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ABSTRACT 

Compensated Penning traps with cylindrical ring and compensation electrodes and flat 
endcaps are considered as alternatives to high precision traps with hyperbolic ring and 
endcap electrodes. Cylindrical and flat electrodes can be more easily and precisely con- 
structed, especially for the very small traps which are desirable for ion trapping. They are 
easily studied since Laplace’s equation can be solved by a series expansion which is discussed 
in most electricity and magnetism textbooks. A central new-result is that a judicious choice of 
the height-to-diameter ratio for a cylindrical trap makes the axial oscillation frequency of a 
trapped particle independent of adjustments in the compensation potential, just as has been 
recently proposed for hyperbolic traps. Other properties of such orthogonalized cylindrical 
traps appear to be adequate for particle trapping so that properly designed cylindrical traps 
are promising alternatives for high precision work, ready for laboratory testing. Whether or 
not cylindrical traps will be able to replace hyperbolic traps entirely for the highest precision 
work, a major point of this paper is that orthogonalized traps can be built with any 
reasonable electrode geometry. Special access traps with orthogonalized anharmonicity com- 
pensation are thus completely feasible, though numerical calculations will be generally 
required for their design. 

1. INTRODUCTION 

A single electron was first trapped in a Penning trap 10 years ago [l]. 
Subsequent progress [2] led to measurements of the magnetic moments of 
both the electron [3] and positron [4] to accuracies within 5 x 10-l’. The 
measurements of the magnetic moment anomalies are the most stringent 
tests of quantum electrodynamics which has recently been used to calculate 
the anomalies to the order cy4 [5]. Comparison of the electron and positron 
magnetic moments provides an unprecedented test of the invariance of the 
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electron/positron system under CPT (symmetry under charge conjugation, 
parity, and time reversal). An experiment now underway has already pro- 
duced the most accurate proton/electron mass ratio with great improve- 
ments expected when a single proton is trapped [6]. Another experiment is 
underway to improve the measurement of the magnetic moment of the 
electron to lo-i2 or better [7]. 

All of the precision experiments mentioned were made in compensated 
Penning traps with hyperbolic ring and endcap electrodes [8]. The electro- 
static properties of such traps [9] and the effect of radiofrequency potentials 
on the endcaps [lo] have already been investigated via relaxation calcula- 
tions. These calculations showed that a judicious choice of hyperbolic 
endcap and ring electrodes makes the axial oscillation frequency of a 
trapped partidle independent of changes in the compensation potential [9]. A 
better understanding of the electrostatic properties of hyperbolic traps 
suggested that the ratio of minimum distances between the endcap and ring 
electrodes was much more important than the hyperbolic contours them- 
selves. It seemed that hyperbolic electrodes might be less necessary for 
precision work than had been earlier assumed. 

Compensated Penning traps with cylindrical ring and compensation elec- 
trodes and flat endcap electrodes are considered here as alternatives to 
hyperbolic Penning traps. Uncompensated cylindrical traps have long been 
used for particle containment when only a crude quadrupole potential is 
required [ll], most commonly in ion pumps, for example. We investigate 
here the possibility of improving the quadrupole potential within such traps 
by the addition of compensation electrodes and by a judicious choice of trap 
dimensions so that they can be used for high precision experiments of the 
type mentioned above. Cylindrical electrodes have the important practical 
advantage that they can be machined to much greater accuracy in much less 
time than can hyperbolic electrodes, especially for the very small traps which 
may be desirable for ion trapping. The theoretical study of cylindrical traps 
is also much easier than the relaxation calculation used for hyperbolic traps. 
Laplace’s equation is readily solved for a cylinder with flat ends using 
standard techniques discussed in most electricity and magnetism textbooks. 
The series solutions converge rapidly and can be evaluated with a program- 
mable calculator. 

The notation used (Sect. 2) is deliberately similar to that used earlier for 
hyperbolic traps [9] to facilitate a comparison of their properties. The general 
discussion of anharmonicity compensation is ,left to the earlier paper with 
only a brief summary provided in Sect. 2. Two cylindrical traps are consid- 
ered. The first (Fig. I and Sect. 3) has a single cylindrical ring electrode and 
two flat endcaps. It can only be mechanically tuned to reduce anharmonici- 
ties. The second (in Fig. 2 and Sect. 4) is the cylindrical analog of the 
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successful hyperbolic traps. Compensation electrodes are included next to 
the endcaps and the potential on these is varied to reduce anharrnonicities. A 
notable new result is that a judicious choice of the height-to-diameter ratio 
makes the axial oscillation frequency of a trapped particle independent of 
the compensation potential, just as occurs for the proposed orthogonalized 
hyperbolic trap design [9]. This is a considerable improvement over the 
hyperbolic traps used for the precision experiments mentioned above. Many 
other properties of cylindrical traps, including the axial damping by a 
resistor between the endcaps (Sect. 5) [lo], are comparable with or superior 
to those for hyperbolic traps. 

Perfect hyperbolic trap electrodes would certainly produce the desired 
quadrupole potential over a much larger trapping volume than is possible 
with the cylindrical geometry studied here. There is growing evidence, 
however, that the usable trapping volume within existing hyperbolic traps is 
limited by electrode misalignments and imperfections along with holes and 
slits in the electrodes (to admit particles and various radiofrequency and 
microwave drives). The extent to which this is true, and thus the extent to 
which a cylindrical trap can provide a comparable trapping volume, must 
now be tested experimentally. Whether ,or not cylindrical traps are capable 
of replacing hyperbolic traps for precision work, a major point of this paper 
is that orthogonalized, compensated Penning traps can be constructed for 
any reasonable electrode geometry. The orthogonalized configuration of 
hyperbolic electrodes has been determined earlier by a relaxation calculation 
[9]. The orthogonalized configuration of cylindrical electrodes is calculated 
here using well-known electrostatic techniques. Other electrode configura- 
tions, to permit special access for lasers or particle transfer, for example, are 
certainly possible. Determining the orthogonalized configuration will gener- 
ally require a 
manageable. 

numerical calculation which is tedious but completely 

2. CYLINDRICAL PENNING TRAPS 

The two cylindrical Penning traps to be considered are represented in 
Figs. 1 and 2. Both traps are symmetric under rotations about the z axis 
(which is aligned along a homogeneous magnetic field) and under reflections 
across the xy plane. Flat grounded endcaps at potential IQ’2 are perpendicu- 
lar to the z axis and are located at z = +zO. Stacked cylindrical ring 
electrodes of radius p0 complete the traps. For both configurations, the 
potential of the central electrode (called the ring) is - V&/2 so that V= 0 is 
midway between the potentials of the endcaps and ring electrodes. This same 
convention was used for hyperbolic traps [93. Compensation electrodes at 
potential V, and height AZ, are inserted next to the flat endplates in the trap 



Fig. 1. Simple Penning trap with flat endcaps at L = f z,, with potential VO/2 and a single, 
cylindrical ring electrode of radius p = pO and potential - V,/2. The asymptote z* = fp* for 
the desired quadrupole potential is also shown. To tune out anharmonicities, zO could be 
slightly adjusted during an experiment. 

Fig, 2. Electrically compensated cylindrical trap. 

of Fig. 2. The compensation potential V, is varied to improve the potential 
near the center of the trap. 

Complete knowledge of the potential V within these traps is generally not 
required because particles are typically trapped near the center of the trap. 
In this region (at position [ r.O.+] in spherical coordinates with r -=z d) the 
potential can be expanded in a familiar way in even powers of the small ratio 
r/d multiplied by even order Legendre polynomials Pk (cos 0). 

v=$v, 
k =o 

D [q*p*(coSe) 
k d 

C”C” 

The distances are scaled by the characteristic trap dimension d defined in the 
earlier paper 191 by 

The D, expansion coefficients are exact counterparts of the C, used for 
hyperbolic traps except that D2 corresponds to 1 + C,. For an ideal quadru- 
pole trap, all the D, vanish except for D2. 

The lowest order coefficients in expansion (1) are most important for 
particle trapping since r-~ d. These are discussed in detail in ref. 9. To 
summarize, Do is unobservable and is thus ignored. The second coefficient, 
D,, relates the axial oscillation frequency ~3, for the trapped particle of 
charge q and mass m to the trapping potential V,. 

L32= qvoD 
E 

md2 
2 (3) 
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Higher-order D, quantify trap anharmonicities. Certainly, D4 is the most 
important and its most important consequence is a very undesirable arnpli- 
tude-dependent shift in uZ [12]. 

Aa 3 Q E, r=-- 
c3, 2 02 n&d2 

(4) 

The ratio of energies involves the axial excitation energy E, and the axial 
well depth mozd2 and is typically very small. The consequences of D, are 
typically smaller still and can be included by replacing D4 in Eq. (4) with 

D4 = D4 + SD6 
Ez 

mc.(d' 
(5) 

Traps are tuned to minimize amplitude-dependent shifts and/or broadening 
of the axial resonance. Uncompensated traps with hyperbolic electrodes 
[13,14] have been constructed with ]bd] = 10m2 to 10m3. Compensated traps 
have produced ID41 < 10m4 when carefully tuned. 

To achieve very low values of D4, it is important to make changes, AD,, 
while an experiment is in progress. For the mechanically tuned trap of Fig. 1, 
this is accomplished by adjusting p,Jz,,_ For the electrically compensated 
trap of Fig. 2, this is accomplished by adjusting the compensation potential, 
V,. Such adjustments, however, will generally also produce a change AD2 
(and hence a highly undesirable change in w,) as well. A quality factor y was 
defined earlier to quantify this trade-off [9]. For our purposes 

AD2 -- 

-I= AD4 (6) 

with AD, and AD, both resulting from the same anharmonicity adjustment. 
Ideally, y would vanish so that tiZ is completely unaffected by anharmonicity 
adjustments. The orthogonalized hyperbolic trap proposed in ref. 9 and its 
cylindrical counterpart in Sect. 4 allow the ideal value of y = 0 to be realized 
in principle. As a reference value, all of the precision measurements referred 
to earlier were done with asymptotically symmetric Penning traps with 
hyperbolic electrodes and electrical frequency compensation for which y = 
0.56. 

3. MECHANICALLY COMPENSATED TRAP 

The simplest cylindrical Penning trap in Fig. 1 has only a single cylindri- 
cal ring electrode. A series solution for the potential within this trap 

v= v, 
[ 
$+ E A,J,[ik,p] cos[ k,z] I (7) 

n=O 
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is readily obtained by standard techniques which are discussed in most 
textbooks. The constants 

k = [,++I, 
n 

ZO 
(8) 

are defined so that the cosine factors (which are even under the reflections 
Z+ -2) vanish on the endcaps. The zero-order Bessel function suffices 
because of invariance under rotations about the z axis. Despite its imaginary 
argument, this function is real and easily evaluated from the well-known 
expansion 

Jo++ 2 L[ii12j 
j=o (j!)’ 2 (9) 

Inverting Eq. (7) by integrating over the trap electrodes in the standard way 
yields 

( -l)n+l 

APZ = 4(2n + 1)9TJ*[ik,p] (10) 

which, along with Eq. (7) comprises a complete and unique solution to 
Laplace’s equation for the boundary conditions in Fig. 1. 

For particle trapping, we are interested in the coefficients D, for expan- 
sion (1) for small r/d. The D, of Eq. (1) can be simply related to the A, of 
Eq. (7) by evaluating both expansions on the z axis. Equating coefficients of 
.zk yields (for k > 0 and even) 

Dk=2(-:Ix/1[;]*[$ (2n+l)Q, 
n=O 

(11) 

Substituting the A, for the simple trap of Fig. 1 yields (again for k > 0 and 
even) 

D _ (-1)k’2 
k- k! 

(12) 

Observe that the Dk are functions of only pO/zo as might be expected and 
that the series converges rapidly since, for large arguments, JO(ix) goes as 
ex/(2nx)1/2. 

The series expression for D, in Eq. (12) can be evaluated with a hand 
calculator. Figure 3 shows D,, D4 and D, as functions of pO/zo. Observe that 
D4 vanishes at 

p0 = 1.203z, (13) 

For this choice, D, = 1.126 and D6 = - 0.095. Achieving small values of D4 
in a laboratory trap will be much more likely if D4 can be tuned during an 
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po’zo 
Fig. 3. Lowest order D, for the simple trap of Fig. 1 as a function of pO/zo. 

experiment. The most feasible adjustment for the trap of. Fig. 1 is a small 
change in pO/zO [from the value in Eq. (13) which makes D4 = 0 for a perfect 
trap) by sliding an endcap in or out of the ring slightly. Such mechanical 
anharmonicity compensation is characterized by the derivative 

and by the very respectable quality factor 

Y = -0.095 05) 
because Dz is near a maximum. Notice, however, that to reduce ID41 below 
low4 (as has been done in electrically compensated traps with hyperbolic 
electrodes) requires adjusting z,Jp,-, to within 10d4 of the optimal value, 
which makes D4 = 0. This is a very rigorous requirement, especially consider- 
ing the high vacuum and low temperature environments often used for 
precision experiments. 

4. ELECTRICALLY COMPENSATED CYLINDRICAL TRAPS 

The electrically compensated trap of Fig. 2 is the cylindrical counterpart 
of the highly successful hyperbolic traps. Anharmonicity compensation (i.e. 
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Fig. 4. Boundary conditions for the electrically compensated cylindrical trap of Fig. 2 in (a) 
and for the solutions to Laplace’s equation (pO and & in (b) and (c). Symmetry under rotations 
about the z axis and under the reflection z + - z are assumed. 

the reduction of the magnitude of D4) is accomplished while an experiment 
is in place by tuning the compensation potential V,. The properties of the 
cylindrical traps are compared with the properties of the hyperbolic traps. 
This is possible because the properties of the latter have been established 
quantitatively by a relaxation calculation 191. To facilitate the comparison, 
the notation in the next several paragraphs is exactly analogous to that 
discussed in more detail in ref. 9. 

The boundary conditions for the trap of Fig. 2 [repeated in Fig. 4(a) for 
p a 0 and z z= 0] are a superposition of the boundary conditions in Fig. 4(b) 
and (c). Solutions to Laplace’s equation, $+, and +,, are defined by these 
latter boundary conditions and by the invariance of these solutions under 
the reflection z --* -z. Thus the potential within the trap is given by 
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and, as a result, each Rk in the expansion (I) for small r/d is again the sum 
of two terms 

a& v 
D CD?)+ V- 2 

k 
[ 1 0 av, v, 07) 

The D,$‘> pertain to a compensation potential V, = 0 which is midway 
between the endcap and ring potentials. A non-zero compensation potential 
V, produces the second term which can be used to cancel the first and thus 
eliminate a troublesome Dk, typically D,. The constants voaDk/ac are 
called the tunabilities for Dk because they quantify a trap’s ability to tune 
out the D,. 

It is important to realize that the dimensionless constants Dj”) and 
VollD,/i3Vc are actually properties only of the trap geometry and are inde- 
pendent of V,, V, and d. These constants are, in fact, the expansion 
coefficients for the expansion of c&, and C& in r/d with 

c#B,=+ 5 D~“‘[~]kPk(cose) (18) 
k CYL” =O 

and 

(19) 

The earlier paper contains a more detailed discussion of these expansions [9]. 
Both ‘p. and eC can be solved analytically using the standard techniques 

reviewed in Sect. 3. Solving for +. yields (for k > 0 and even) 

Dioj_ (-l)k’2 - 
k! 

Solving for & yields (again for k z=- 0 and even) 

Notice that, in the limit, the compensation electrode goes to zero height (i.e. 
AZ, + 0), the tunabilities VoaD,/aVG vanish term by term and the Die) 
become the Dk in Eq. (12), which pertain to the simple trap of Fig. 1. More 
generally, the Dk for the simple trap of Fig. 1 are equal to the sum of DL”) 
and - l/2( V,aD,/dV,) as must be by Eq. (17) when the compensation 
potential V, is equal to the ring potential 7 V,/2. 

The quality factor y of Eq. (6) is given for electrically compensated traps 
by 191 

(22) 
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P~/z~ to make D4=0 

for simple trap of 
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height of compensation electrode, 

AZ, /z, 

Fig. 5. The ratio pO/zO required to make the axial oscillation frequency 
trapped in the trap of Fig. 2 independent of the compensation potential 
compensation electrode of height AZ,. 

w, of a particle 
V, applied to a 

Thus, y can be evaluated from Eq. (21) as a function of po/zo and AzC/zo. 
From Eq. (6), y = 0 means that the necessary adjustments of the compensa- 
tidn potential V,, to tune out anharmonicities, produce no corresponding 
changes in the axial oscillation frequency wZ. The required po/zo is plotted in 
Fig. 5 as a function of AzC/zo. It changes by only 10% for Az,/z, ranging 
from 0 to l/2. Notice that the ratio po/zo required to make y = 0 varies 
around the value 

p0 = 1.16.~~ (2% 

which is precisely the ratio required to make y = 0 in a hyperbolic trap [9]. 
Notice also in Fig. 5 that in the limit AZ, + 0, the ratio po/zo required to 
make y = 0 goes to the limiting value which makes D4 = 0 for the simple trap 
of Fig. 1. To see how this comes about, observe that V$D,/aV, and its first 
derivative with respect to AZ, both vanish as AZ, -+ 0. Setting the second 
derivative of V,aD,/ZlV, equal to zero (to make y = 0 in the limit AZ, + 0) 
produces the same condition on pa/z, as does setting D4 [of Eq. (12)] equal 
to zero for the trap of Fig. 1. 
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Mechanical imperfections in p&z0 for laboratory traps with cylindrical 
and hyperbolic electrodes will, of course, prevent y = 0 from being realized 
exactly. For cylindrical traps constructed to have y = 0 (by choosing p,,/zO 
from Fig. 5) 

aY 
a[[p/z*] = 2-66 

to within 1% for Az,/z, ranging from 0 to l/2. A realizable imprecision of 
10e3 in p,,/zo, for example, thus means that lyl= 2 X 10e3, which is still very 
much better than the Iyl= 0.56 for asymptotically symmetric traps with 
hyperbolic electrodes. The orthogonalized (i.e. y = 0) traps with hyperbolic 
electrodes are more sensitive to imprecisions in pa/z, than are the cylindrical 
traps. For example, the hyperbolic trap with y = 0 described in Fig. 13 of ref. 
9 has 

which is a factor of seven more sensitive to imprecisions in po/zo. 
The tunabilities V0aDk/i3V, for k > 2 are typically several orders of 

magnitude greater for cylindrical traps than for hyperbolic traps because the 
compensation potential is not so severely screened by the endcap and ring 
electrodes. As a result, anharmonicity compensation in a cylindrical trap 
differs from a hyperbolic trap in that a much smaller change in the 
compensation potential is required to change II4 by a given amount. Figure 6 
shows V,aD,/ilV, for cylindrical traps with y = 0 as a function of the height 
of the compensation electrode, AzJz,,. For AZ, = 0, this tunability vanishes 
as it must. By Az,/zO = 0.3, however, VoiW,/aVc is already equal to - 0.18 
or several orders of magnitude larger (in magnitude} than is typical for 
hyperbolic traps. To tune this particular cylindrical trap to make 1bJ < 10F4 
(as has been accomplished in compensated traps with hyperbolic electrodes) 
thus requires an adjustment of V,/V, to within 5 X 10m4 of its optimum 
value. Figure 6 also shows V,iQ/i3V,. Although this tunability is also much 
larger than for hyperbolic traps, the ratio of VoaD,/i3~ to V,aD,/aV, is 
approximately the same. 

The Die) for a cylindrical trap are also much larger than those calculated 
for a perfect hyperbolic trap because the trap electrodes are much less along 
equipotentials of the desired quadrupole potential. For small enough energy 
E,,in the axial oscillation, only Die) is important and it can be compensated. 
The required compensation potential to make D4 = 0 in Eq. (4) is given by 
the ratio of -IIF) and VoaD4/i3Vc. This ratio is plotted in Fig. 7. The 
required compensation potential is thus approximately given by V,/V, = 
- l/3, which is still conveniently between the endcap and ring potentials. 
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Fig. 6. The tunabilities &lD,/aV, and VO&D,/aV, as a function of Az,/z, for the trap of Fig. 
2 when pe/z,, is chosen (from Fig. 5) to make y = 0. 
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Fig. 7. The ratio of - 04(O) to VoC)D,/aVC as a function of Az,/z, for the trap of Fig. 2 when 
po/zo is chosen (from Fig. 5) to make y = 0 (solid lines) and for po/zo slightly larger and 
smaller than these values (broken lines). For perfectly aligned electrodes with no holes, slits, 
or imperfections, the vertical scale is the normalized compensation potential V, / V, required 
to make D4 vanish. 
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The broken lines are included in Fig. 7 to emphasize the sensitivity to 
imprecisions in pO/zO for thin compensation electrodes. They represent 
departures of f 10 -3 from the value of p,,/zO required to make y = 0 and are 
not very important for AzC/zO > 0.2. 

Figure 7 must be interpreted carefully because misalignments, holes, slits 
and imperfections modify DiO) (and higher order Ok’)) so that the plotted 
values must be regarded as limiting values to be approached in the limit of a 
perfect cylindrical trap. As an example, one hyperbolic trap tuned at 
IV/V, I= 10, which corresponds to 1 Di”‘j = 0.04. Another was dissembled 
and reassembled and 04’) changed by approximately 0.003 in the process, 
presumably because of different electrode alignment. In both cases, the 
calculated values of 01’) were much smaller [9]. We must expect similar 
variations from the values plotted in Fig. 7 for cylindrical traps. The perfect 
trap estimates could be much better than was the case for hyperbolic traps, 
however, because the calculated 01’) is several orders of magnitude greater 
and thus might even dominate the contributions from imperfections. Even if 
it turns out that Die) cannot be predicted accurately (as for hyperbolic traps), 
it will still be possible to tune V, to make D4 = 0. For small E,, cylindrical 
traps are as good as hyperbolic traps. 

For larger axial excitations, the contributions of D6 to AC+ [as given in Eq. 
(5)] must also be considered. These contributions are quadratic in E,/m~~d*. 
For a compensation potential which makes D4 = 0, these contributions are 
substantial, as may be seen from Fig. 8. Fortunately, for a single trapped 
particle, the effect of D6 may also be compensated by a slight additional 
adjustment of the compensation potential. To get a rough idea of how this 
comes about, consider the compensation potential which makes AU, = 0 in 
Eqs. (4) and (5). 

(26) 

The leading term is just the ratio plotted in Fig. 7 and discussed above. The 
factor in square brackets represents a small amplitude dependence in the 
compensation potential required to minimize amplitude-dependent shifts in 
0,. The constant D is given by 

0p vo(aD,/avc) 
DC-- 

D~'O' &(aD,/aV,) (27) 

and Eq. (26) presupposes that both terms comprising D are not large. In Fig. 
9, D is plotted and is of order unity for Az,/zO > 0.2. Even for an imperfect 
trap for which 0:‘) and D$‘) differ substantially from the values for a perfect 
trap, it may be reasonable to suppose that their ratio, and hence D, will not 
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Fig. 8. The net D4, D6 and D, for the trap of Fig. 2 when pa/z, as chosen (from Fig. 5) to 
make y = 0 and the value of V,/V, (from Fig. 7) is applied to make D4 = 0. 

Fig. 9. The constant D which describes ,the amplitude dependence of the compensation 
potential which is required to minimize anharmonicities. 

differ substantially from unity. For a single particle with &/m&I2 of order 
10 - 3 as claimed in ref. 3, the amplitude dependence should be very small. 

The scenario presented for compensating D6 may well be too optimistic. 
Trap imperfections which are not symmetric under z + -z and thermal 
noise potentials will certainly complicate matters. While perfect hyperbolic 
electrodes would certainly provide a larger harmonic trapping volume than 
would perfect cylindrical trap electrodes, there is growing evidence that 
holes, slits, misalignments and imperfections are presently limiting the 
harmonic trapping volume for existing hyperbolic traps. To what extent this 
is true, and thus to what extent a cylindrical trap will be useful for precision 
work, must now be tested experimentally. 
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Fig. 10. Boundary conditions which uniquely determine the solution to Laplace’s equation & 
along with axial symmetry about the P axis and antisymmetry under the reflection z + - z. 

5. DAMPING AND DRIVING THE AXIAL RESONANCE 

Damping and driving the axial oscillation was discussed earlier by Wine- 
land and Dehmelt [15]. More recently, a relaxation calculation was used to 
calculate the key constants for hyperbolic traps [lo]. Rather than repeat 
these discussions, we shall simply state the results for cylindrical traps. They 
do not differ substantially from the hyperbolic case. 

The required solution to Laplace’s equation is called +A as in ref. 10. It is 
defined uniquely by its boundary conditions in Fig. 10 and by its antisym- 
metry under reflections z --* -z. For small r/z0 

4?4 =f E Bk 
k odd=l 

(28) 

As in the earlier paper [lo], distances are scaled here by z0 rather than by d 
because for large po/zo the solution +A, and hence the B,, approach limiting 
values which are independent of p,,. 

The lowest order coefficient, B,, is certainly the most important for 
particles trapped near the center of the trap, where r/z0 +z 1. In this region, 

4J.4 = B,z/2z, so that B, is the measure of a uniform electric field at the 
center of the trap. A small potential, Vn,-, applied across the endcaps 
produces an axial force a( 4VDc#A)/3z on a trapped particle. The potential 
V,, can be oscillatory as long as its wavelength is much larger than the trap 
dimensions. One consequence is that a small static potential V,, applied 
across the endcaps moves the center of the axial oscillation from z = 0 to the 
metastable equilibrium value of 

d2 B 41’T,c -_ 
” - l&z, 1 m&J2 (29) 
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Such potentials have been used in hyperbolic traps. A resistor, R, connected 
between the endcaps will damp the axial oscillation with damping constant 
[10,15]. 

r _ 1 @l 
z 

2R 
[ 1 m 22, (30) 

Notice that r, goes as the square of B,. 
An explicit expression for the B, is easy to obtain by solving for 
- z/22, using the standard techniques reviewed in Sect. 3. The result is 

&r k > 0 and odd) 

The B, are easily evaluated. The first three are plotted in Fig. 11 as a 
function of a much wider range of &/2z,2 than is useful for trap design so 
that limiting values are clearly exhibited. For large pO/zo, B, goes to 1 and 
all other Bk vanish. This corresponds to a constant electric field between two 
infinitely extended capacitor plates. As the ring is pulled in toward the 
center of the trap, electric field lines increasingly terminate on the ring rather 
than penetrating through the center of the trap so that B, decreases. Then: 
B, and B5 increase in magnitude to compensate_ For smallest po/zo, ex- 
ponential screening sets in and all the Bk go rapidly to zero. 

Fig. 11. Lowest-order expansion coefficient B, for +A as a function of pt/Z!zz. 



17 

6. CONCLUSION 

Penning traps with flat endcap and cylindrical ring electrodes are shown 
to be promising alternatives to the existing traps with hyperbolic electrodes, 
even for precision work. The electrostatic potential within such traps is 
calculated using standard series solutions to Laplace’s equation. Coefficients 
which are important for particle trapping are discussed and plotted to 
facilitate trap design. 

An important new result is that a judicious choice of the relative dimen- 
sions of the electrically compensated, cylindrical trap makes the axis, 
oscillation frequency of a trapped particle completely independent of adjust- 
ments in the potential applied to the compensation electrodes. Such adjust- 
ments are required to make the motion of the particle more harmonic. The 
“magic” geometry which produces such orthogonalized anharmonicity com- 
pensation has now been found for hyperbolic and cylindrical traps. It has 
also become clear that such orthogonalized anharmonicity compensation will 
be possible for other trap configurations as well, to permit special access to 
the center of the trap, though numerical computations will generally be 
required to identify the “magic” dimensions. 
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