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Buckling of Actin-Coated Membranes under Application of a Local Force
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The mechanical properties of composite membranes obtained by self-assembly of actin filaments with
giant fluid vesicles are studied by micromanipulation with optical tweezers. These complexes exhibit typi-
cal mechanical features of a solid shell, including a finite in-plane shear elastic modulus ��1026 N�m�.
A buckling instability is observed when a localized force of the order of 0.5 pN is applied perpendicular
to the membrane plane. Although predicted for polymerized vesicles, this is the first evidence of such
an instability.
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Solid, tethered, or polymerized membranes have been
studied in detail over the years from the theoretical point
of view [1–4]. They exhibit rich fluctuation properties and
have been viewed as simple mechanical models of cells
plasma membrane. Red blood cells, for example, possess
a two-dimensional (2D) cross-linked spectrin network, un-
derlying the lipid membrane, partly responsible for their
equilibrium shapes, mechanical properties, and thermal
shape fluctuations [5–7]. Similarly, in many eukaryotic
cells, a thick actin cortex associated with the plasma mem-
brane is partly responsible for cell shape and mechanical
properties [7]. From a physical point of view, membranes
can be considered as thin elastic shells of thickness h, with
a bending modulus k, an in-plane shear modulus m, and an
in-plane stretching modulus K [1–5]. The bending modu-
lus is usually very small in these systems. Therefore the
in-plane strain energies are much larger than the bending
energy and pure bending deformations are energetically
favorable. However, whereas the in-plane strain is second
order in bending amplitudes for flat membranes [8], for
curved shells the situation is different [8]. For a spherical
shell whose radius R is increased to a radius R 1 j, the
in-plane strain ��j�R� is first order in bending amplitude
and may play an important role, even for small bending
deformations, depending on the relative magnitude of the
elastic moduli. This leads to a reduced flexibility of in-
extensible curved plates due to in-plane stretch and shear
[2,8]. This effect vanishes when R ! `.

Deformation resulting from the application of a local
force perpendicular to the membrane plane is a striking ex-
ample of this coupling between in-plane stretch and shear
and out-of-plane bending [2,8,9]. A buckling instability of
the vesicle membrane has been predicted, as for a macro-
scopic shell, in the limit of very flexible and inextensible
membrane [2]. It occurs when it becomes more favorable
energetically to concentrate the in-plane stress due to the
bending within a narrow ring, centered on the force ap-
plication point, than to bend and stretch a large piece of
membrane around this point. Such instabilities have been
studied experimentally and theoretically at a macroscopic
scale [10]. We report an observation of such an instability
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in self-assembled biopolymer and lipid membrane com-
plexes, upon application of a minute force exerted by a
micrometer bead displaced with optical tweezers.

Micromechanical experiments [11] have been performed
on various cell membranes. Nonlinearities that are some-
times observed [12] may have complicated origins, such
as the coupling between membrane and cytosol proper-
ties. Few simple membranes with finite shear modu-
lus have been created and studied in vitro. Examples to
date include lipid vesicles below the lipid melting tem-
perature [13], graphite oxide membranes [14], and the
red blood cell skeleton [15]. We have recently tailored
new microstructures by self-assembly of actin filaments
and fluid unilamellar lipid vesicles (�20 mm diameter)
[16]. A cross-linked network of actin filaments (mesh size
m � 0.1 mm), thick (thickness h � 0.1 mm) compared
with a bare lipid membrane, is biochemically bound to the
outer leaflet of vesicles [Fig. 1(a)]. These membrane ex-
hibit a viscoelastic behavior at high frequency � f�: above
a few tens of Hz, m and k scale as fz , with z � 0.75 [16].

Mechanical properties of these microstructures are mea-
sured using two beads grabbed with optical tweezers and
bound to a vesicle via biotin-streptavidin bonds [Fig. 1(b)].
Strong trapping of the first bead prevents large-scale mo-
tion of the liposome. The optical tweezers [Fig. 1(c)] allow
one to apply pico-Newton forces on the second bead to de-
form at low frequency (0.5 to 5 Hz) the membrane locally,
either in its plane or perpendicular to it, with a controlled
amplitude. Its time position is measured by forming an
image of the bead with a He:Ne laser onto a two-quadrant
photodiode [Fig. 1(c)]. Depending on its orientation, ei-
ther in-plane (parallel to the surface) or out-of-plane (per-
pendicular) motion is measured.

Figure 2 shows the results obtained while imposing on
the optical trap a triangular displacement At � 310 nm
(peak to peak amplitude) within the membrane plane. In
the presence of the actin layer, the probe bead exhibits a tri-
angular displacement of smaller amplitude Ab � 230 nm.
Similar experiments (data not shown) on fluid vesicles
show no amplitude drop. Therefore, the actin-coated mem-
brane exerts an elastic force f on the bead. The balance of
© 2001 The American Physical Society 088103-1
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FIG. 1. (a) Vesicles (15 mm diam) coated with actin filaments
labeled with Rhodamin-Phalloidin observed by fluorescence mi-
croscopy. (b) Principle of the measurement. Two beads are
bound to the vesicle using optical tweezers. A first trap main-
tains the vesicle fixed. The second bead is displaced in a
direction parallel to the membrane contour (in-plane) or per-
pendicular to it (out-of-plane) according to a triangular oscilla-
tion. (c) Schematic of the optical tweezers and single-particle
tracking experiments. The optical tweezers setup is described in
Ref. [16]. An image of the bead is formed on a two-quadrant
photodiode with the back-scattered light coming from a He:Ne
laser fixed in space and weakly focused on the bead. The dif-
ferential voltage of the photodiode is proportional to the bead
position. The position measurement is calibrated by moving
with a piezoelectric stage a bead bound to a glass coverslip (the
calibration is linear for amplitudes as large as 6500 nm). Laser
trap displacements are calibrated by moving a trapped bead at
low frequency (0.5 Hz) and high laser power (the drag force is
negligible). We obtain a 20 nm resolution within the frequency
range used.

forces due to the tweezers (trap stiffness k � 1025 N�m)
and the membrane shear modulus m [13,16–18] means
that k �At 2 Ab� � B m Ab , where B is a numerical con-
stant of order 4p��1 2 ln�Rb�pRn�� [17], and Rb and Rn

are, respectively, the bead and the vesicle radii. Therefore
B is of the order of 4 and m is approximately 1026 N�m,
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FIG. 2. In-plane oscillations of a 3.1 mm bead attached to an
actin-coated membrane �≤�. To compare, the motion of a trapped
bead in solution is also shown �3�. In both cases, the laser
trap (stiffness k � 1025 N�m) was moved at 0.6 Hz according
to a triangular wave of amplitude 310 nm. The bulk viscous
drag is negligible (it corresponds to a 11 fN force and to a
5 nm displacement of the bead in the trap potential well). The
difference in amplitude between the two curves is due to the
in-plane shear modulus m of the actin-coated membrane.

consistent with the known values of bulk shear modulus
G0�m � G0h� of actin filaments solutions, of the order
of 0.1 to 10 Pa, depending on the concentration and the
reticulation rate [19].

A more striking feature is evidenced in Fig. 3, as the
bead is displaced perpendicular to the membrane. As
long as the bead is moved a distance smaller than some
threshold [Figs. 3(a) and 3(b)], the bead displacement fol-
lows linearly the trap position. The reduced amplitude
Ab of the triangular displacement of the bead compared
to the optical trap one At, indicates, as above, that the
membrane exerts an elastic force on the bead, character-
ized by a spring constant km. Knowing the trap stiffness
k � 4.5 1026 N�m, one gets an estimate of km: km �
k�At 2 Ab��Ab � 3 1026 N�m.

For a larger displacement of the bead, an instability
is observed when the bead moves towards the inside of
the vesicle: the bead jumps abruptly towards the center
of the vesicle. This instability is reversible and repro-
ducible when the bead is further moved in and out of the
vesicle [Fig. 3(c)]. After the instability the bead is posi-
tioned more “inside” the vesicle than the laser trap: i.e.,
the shell pulls the bead towards the inside of the vesi-
cle. From Fig. 3(c) one can estimate the critical deforma-
tion lc � 180 nm and force fc � k �lt 2 lc� � 0.5 pN
at the instability threshold as well as the deformation lB �
320 nm and the force fB � k �lt 2 lB� � 0.1 pN above
the threshold. This instability is observed systematically
in our experiments and the critical length lc is always of
the order of 200 nm. As it is not observed with fluid mem-
branes (data not shown), the instability is a characteristic
of these composite membranes with finite shear modulus.
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FIG. 3. Out-of-plane oscillations of a 3.1 mm bead attached
to an actin-coated membrane. The bead is moved at a fre-
quency of 5 Hz, with a triangular wave of amplitude (a) 100 nm,
(b) 200 nm, and (c) 300 nm. The same time scale is used for
each curve. The trap stiffness is 4.5 1026 N�m. In (c), the
buckling instability is evidenced. (d) Schematic of the mem-
brane shape above the buckling threshold.

We interpret this as a buckling instability of the mem-
brane under the localized force applied by the trapped
bead, as described in the introduction [2,8]. Consider-
ing the composite membrane as a homogeneous shell of
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radius R, thickness h, Young modulus E, and Poisson ra-
tio s, its 2D elastic moduli scale as a function of E, h,
and s as K � Eh��2�1 2 s��, m � Eh��2�1 1 s��, and
k � Eh3��12�1 2 s2�� [8]. The local force applied on
the membrane induces some in-plane shear and stretch
whose relative magnitudes depend on the exact shape of
the deformation and on the respective values of K and m.
For membranes with a finite shear modulus (as, e.g., the
red blood cell membrane), the in-plane shear modulus is
in general much smaller than the in-plane stretch modu-
lus and pure shear deformations are more energetically fa-
vorable [6]. In our case (thick actin-coated membranes
and local deformation), the deformation may involve both
shear and stretch. Considering an in-plane elastic modu-
lus of the order of Eh, the local force induces, before the
buckling threshold [Figs. 3(a) and 3(b)], a bending defor-
mation of amplitude z , which extends over a distance d.
The in-plane strain being of the order of z�R and the local
mean curvature of the order of z�d2, the bending energy
Fb and the in-plane elastic energy Fs for the deformed sur-
face of area d2, scale as [2,8]

Fb � k�z�d2�2d2 � Eh3z 2�d2

and

Fs � Eh�z�R�2d2. (1)

Minimizing the total free energy F [20] with respect to d
leads to d � �k�Eh�1�4R1�2 � �hR�1�2 and

F � Fb 1 Fs � kz 2�hR � Eh2z 2�R . (2)

The relation between the applied force f and the deforma-
tion amplitude z is obtained by comparing the total energy
and the work fz exerted by the force f:

z � A0fhR�k � fR�Eh2, (3)

where A0 is a constant that depends on the Poisson ratio s.
This equation shows that the membrane acts effectively as
a linear spring of stiffness km given by

km � f�z � k�A0Rh . (4)

If one takes into account only shear (respectively, stretch)
deformations, one gets A0 � �6�1 2 s� 1 1�21 (respec-
tively, �6�1 1 s� 1 1�21). As we don’t know precisely
s, we can only estimate roughly the bending rigidity from
Eq. (4), taking R � 10 mm, h � 0.1 mm, and A0 of or-
der 0.1 to 1 �0 , s , 1�. This leads to k of order 100 to
1000kBT . This value is much larger than typical bend-
ing moduli of pure lipid membranes (10 20kBT [21])
and is consistent with our estimate obtained from analysis
of the membrane thermal fluctuations [16]. Consistently,
the bending modulus of the actin layer (thickness h and
mesh size m) is at least (assuming no cross-linking) of or-
der: k � kBT Lp h�m2 � 100kBT, where Lp � 10 mm
is the persistence length of the actin filaments [22].

For large enough force f, a shape change of the shell
may happen [2,8], which results in a strong in-plane stretch
and shear of the membrane over a narrow “ring” of ra-
dius r and size d [Figs. 3(c) and 3(d)]. The bent region
088103-3
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around the point of application of the force has now a size
r and a deformation amplitude zB � r2�R. Assuming that
most of the elastic energy (both in-plane and out-of-plane)
is concentrated in the ring, the order of magnitude of
the displacement of a point within the ring is dr�R; the
in-plane strain is given by �dr�R��R and the mean curva-
ture is �dr�R��d2. Then the in-plane elastic energy and
the out-of-plane bending energy scale as

Fb � k�r�dR�2rd � Eh3r3��dR2�

and

Fs � Eh�rd�R2�2rd � Ehr3d3�R4. (5)

Minimizing the total free energy F with respect to d, we
obtain d � �hR�1�2 and

F � Er3�h�R�5�2 � Eh5�2zB
3�2�R . (6)

Comparing Eqs. (2) and (6), the buckling takes place
typically for a deformation zB � h. In our experiments,
the typical deformation at the buckling threshold is indeed
of order 200 nm, or approximately the membrane thick-
ness. Finally, the buckling instability is totally reversible,
which shows that no plastic deformation takes place.

To conclude, self-assembled actin-coated membranes
are characterized by an in-plane shear-modulus m around
1026 N�m and large bending modulus k of a few 100kBT .
We have shown the first clear evidence of a buckling in-
stability when a force is applied locally perpendicular to
the membrane plane. This instability presumably comes
from the coupling between out-of-plane deformation and
in-plane strain, which is the origin of many of the in-
teresting properties of polymerized, tethered, and solid
membranes.
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