
existence of finite longitudinal coupling α‖.
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We find that extrinsic nonlinearities of the embed-
ding medium can result in a continuous force
–extension/compression relation, much as intrinsic
geometric nonlinearities can do for isolated elastic
rods [17,18]. But, within this model only longitudinal
coupling of an elastic rod to a surrounding medium
can account for a decaying buckling amplitude, such as
observed in the experiments of ref. [2]. This work also
shows how force transmission by MTs can be controlled
by the direct coupling of the MTs to the rest of the
cytoskeleton, which may be regulated by microtubule-
associating proteins. This can allow an embedded MT
to bear and transmit supercritical forces over a long
range within the cell. Although we have only considered
here the effects of the confinement of MTs by and
coupling of MTs to a bulk elastic medium, it is also
possible that MTs near the plasma membrane may couple
to the cell substrate. Such coupling can also increase
the load-bearing capacity of MTs. Force transmission
such as we consider here is different qualitatively from
stress propagation in a homogenous and isotropic elastic
continuum in that the force is focussed primarily along
a single load-bearing element. We find that this force
decays with a decay lenth & to an asymptotic value = fc.
For typical parameter values of η= 1 and ε= 0.01, the
lengthscale &∼ 35× &0 " 10µm. Finite compressibility or
elastic inhomogeneitites in the surrounding medium can
also lead to finite-range force transmission, although here
we consider the case of a single stiff filament in an elastic
continuum. In this case we show that mechanical loads
applied at a cell’s periphery can propagate along MTs
throughout the cell body without significant diminution.
This elucidates the importance of MTs in force propa-
gation in a network of F-actin with embedded MTs and
agrees very well with recent experiments [19] that show
that presence of MTs can significantly enhance the elastic
response of such a network. While our study focusses on
the mechanical response of intracellular microtubules, our
results are applicable to composite elastic media with a
wide separation of scales in stiffness of its constituents
such as biopolymer networks with bundles and even
nanotube-polymer composites.
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