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Velocity Distributions in Dissipative Granular Gases
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Motivated by recent experiments reporting non-Gaussian velocity distributions in driven dilute
granular materials, we study by numerical simulation the properties of 2D inelastic gases. We find
theoretically that the form of the observed velocity distribution is governed primarily by the coefficient
of restitution n and ¢ = Ny/N¢, the ratio between the average number of heatings and the average
number of collisions in the gas. The differences in distributions we find between uniform and boundary
heating can then be understood as different limits of g, for ¢ > 1 and ¢ =< 1, respectively.
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Granular materials consisting of macroscopic particles
or grains can exhibit behavior reminiscent of conven-
tional phases of matter. Sand, for instance, can flow like
a liquid under some conditions. Dilute granular systems,
or gases, have been extensively studied both experimen-
tally and theoretically, in large part as simple model
systems exhibiting nonequilibrium and dissipative behav-
ior. These systems are intrinsically dissipative and out of
equilibrium, even though it is tempting to apply such
equilibrium notions as temperature. Since the collisions
in such a gas are inelastic, a gaslike steady state is
achieved only with a constant drive, or input of energy.
Otherwise, all motion ceases after only a finite time [1,2].
In principle, it is possible to drive the system uniformly
throughout the container, with every particle in contact
with a heat source all the time (uniform heating). This has
been done in simulations [3,4] and is assumed in analytic
theories [5]. In experiments, however, one usually drives a
granular gas by shaking or vibrating the walls of the
container. Such boundary heating means that the energy
is inserted in a spatially inhomogeneous way [6—9]. As a
consequence, the gas will develop a gradient in density
and mean kinetic energy [10]. Even for uniform heating,
however, significant deviations from equilibrium gases,
e.g., in density correlations, are observed [3].

One of the most fundamental aspects of molecular
gases is the Maxwell-Boltzmann velocity distribution
[11]. A very general and striking feature of driven dis-
sipative gases, however, is the apparently strong deviation
from this classical behavior. Such velocity distributions
have been the subject of numerous recent experimental
studies [6—9], and characteristic velocity distributions of
the form P(v) = Cexp[—B(v/o)%] have been observed,
where o = (v2)!/2 is often called the granular tempera-
ture, in analogy with equilibrium gases. Experiments of
Rouyer and Menon [7], in particular, have suggested that
a universal exponent of & = 1.5 occurs over a wide range
of experimental parameters. This observation was par-
ticularly intriguing, as van Noije and Ernst [5] predicted
an asymptotic high-velocity tail with an exponent of 1.5
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using kinetic theory. As shown in Ref. [7], however, the
experimentally observed non-Gaussian distribution is not
consistent with the asymptotic regime predicted by ki-
netic theories. Thus, it remains unclear what the analogue
(if any) of the Maxwell-Boltzmann distribution is for
dissipative gases, let alone what the origin of the non-
Gaussian behavior is.

Here we show that, rather than a universal distribution
with @ = 1.5, a family of distributions with apparent
exponents covering a wide range of values a <2 is ex-
pected, depending on both material and experimental
conditions. Furthermore, we show that the velocity dis-
tribution is governed primarily by the relative importance
of collisions to heating, i.e., the way in which energy flows
through the system of particles. Specifically, we introduce
a new parameter ¢ = Ny /N, which measures the ratio
between numbers of heating events and collisions expe-
rienced by a typical particle. These theoretical observa-
tions can explain both the observed non-Gaussian
behavior as well as the ambiguities in the experimental
and theoretical literature on dissipative gases to date. We
also show that the behavior of the velocity distributions
seems to be captured quantitatively by a simple model
that takes only 1 and g into account, with no spatial
degrees of freedom.

We study velocity distributions using an event-driven
simulation of N particles of radius r moving in two
dimensions. Particles gain energy by heating and lose
energy through inelastic collisions. When two particles
i and j collide, their final velocities depend on their initial
velocities in the following way:
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where 7 is the coefficient of restitution and £;; is the unit
vector connecting the centers of particles i and j.

When heating uniformly, we add every time step Ar a
random contribution to the velocity of all the particles
and we use periodic boundary conditions to simulate bulk
behavior. Note that this is significantly different from the
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spatially homogeneous heating used in experiments [12],
as here in uniform heating the driving is uncorrelated in
space and time. When heating through the boundary,
particles are confined in a box with radius R = 1. The
particles receive a kick upon collision with the boundary.
We assume that the collision between particles and the
boundary is elastic and we add a random contribution to
the velocity in the direction perpendicular to the bound-
ary. For more details, we refer to Ref. [13]. We allow the
system to reach steady state before taking data. For both
uniform and boundary heating, data is taken periodically
every At.

One of the first striking differences between uniform
heating and boundary heating is clustering. When heating
through the boundary, a stable liquidlike cluster sur-
rounded by a hot gaseous state will form for low coef-
ficients of restitution 7 or high area fraction ¢. This
occurs as particles are compressed in the center of the
box by particles moving in from the boundary. The in-
crease of density leads to collapse and a stable cluster is
formed. A typical example is shown in Fig. 1. These
clusters do not occur in our simulations with uniform
heating. This is because particles are heated all the
time, which prevents the collapse to a cluster.

Velocity distributions obtained for uniform and bound-
ary heating are shown in Fig. 2. When heating through
the boundary, the gas develops a gradient in area fraction
and granular temperature. In this case, we record the
velocity distribution in a ring of radius 0.4 <r = 0.6
around the center of the box, where the granular tem-
perature is approximately constant. The velocity distribu-
tions in the different rings varies only slightly. For
uniform heating, we collect data everywhere in the box.

Figure 2 shows clear qualitative differences between
uniform and boundary heating. For uniform heating the
velocity distribution is close to Gaussian for a large range
of 7. In contrast, for boundary heating the distribution is

FIG. 1. Snapshot of a clustered state for N = 350, ¢ = 0.05,
and n = 0.6. Particles are indicated by circles, while the lines
show the direction and magnitude of the velocity.
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Gaussian only in the nearly elastic case n = 0.9. As the
coefficient of restitution is lowered, a crossover develops
where the exponent changes from «; = 2 to a lower value
a,. The exponent @, becomes smaller as dissipation is
increased (for smaller n or higher ¢) and we find any
value in the range 0.7 =< a, < 2. The crossover in expo-
nent is observed in boundary heating for all values of ¢
and N. As a, decreases it becomes increasingly difficult
to describe the distribution for the highest velocities with
a single exponent a,. It may well be that this regime,
corresponding to the highest velocities in both our simu-
lations and the current experiments, is distinct from
the asymptotic high-velocity tail predicted by kinetic
theories [5].

For a certain range of parameters we also find an
exponent a, = 1.5 for the highest velocities. For their
experiments Rouyer and Menon used N particles with
n = 0.9, where 100 < N < 500 and 0.05 < ¢ < 0.25 [7].
In Fig. 3 we plotted the velocity distribution for n = 0.9,
¢ = 0.05, and several values of N. We also show the fit
with @ = 1.52 as made in Ref. [7]. This line clearly
coincides with the velocity distribution found by the
present simulation for velocities beyond the crossover.
This suggests that, instead of a universal distribution
with @ = 1.5, they might have observed a part of a more
complex velocity distribution, with more than one appar-
ent exponent.

The main difference between uniform and boundary
heating is that in the first case heating takes place homo-
geneously throughout the box, whereas in the latter case
energy is injected inhomogeneously at the boundaries.
This is not the direct cause for the difference in velocity
distributions. When heating homogeneously, one can go
from a Gaussian distribution to one with a crossover by
increasing the time between heatings [13], allowing the
average number of heatings per unit time to become

In(—In( P(VX/O'X)/P(O))) + constant

FIG. 2. Velocity distributions for N =350 and ¢ = 0.02.
Shown are both results for uniform heating with 7 = 0.8
(O), 7 = 0.1 () and results for boundary heating with n =
09 (), =06 (V), and =04 (*). (a) P(v,/o,);
(b) —In{—In[P(v,/0,)]} versus In(v,/o,). A Gaussian is
shown as a solid line.
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FIG. 3. —In{—1In[P(v,/c,)]} versus In(v,/o,) for N = 350,
¢ = 0.05, and n = 0.9 (O), N =500, ¢ = 0.05, and n = 0.9
(), N =350, ¢ =0.05, and 7 =0.8 (&), N=1350, ¢ =
0.25, and 7 = 0.9 (A). The solid lines correspond to the fit
as made by Rouyer and Menon and have an exponent o = 1.52.
The range of the solid lines corresponds to half the range used
by Rouyer and Menon in their fit, but contains about 80% of
their data points.

smaller than the average number of collisions. The reverse
is also true. When heating inhomogeneously through a
boundary, one finds Gaussian distributions in very dilute
systems, when the particles on average collide more often
with the boundary than with other particles. This sug-
gests that in our system the shape of the velocity distri-
bution is not a function of all parameters 7, ¢, N, and the
details of the energy injection, but only of  and g =
Ny /N, the ratio between the average number of heatings
Ny and the average number of collisions N .

This idea can easily be tested in boundary heating.
When increasing the number of particles N or the area
fraction ¢, the average number of collisions increases.
One can show in a mean field approximation that g ~
(N¢)~'/2. The average distance a particle travels between
collisions is given by I, ~ 1/¢. For a box of area A the
average distance between boundaries is given by [, ~
A2 ~ (N/¢)'/2. Finally, we know Ny/Nc ~ Lon/ lhea-
Our simulation obeys this approximation very well. In
Fig. 4 we show velocity distributions for n = 0.8 and
different combinations of N and ¢. We measure the
heating-dissipation ratio ¢ in the simulation and show
velocity distributions with the same ¢ on top of each
other. For ¢ = 1.3 and ¢ = 0.13 we find excellent collapse
for different N and ¢, even when we scale the system by a
factor of 8. For ¢ = 0.013, where spatial correlations
become very strong, we still find reasonable collapse.
As we increase g we observe the usual pattern, where a
crossover appears in a distribution that was initially close
to a Gaussian.

It has been speculated that the non-Gaussian distribu-
tions are caused by spatial correlations in the gas [14].
However, we can qualitatively reproduce the different
distributions we observe in simulation with a simple
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FIG. 4. Velocity distributions for different values of the heat-
ing-dissipation rate ¢, heating through the boundary.
Distributions with the same g are shown on top of each other.
(a) g = 1.3 and we show N = 100and ¢ = 1 X 1073 (O), N =
200 and ¢ =5 X 107* (), N =800 and ¢ = 1.25 X 107*
(). (b) ¢ =0.13 and we show N = 100 and ¢ = 0.08 (O),
N =200 and ¢ =0.04 (), N =400 and ¢ = 0.02 ().
(¢) ¢ = 0.013 and we show N = 100 and ¢ = 0.4 (O), N =
200 and ¢ =0.2 (), N =400 and ¢ = 0.1 (). Inset:
Heating-dissipation ratio g for N = 800 (O), N = 400 (O),
N = 200 (), and N = 100 ( *) for several values of ¢. The
line is a fit of the form (N¢)'/2.

model (based on Ref. [15], but including dissipation) of
a two-dimensional inelastic gas of N particles without
spatial degrees of freedom. In this model, every time step
C pairs of particles are selected at random and collide
using Eq. (1) with a random impact parameter —2r <
b < 2r, where r is the radius of the particles. At the same
time H particles are selected at random to be heated by
adding a random velocity. This gives us a heating-dissi-
pation ratio of ¢ = H/2C. This model is similar to the
inelastic Maxwell model with white noise forcing [16],
but here, in addition, we can explicitly adjust the heating
and collision rate independently. In Fig. 5 we compare
velocity distributions from the model and simulations for
different values of g. We find good qualitative agreement
between simulation and model, even though it has no
spatial degrees of freedom. This implies that spatial cor-
relations play a minor role, if any, in P(v).

So far it has remained unexplained why it is that in
experiments different setups and driving mechanisms
usually give different behavior of the velocity distribu-
tion. For example, in a setup where particles on a hori-
zontal plate were driven in the vertical direction, Olafsen
and Urbach [12] found a crossover from exponential to
Gaussian distributions as the amplitude of the driving
was increased. Blair and Kudrolli [9] use a different setup
where particles move along an inclined plane, resulting in
an effective coefficient of restitution of 7 = 0.5. They
find velocity distributions that deviate strongly from both
Gaussian and the distribution obtained by Rouyer and

038001-3



VOLUME 93, NUMBER 3

PHYSICAL REVIEW LETTERS

week ending
16 JULY 2004

-In( -In( P(VX/GX)/P(O) ) )+ constant

| . | .
-2 0 2

ln(vX/O'x)

FIG. 5. —1In{—In[P(v,/o,)]} versus In(v,/o,). The symbols
shown are velocity distributions acquired by simulation for ¢ =
120 (uniform heating, O), 0.08 (boundary heating, (), 0.012
(homogeneous two-point heating [4,13], ). The lines show the
velocity distributions found in the model for the same values of
q (solid, dotted, dashed, respectively).

Menon. One explanation could be that it is the heating-
dissipation parameter g that varies between experiments
and driving mechanisms.

Because of the idealized nature of our system, it is not
possible to do a direct comparison between our simulation
and experiments. Yet, some experiments seem to show a
similar behavior, accounting for the parameter g that we
introduced here. In the experiments of Refs. [12,17] ve-
locity distributions go from non-Gaussian to Gaussian
when a rough plate or a layer of heavy particles is used
instead of a flat plate. In this case, energy is injected
directly into the directions parallel to the plate, effec-
tively increasing the number of in-plane heatings over
collisions. Most convincing is the experiment by Blair
and Kudrolli [9]. Here the number of collisions is in-
creased by adding more particles. As a result, their veloc-
ity distributions develop the same crossover we see in
both our simulations and model.

We studied behavior of the velocity distributions of
granular gases as a function of ¢, the area fraction, and
7, the coefficient of restitution. Specifically, we consid-
ered the effect of driving the gas by heating uniformly, as
is assumed in theory and many prior simulations, and by
heating through a boundary, as is done in most experi-
ments. We find that there exist clear qualitative differ-
ences between the velocity distributions for uniform and
boundary heating, which demonstrates that the form of
the distributions is not simply a function of material
parameters (e.g., 7). Furthermore, we show that there is
no evidence for a universal velocity distribution with a
constant exponent o = 1.5. Instead, for boundary heat-
ing, we find that velocity distributions cross over from one
exponent to another for high velocities. For this regime

038001-4

we observe a wide range of exponents and we find ¢ = 1.5
only for specific values of ¢ and 7.

Instead, we show that the distribution of velocities for
dissipative gases, while not universal in form, seems to
depend only on two parameters: the coefficient of resti-
tution 7 (a material parameter) and g = Ny /N, the
average ratio of heatings and collisions in the gas (a
function of experimental conditions). We find that velocity
distributions range from Gaussian for g >> 1, where heat-
ing dominates dissipation, to strongly non-Gaussian for
g < 1, where the dynamics of the gas is dominated by the
dissipative collisions between particles. Furthermore, a
simple model of a driven, inelastic gas without spatial
degrees of freedom reproduces the entire family of veloc-
ity distributions we find in simulation, as we vary n and
q. This means that the velocity distributions are non-
Gaussian not because of spatial correlations, but rather,
it is the cascade of energy from a few high-energy par-
ticles to the slow-moving bulk of the gas that is the key
determinant of the non-Gaussian velocity distributions.
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