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Inertial Effects in the Response of Viscous and Viscoelastic Fluids
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We consider the effect of inertia on the high frequency response of a general linear viscoelastic material
to local deformations. We calculate the displacement response and correlation functions for points
separated by a distance r. The effects of inertia and incompressibility lead to anticorrelations in the
correlation or response functions, which become more pronounced for more elastic materials.
Furthermore, the stress propagation in viscoelastic media is no longer diffusive, as for simple liquids.
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The motion of small bodies in simple incompressible
liquids is usually characterized by low Reynolds numbers,
for which the velocity response at a distance r from a point
force varies as 1=r [1–3]. Such Stokes flow, for instance,
accurately describes the motion of micron-size objects in
water on time scales longer than a few microseconds. Over
short times, however, the inertia of the liquid prevents the
long-range stress propagation implicit for Stokes flow. Any
instantaneous disturbance of the fluid must be confined to a
small region after a short interval of time. Given that
liquids are also incompressible, this means that a point-
force disturbance must give rise to backflow on short time
scales. In fact, a ring vortex much like a smoke ring occurs.
The resulting backflow has important implications, for
both correlations of velocity or stress fluctuations in
liquids, as well as for the non-Brownian motion of colloi-
dal particles in liquids. While simulations [4] have dem-
onstrated the presence of this vortexlike flow, experiments
have focused on indirect consequences of this flow, e.g., for
the motion of colloidal particles in liquids [5]. Here, we
show how correlations in the thermal velocity fluctuations
of liquids can be used to directly resolve the spatial struc-
ture of these vortices, as in the accompanying article by
Atakhorrami et al. [6]. We also show how the effects of
such vortexlike flow become more pronounced in visco-
elastic media such as polymer solutions. In viscoelastic
media, the propagation of stress is more rapid, resulting in
a faster decay of velocity correlations than in simple
liquids.

Newtonian liquids are described by the nonlinear
Navier-Stokes equation. The nonlinearity, however, can
be neglected either over small distances or for low veloc-
ities [1,2]. The relative importance of nonlinearities is
characterized by the Reynolds number Re � UL�

� , where
U, L, �, and � are, respectively, the characteristic velocity
and length scale, the density, and the viscosity. At low
Reynolds number, however, no assumptions are made
about the flow being stationary [3]. Instead, one has the
unsteady Stokes approximation for nonstationary flows:
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~v � �r2 ~v� ~rP� ~f; (1)

where ~v is the velocity field, P is the pressure that enforces
the incompressibility of the liquid, and ~f is the force
density applied to the fluid. By taking the curl of this
equation we observe that the vorticity ~� � ~r� ~v satisfies
the diffusion equation with diffusion constant � � �=�.
Thus, since the short-time response of a liquid to a point
force involves a vortex, as described above, the propaga-
tion of stress away from the point disturbance is charac-
terized by diffusive motion of this vortex. After a time t,
this vortex expands away from the point force to a size of
order ��

�����������
�t=�

p
. In the wake of this moving vortex is the

usual Stokes flow that corresponds to a 1=r dependence of
the velocity field. For an oscillatory disturbance at fre-
quency !, this defines a penetration depth ��

�����������������
�=�!��

p
[1] (see Fig. 1). On length scales shorter than this, the
propagation of stress is effectively instantaneous. In addi-
tion to Re one can introduce a dimensionless number N �
L2�
�T � L

2=�2, where T is the typical time scale associated
with the flow. For N � 1, the fluid response can be con-
sidered instantaneous, while for N 	 1 inertia and the
corresponding propagation of stress are important [3].

The discussion above generalizes to a homogenous vis-
coelastic medium characterized by a single, isotropic time-
dependent shear modulus that relates the local stress to
strain [7]. We also assume that the medium is incompress-
ible, which is a particularly good approximation for poly-
mer solutions such as those considered here, at least at high
frequencies [8–10]. The deformation of the medium is
characterized by a local displacement field ~u�~r; t�. Force
balance leads to the viscoelastic analogue of Eq. (1):
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�~r; t� � ~rP� ~f�~r; t�; (2)
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$
�~r; t0�; (3)
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FIG. 1. The velocity response of a Newtonian fluid for parallel
and perpendicular motion. The solid lines show the in-phase
(real) velocity response, which decays on the scale of the
penetration depth. The dashed lines show the out-of-phase
velocity response (specifically, !�0). In the noninertial limit of
small r, the Oseen tensor is recovered, for which the (velocity)
response is real. The decay of the various components of the
response illustrates the finite penetration depth for the response.
The strong dip in the perpendicular response is a manifestation
of the vortexlike flow at short times.

FIG. 2. The parallel response for viscoelastic media with
G�!� � �g��i!�z, where z � 1=2, 3=4, 1. For reference, the
response function for a Newtonian liquid (z � 1) is shown in
gray. In each case, z � 3=4 is intermediate between z � 1 and
z � 1=2. Both real (a) and imaginary (b) parts are shown.
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where �
$

is the local stress tensor, �
$
� 1

2 �
~r ~u�� ~r ~u�y� is

the local deformation tensor, and the time dependence of
the viscoelastic response is encoded in the memory func-
tion, G�t� [7]. Causality requires that stress at time t
depends only on earlier states of strain, which limits the
range of integration above. Incompressibility leads to the
constraint ~r 
 ~u � 0.

Equations (2) and (3) can be simplified by a decompo-
sition of the force density and displacement into Fourier
components. Taking spatiotemporal Fourier transforms
defined as ~u� ~k;!� �

R
d3r

R
1
�1 dte

i�!t� ~k
 ~r� ~u� ~r; t�, and de-
fining the complex modulus G�!�  G0�!� � iG00�!� �R
1
0 dte

i!tG�t�, we can eliminate the pressure by imposing
incompressibility in Eqs. (2) and (3). This leads to

~u� ~k;!� �
�

1� k̂ k̂
G�!�k2 � �!2

�

 ~f� ~k;!�; (4)

where k̂ � ~k=jkj. We invert this Fourier transform to obtain
the displacement response function due to a point force
applied at the origin.

The linear response of the medium at a distance ~r is in
general characterized by a tensor, since both force and
response (displacement field) are vectors: ui�~r; !� �

�ij� ~r;!�fj�~0; !�, where �ij � �0ij � i�
00
ij is complex.

Given our assumptions of homogeneity and isotropy, the
displacement field must lie in a plane common to both ~r
and the force ~f. By rotational and translational symmetry
there are only two distinct contributions to the response
function. These are (1) a parallel response that is given by
a displacement field ~u parallel to both ~f and ~r, and (2) a
perpendicular response given by ~u parallel to ~f and per-
20830
pendicular to ~r. (These are illustrated in Figs. 2 and 3.) The
parallel response function �k, for instance, is obtained
from the inverse Fourier transform of Eq. (4), where �
represents the angle between ~r and ~k:

�k�r;!� �
Z k2dk sin�d�

�2��2
1� cos2�

Gk2 � �!2 e
ikr cos�: (5)

A similar calculation yields �?�r;!�.
The response functions for general G�!� are given by

�k�r; !� � �k�r
����
	
p
�=�4�Gr�; (6)

�?�r; !� � �?�r
����
	
p
�=�8�Gr�; (7)

where 	 � �!2=G is complex and

�k�x� � 2��1� ix�eix � 1�=x2; (8)

�?�x� � 2�1� �x2 � 1� ix�eix�=x2: (9)

The magnitude of 	 defines the inverse (viscoelastic)
penetration depth �. We have written these response func-
tions in a form in which the noninertial limits (x! 0) are
simple: �k;? ! 1. Thus, for instance, for a simple liquid,
for which G�!� � �i!�, the limit x! 0 reduces to a
displacement response consistent with the (time-
independent) Oseen tensor [2,11] and for finite x, these
response functions give the dynamic Oseen tensor [11,12].
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FIG. 3. The perpendicular response for viscoelastic media with
z � 1=2, 3=4, 1. Again, the response for a Newtonian liquid is
shown in gray, and the case of z � 3=4 is intermediate between
z � 1 and z � 1=2. Both real (a) and imaginary (b) parts are
shown.
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This is also shown in Fig. 1, where for small r=� the
parallel and perpendicular velocity response (i.e.,
20830
�i!�k;?) approach 1
4��r and 1

8��r for a unit force at the
origin. These then decay for r * �. Here, the region of
negative response in the perpendicular case corresponds to
the backflow of the vortex.

The response functions above represent the equilibrium
displacements due to forces acting in the medium. These
response functions also govern the equilibrium thermal
fluctuations and the correlated fluctuations from point to
point within the medium. The relationship between ther-
mal fluctuations and response is described by the
fluctuation-dissipation theorem. Specifically, for points
separated by a distance r along the x̂ direction,

Ck;?�r; !� �
2kBT
!

�00
k;?�r;!�; (10)

where Ck�r; !� �
R
1
�1 dte

i!thux�0; 0�ux�r; t�i and
C?�r; !� �

R
1
�1 dte

i!thuy�0; 0�uy�r; t�i.
An experimentally pertinent illustration is given by the

high frequency complex shear modulus of a polymer solu-
tion, G�!� � �i!�� �g��i!�z which has both solvent
and polymer contributions. Assuming that the polymers
dominate the shear modulus leads to the simple scaling
form G�!� ’ �g��i!�z [13]. For the Rouse model of flex-
ible polymers z � 1=2 [14], while for semiflexible poly-
mers z � 3=4 [9,15,16]. These cases are shown in Figs. 2
and 3. We see that the oscillatory or anticorrelated response
becomes more pronounced in viscoelastic materials.

Further simplification of Eq. (10) using the definitions in
Eqs. (8) and (9) leads, e.g., to
Ck�r; !� �
kBT

2�!jGjr
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where 
 � r �!2=jGj.

The displacement field exhibiting the vortex pattern is
shown in Fig. 4 for a point force at the origin pointed along
the x axis. We note the strict inversion symmetries of this
flow: vx (vy) is symmetric (antisymmetric) for either x!
�x or y! �y, as can be seen by the fact that the (linear)
response must everywhere reverse if the direction of the
force is reversed. The self-sustaining backflow represented
in Fig. 4 gives rise to long-lived correlations that, for
instance, affect the crossover from ballistic to diffusive
motion of a particle in a liquid. For a simple liquid, the
fluid velocity (auto)correlations h ~v�0; t� 
 ~v�0; 0�i decay
proportional to �jtj�3=2. This is known as the long-time
tail [4,5,17]. For a viscoelastic fluid, stress propagation is
faster than diffusive, resulting in a more rapid decay of
velocity correlations. The decay is, however, still alge-
braic. The velocity correlation function h ~v�0; 0� 
 ~v�r; t�i
is given by

kT
Z d!

2�
��i!���k�r; !� � 2�?�r;!��e�i!jtj: (12)
By taking the limit r! 0, we find that this correlation
function decays as jtj��, where � � 3�2� z�=2 for G�
!z as above.

The principal effect of inertia in the response of visco-
elastic media as well as liquids is the finite propagation
of stress. This is more precisely characterized by the
penetration depth �. More microscopically, the mani-
festation of inertia is the vortexlike flow or displace-
ment field, which appears both in the equilibrium re-
sponse at a distance, as well as in the correlations of
fluctuations about thermal equilibrium. It is because of
the latter correlations of thermal fluctuations that an im-
portant indirect consequence of the vortex has been ob-
served: the long-time tail in the crossover between ballistic
and Brownian motion of particles in simple liquids [5,17].
Nevertheless, no direct experimental observation of this
vortex and resulting backflow has been made. Recent
advances in combined two-particle tracking and manipu-
lation at high frequencies [18,19] make possible the di-
rect observation of such fundamental fluid dynamics.
Specifically, since the penetration depth is of order micro-
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FIG. 4. The displacement field displays a clear vortexlike
structure. Here, a force in the x̂ direction is applied at the origin
(as shown by the filled circle and arrow). Distances are shown in
units of the penetration depth � �

����������������������
jGj=��!2�

p
. This example

has been calculated for the Rouse model with z � 1=2.
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meters in ordinary water at now accessible frequencies
of order kilohertz, two-particle tracking, either for active
or passive/thermal motion, should be able to detect the
underlying hydrodynamic/inertial response or correlations
[6]. We emphasize, however, that these high frequency in-
ertial effects are distinct from lower frequency correlations
due to an imposed external potential (such as an optical
trap) [18,20] that are not inertial in origin. Interestingly, we
also see above how for viscoelastic media the correlations,
and specifically the oscillatory character of the response
functions, become much more pronounced with increasing
elastic component of the shear modulus. This difference
can in principle be used to characterize the high frequency
viscoelastic response of a particular material [6].
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