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Recent experiments on molecular motor driven in vitro F-actin networks have found anomalously
large strain fluctuations at low frequency. In addition, the shear modulus of these active networks
becomes as much as one hundred times larger than that of the same system in equilibrium. We
develop a two-fluid model of a low-density semiflexible network driven by molecular motors to explore
these effects and show that, relying on only simple assumptions regarding the motor activity in the
system we can quantitatively understand both the low-frequency fluctuation enhancement and the
non-equilibrium stiffening of the network. These results have implications for the interpretation of
microrheology in such active networks including the cytoskeleton of living cells. In addition, they
may form the basis for theoretical studies of biomimetic non-equilibrium gels whose mechanical
properties are tunable through the control of their non-equilibrium steady-state.

I. INTRODUCTION

Understanding the dynamics and mechanics of the cy-
toskeleton of eukaryotic cells is a forefront problem in
biological physics and soft condensed matter. The sys-
tem is one of daunting complexity, being both chem-
ically heterogeneous and varying spatially over length
scales ranging from tens of microns down to nanome-
ters. But, to a first approximation it may be described
as a cross-linked semiflexible filament network that per-
vades a large fraction of the cellular interior. One of
the principal components of this network is filamentous
actin or F-actin, a double stranded helical aggregate of
globular or G-actin [1–3]. In living cells the actin fila-
ments are typically cross-linked by a plethora of actin
binding proteins that link actin filaments. In addition to
F-actin, the cytoplasm contains other protein biopoly-
mers, including much more rigid microtubules and more
flexible intermediate filaments. The dynamics of this net-
work is correspondingly complex, having a variety of ac-
tive processes operating on different time scales, as well
as the ever-present thermal or Brownian motion [4–12].
On very short time scales of order miliseconds, the cy-
toplasm appears as an equilibrium material, with sim-
ilar dynamics to in vitro gels in equilibrium [13, 14],
while on long time scales of order minutes, significant
remodeling of the cytoskeleton occurs. Such remodel-
ing is largely directed in nature, and involves, e.g., the
polymerization/depolymerization of polar filaments. On
intermediate time scales, however, active processes gen-
erate motion on a scale at least comparable to thermal
motion [13, 15]. Although molecular motors are impli-
cated here, the resulting motion is largely non-directed
and can appear Brownian.

In order to develop a quantitative understanding of
the complex dynamics of the cytoskeleton, there has

been much effort in developing equilibrium in vitro net-
works of reduced biochemical complexity [16–29]. Sev-
eral simplified model systems have also been developed
to address the non-equilibrium behavior due to molecu-
lar motors [30–33]. Here, we describe a theoretical model
for active gels that is motivated by the recent exper-
iments of Mizuno et al., [32] on a permanently cross-
linked F-actin network driven by myosin-II molecular mo-
tors. These experiments examined the effect of driving a
(solid) network out of equilibrium through the action of
ATP-consuming molecular motors that apply stochastic
strains to it. They find two dramatic results arising from
the motor activity in the actin network: (i) motor activ-
ity leads to a significant stiffening of the network, with
the linear elastic shear modulus increasing by as much as
a factor of 100; and (ii) motor activity generates a signif-
icant increase in the low-frequency strain fluctuations of
the network. Interestingly, even with motor activity in
the network, the fluctuation spectrum of tracer particles
embedded in the network is consistent with the expected
thermal fluctuations at high frequencies.

These results present an interesting theoretical chal-
lenge, and have implications for both understanding the
mechanics of living cells and for creating biomimetic
materials with reversibly tunable elastic properties. It
should be noted that this out-of-equilibrium system
is distinct from previously studied systems of actively
driven particulate solutions [35–38] in that the present
system has a well-defined strain field and can support
the stresses that develop due to the motors; the active
force generating elements cannot create persistent flows
in the solid material. We show below that one can quan-
titatively understand the motor-driven stiffening of the
network at a mean-field level through the interaction of
the inherent elastic nonlinearity of F-actin under ten-
sion [34] with motor forces. We also present a calculation
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of the strain fluctuation spectrum of the driven material
in the limit of low motor concentration. Understanding
the detailed form of this fluctuation spectrum has wide-
ranging implications for the quantitative interpretation
of microrheology in living cells.

Microrheology [18, 39–43] has made possible a num-
ber of rheological measurements that would otherwise be
impractical because of either the small size or fragility
of the sample, or its inaccessibility preventing a direct
mechanical coupling. One particularly important class
of systems that benefit from microrheological studies
are living cells [13, 15, 44–50]. The interpretation of
tracer fluctuations in terms of rheology/mechanics relies
generally relies the assumption of thermal equilibrium.
The presence of motor forces in the cytoskeleton inval-
idates this theoretical framework, and new theoretical
approaches [13, 51–56] are clearly needed.

The remainder of this article is organized as follows.
We discuss the two-fluid model for the mechanics of gels
in section II A. We then describe the motor-induced
forces driving this network in section II B, and then cal-
culate the predicted tracer fluctuation spectrum in sec-
tion III A. We then turn to the question of the stiffening
of the network in response to endogenous motor activity
in section III B, before presenting a summary and discus-
sion of ongoing and future work in section IV. In order to
improve readability, we relegate much of the calculational
details of this work to appendices A-C.

II. THE MODEL

A. The network

To describe mechanics of the network and the back-
ground (aqueous) solvent we use the well-known two-fluid
model first introduced by de Gennes and Broachard [57–
59] and subsequently broadly used to model the dynam-
ics of polymer gels [60–63]. More recently, this model
has been used to understand the semiflexible biopolymer
gels, such as those of the cytoskeleton [18, 56, 64, 65].
This model describes a gel in terms of two dynamical
fields: the displacement field u of the network and the
velocity field v of the permeating solvent. The dynamics
of this model are given by

ρ
∂v

∂t
= η∇2v − ∇p + Γ

(

∂u

∂t
− v

)

+ f (v) (1)

ρN
∂2u

∂t2
= µ∇2u + (µ + λ) ∇ (∇ · u) (2)

−Γ

(

∂u

∂t
− v

)

+ f (u).

In Eq. (1) we have assumed low-Reynolds number dy-
namics and we thus use the linearized Navier-Stokes
equation. In that equation, ρ and η are the solvent den-
sity and viscosity. The mechanics of the gel as described
by the continuum model given in Eq. (3) can be written in

terms of two Lamé coefficients necessary for an isotropic
solid [66]. This continuum model is a valid description of
the system’s dynamics on sufficiently large length scales.
Determining this length scale is somewhat subtle due to
the fact that the thermal persistence length of the semi-
flexible actin filaments is on the order of 20µm, which
is generally an order of magnitude larger than the mesh
size of the network ξ – see Fig.(1). We discuss in more
detail the limits of applicability of the two-fluid model in
section IV.

The two force densities f (v) and f (u) represent any ap-
plied forces to the solvent and network respectively. In
particular, the molecular motors will act on the network
through f (u). In writing Eq. (3), we have neglected the
inertia of the network in comparison to that of the fluid.
This is reasonable since the biopolymer network has a
density similar to that of water, but typically has a vol-
ume fraction φ on the order of 10−3 so that its mass
density is negligible in comparison to that of the solvent.

ξ

f

f

a

FIG. 1: (color online) Schematic diagram of a molecular mo-
tor acting on the network. The motor (red) slides the two
filaments to which it is bound past each other. This action
generates tensile stresses at along the two active filaments
(green) generating a pair of equal and opposite forces (green
arrows) separated by a distance a > ξ.

These equations are supplemented by the requirement
of volume conservation in the two-fluid medium,

∇ ·
[

φ
∂u

∂t
+ (1 − φ)v

]

= 0. (3)

Another consequence of our assumption that the net-
work occupies a vanishingly small fraction of the vol-
ume, φ ≪ 1, is that Eq. (3) may be approximated by
∇ · v = 0, which expresses simply the incompressibility
of the background solvent. The network, however, re-
mains compressible, although its mass density can safely
be ignored.
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Finally, it is important to point out that the mechanics
of the gel and the permeating solvent are coupled by the
terms proportional to Γ in Eqs. (1) and (3). Due to
Galilean invariance, this coupling must be a function of
only the local difference in network and fluid velocities.
We assume that nonlinear terms in the velocity difference
are subdominant at least at the low velocities relevant to
the biological system. This assumption results in a Darcy
relation between the permeation velocity u̇ − v and the
stress on the fluid parameterized by a single constant
Γ. As discussed elsewhere [18, 64, 65], we estimate this
constant as follows: the drag force per unit volume on the
network for a given permeation velocity ∆v is, according
to Eq. (3) Γ∆v. However, the drag force on a single
filament at the scale of the mesh size ξ is proportional to
ηξ∆v so the force density is ∼ η∆vξ−2, implying that
Γ ∼ η/ξ2. This drag is the force density required to
drive the fluid of viscosity η through network pores of
characteristic area ξ2.

We wish to determine the response of the combined
network and fluid to an applied set of force densities
f (v)(x, t), f (u)(x, t) acting on the fluid and network re-
spectively. Due to the translational invariance of the sys-
tem, it is convenient solve this problem in Fourier space
where we define

u(x, t) =

∫

d3k

(2π)3
ei(k·x−ωt)u(k, ω), (4)

and an analogous equation for the fluid velocity field
v(x, t). In the Fourier representation Eqs. (1) and (3)
become a set of six algebraic equations for u(q, ω) and
v(q, ω) of the form

Mαβ(q, ω)Uβ(q, ω) = Fα(q, ω), (5)

where we have introduced a six-component column
vector of displacements and velocities Uα(q, ω) =

[u(q, ω),v(q, ω)]
T

and an analogous six component col-
umn vector of the applied force densities Fα(q, ω) =
[

f (u)(q, ω), f (v)(q, ω)
]T

. The 6 × 6 matrix is shown in
appendix A. The Greens function of the system in the
Fourier domain is now clearly the inverse of the matrix
Mαβ(q, ω). The calculation of the inverse of this object
is greatly simplified by rewriting the above in terms of
the transverse and longitudinal components of the fields
u, v. These components are generated by the action of
their corresponding projection operators defined for an
arbitrary vector field w by

wT
i (k, ω) = PT

ij(k)wj(k, ω) (6)

wL
j (k, ω) = PL

ij(k)wj(k, ω), (7)

where PT
ij = δij−k̂ik̂j and PL

ij = k̂ik̂j are respectively the
transverse and longitudinal projection operators. Work-
ing in these basis we invert Eq. (5)to determine the re-
sponse of the system Uβ(q, ω) to force densities Fβ(q, ω)
acting on both the fluid and the network. In the matrix
inversion process care must be taken in order to allow

for a longitudinal part of the velocity field that is decou-
pled from the both the strain field and the transverse
part of the fluid velocity field. Failure to do so ren-
ders Mαβ(q, ω) singular; the inclusion of a (fictitious)
longitudinal part of the fluid velocity field remedies this
problem, while the decoupling of this field from the other
dynamical variables allows for the restoration of fluid in-
compressibility simply by not driving this longitudinal

part, i.e. setting PL
ijf

(v)
j (q, ω) = 0. Performing this in-

version we find:

uL
i (k, ω) =

PL
ij(k) f

(u)
j

−iωΓ + Bk2
(8)

uT
i (k, ω) =

∆(k, ω)PT
ij(k) f

(u)
j + ΓPT

ij(k) f
(v)
j

∆(k, ω)Φ(k, ω) + iΓω2
(9)

vT
i (k, ω) =

−iΓωPT
ij(k) f

(u)
j + Φ(k, ω)PT

ij(k) f
(v)
j

∆(k, ω)Φ(k, ω) + iΓω2
,

(10)

where Φ(k, ω) = −iωΓ+µk2, ∆(k, ω) = −iωρ+ ηk2 +Γ,
and B = 2µ + λ. We will refer to B as the longitudinal
modulus of the system. The rationale for this choice will
be made clear below.

We now compute the response of the system to a point

force applied to the network f
(u)
i (x, t) = fiδ(x)e−iω0t.

Since microrheological measurements are in actuality
strain measurements of the network, we focus on the
strain response of the network u(x, t). Given the so-
lutions in the Fourier domain for the longitudinal and
transverse parts of the strain field given by Eqs. (8)
and (9), the remaining computation involves only inte-
grals over the wavevector using f (u)(q, ω) = fδ(ω − ω0),
f (v)(q, ω) = 0.

It is convenient to determine the longitudinal and
transverse parts of the network strain response separately
and then combine these results. The physics underlying
this decomposition is that the two-fluid model has five
hydrodynamic modes, i.e., modes whose relaxation rate
vanishes in the long wavelength limit [67, 68]. Of these,
four modes are propagating transverse oscillations of the
combined network and solvent with a dispersion relation
of the form ωk = ±ck. The fifth mode is longitudinal and
represents an overdamped network density mode in which
the solvent does not participate. The dispersion relation
of this mode has the form ωk = −iDk2, giving the dif-
fusive relaxation of network density. Thus, the structure
of the propagator or Greens function corresponding to
the response in the transverse and longitudinal channels
differs and the calculation naturally decomposes into two
independent parts.

We begin with the longitudinal response function. As
shown in Appendix B, the longitudinal part of the re-
sponse function, defined by

ui(x, ω) = Lij(x, ω)f
(u)
j (ω) (11)

gives the amplitude of the strain response of the network
(due to only the longitudinal channel) at a point x due to
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a force applied at the origin and having a sinusoidal tem-
poral dependence e−iωt. This function encodes the strain
response of the network due to longitudinal or network-
density changing deformations. The complex response
tensor at finite frequency can be written as

Lij(x, ω) =
1

4πBr

[

t1

(

r

ℓ(ω)

)

δij + t2

(

r

ℓ(ω)

)

x̂ix̂j

]

,

(12)
where we have defined the functions

t1(x) =
i

x2

[

1 − e−κx (1 + κx)
]

(13)

t2(x) = − 3i

x2

[

1 −
(

1 + iκ∗x +
1

3
ix2

)

e−κx

]

, (14)

with

κ =
1 − i√

2
. (15)

We have also introduced a frequency-dependent, dimen-
sionless distance given by x = r/ℓ(ω) where we have de-
fined the longitudinal penetration depth to be

ℓ(ω) =

√

B(ω)

Γω
. (16)

Here we write B as a function of frequency in anticipation
of our consideration of a viscoelastic network.

This length scale determines the distance over which
the longitudinal or density mode propagates outward into
the two-fluid medium around a point force. As the driv-
ing frequency of the oscillating point force increases, the
penetration depth of the network density variation de-
creases in a manner reminiscent of diffusive scaling. The
underlying mechanics of this effect is simple. The net-
work retains a longitudinal mode while the background
solvent does not. Thus, longitudinal network deforma-
tion cannot be accompanied by corresponding deforma-
tions of the fluid so that the density mode of the net-
work experiences a simple dissipative force density of the
form Γωu. This is effectively just local Darcy drag. At
high frequencies the Darcy drag is large so that the de-
cay mode decays (exponentially) rapidly in space. As the
frequency approaches zero, the compressible network de-
couples from the incompressible solvent so that the den-
sity mode decays as a power-law away from the point of
force application.

To estimate a typical longitudinal penetration depth
for experiments such as those in Ref. [32], we assume
that the mesh-size on the order of 102–103nm and that
the longitudinal modulus B has a roughly frequency-
independent value on the order of 10–102Pa, then the
penetration length ℓ(ω) for the longitudinal mode is of
order 10µm/

√
ω · s. On length scales below this, the re-

sponse of the network can differ significantly from that
of an incompressible material.

It remains to compute the contribution to the response
function coming from the transverse modes of the system.

Using Eq. (9), neglecting the effects of the fluid’s inertia,
and making a simplification by restricting our consider-
ation of the dynamics to length scales long compared to
the mesh size (where this continuum model should be
applicable), the transverse response in real space can be
written in a simple form:

Tij(x, ω) =
1

8π|x|(µ − iωη)
[δij + x̂ix̂j ] . (17)

This response function is identical to that of transverse
response of a viscoelastic isotropic continuum having a
complex, frequency-dependent shear modulus G(ω) =
µ − iωη. This is expected since in this inertia free,
long wavelength limit the network and the fluid move
in unison; even for a perfectly elastic network (µ real
and frequency independent) the composite material can
be thought of as having a complex shear modulus.

Finally, we combine the longitudinal and transverse
parts of the response tensor αij = Lij + Tij to form the
Greens function of the system. The total Greens tensor
can be written as the sum of a parallel α|| and a perpen-
dicular α⊥ part so that

αij = α||(r, ω)x̂ix̂j + α⊥(r, ω) (δij − x̂ix̂j) , (18)

where r = |x| and x̂ = r/|r| is a unit vector directed from
the point of force application at the origin to the point
where the strain field is evaluated at r. Thus, the motion
along the line connecting these two points is given by

α||(r, ω) =
1

4πrG(ω)

[

1 +
G(ω)

B(ω)
χ||

(

r

ℓ(ω)

)]

, (19)

while the motion perpendicular to this line is given by

α⊥(r, ω) =
1

8πrG(ω)

[

1 +
G(ω)

B(ω)
χ⊥

(

r

ℓ(ω)

)]

. (20)

The two functions χ||, χ⊥ parameterize the effect of
the longitudinal mode of the system in a spatial- and
frequency-dependent manner. These functions are given
by [56]

χ⊥(x) =
2i

x2

[

1 − (1 + κx) e−κx
]

(21)

χ||(x) = e−κx − χ⊥(x). (22)

As described below, the molecular motors generate
pairs of anti-parallel forces and zero torque in the net-
work. In Fig. 3 we plot the displacement field around
such a pair of forces in the plane containing both of
these forces. The pair of anti-parallel forces (red arrows)
can generate significant local changes in network den-
sity. The length scale over which the density variation
extends away from the distributed force dipole is con-
trolled by the longitudinal penetration depth and is thus
frequency dependent. In Fig. 4 we show the network den-
sity variation in the plane of the two forces making up
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FIG. 2: The functions χ⊥(r/ℓ) and χ||(r/ℓ) are plotted here
as a function of the dimensionless length r/ℓ. These func-
tions, defined in Eqs. (21), (22) parameterize the spatial ex-
tent of the effect of the longitudinal mode of the network at
a given frequency. The frequency-dependence of these results
enters through the longitudinal penetration depth ℓ(ω) and
has diffusive scaling as expected from the decay rate of the
longitudinal mode.

a distributed dipole at frequencies of 0.1Hz and 104Hz.
The figure is axially symmetric about the line connect-
ing these two force centers. From these figures it is clear
that there are two lobes of increased network density cen-
tered at the midpoint between the two applied forces and
extending preferentially in the plane normal to the line
connecting the two force centers. There are two similar
lobes of network rarefaction on either side of the force
pair and extending outward along the line of centers of
these two forces. The spatial extent of these lobes is
simply controlled by the longitudinal penetration depth
given in Eq. (16).

B. The motors

We are interested in determining the fluctuation spec-
trum of the strain field in the active, or motor-driven
gel. This fluctuation spectrum is typically discussed in
microrheology in terms of the power spectrum of the
strain fluctuations evaluated at one point in the mate-
rial. This power spectrum takes the form 〈|u(ω)|2〉M ,
where we have evaluated the strain field at the origin.
The point of evaluation is irrelevant in light of the trans-
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FIG. 3: (color online) The amplitude of the temporally oscil-
lating vector field in the plane containing a pair of anti-parallel
forces acting at ±1µm x̂. The viscosity of the solvent is taken
to be that of water and the frequency of the sinusoidal time-
dependence of the force pair is 0.1Hz. Distances in the figure
are measured in microns.

FIG. 4: (color online) a) A color map of the network compres-
sion field around a pair of anti-parallel forces placed symmet-
rically around the origin and along the x-axis. All distances
are measured in microns; the color map shows the dimension-
less fractional change in network density: δρnet/ρnet = −∇·u.
The longitudinal modulus is 300Pa and mesh size ξ = 300nm.
The frequency of the sinusoidally varying force is 0.1Hz. In b)
we plot the same quantities for the same network but with a
frequency of 104Hz. In both cases the force centers are placed
on the x̂ axis at ±1µm.
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lational invariance of the system; we suppress the spatial
variable here and in the following. The angled brackets
are typically used to denote an average over an equilib-
rium ensemble of thermally fluctuating gels. For the ac-
tive system, this is not the case. To distinguish between
thermal averages and averages over the non-equilibrium,
motor-driven system we write the former averages as 〈·〉
and the latter ones as 〈·〉M .

To evaluate the power spectrum of the active gel we
use the Greens function computed in the previous sec-
tion and make the following assumptions regarding the
force density f (u). The stochastic force density acting
on the network has two uncorrelated parts coming from
motor-induced (non-equilibrium) forces and the usual
thermal force associated with equilibrium statistical me-
chanics, i.e., those set by the fluctuation-dissipation the-
orem. Thus, we write

f (u) = fmotor(x, t) + fthermal(x, t). (23)

The thermal forces on the network fthermal(x, t) are se-
lected from the spatially uniform probability distribu-
tion. The same cannot be said for the motor-induced
forces. The motor-induced forces come in correlated
pairs. See Fig. 1 for a schematic illustration. The mo-
tor acts on a pair of parallel filaments to move one of
them past other. The two filaments in question then
exert a pair of equal and oppositely directed forces at
the cross-links. Note that the motor-induced forces are
directly inwardly towards the motor itself. The actin
filaments can sustain large tensile stresses allowing the
motor force pair to be transmitted significant distances
through the network on the scale of the mean distance
between cross-links. These same filaments, however, can-
not sustain large compressive forces before undergoing
an Euler buckling instability. Thus, the motors generate
only an extended force dipole in the network. For a mo-
tor centered at the origin of the coordinate system the
force density it generates has a spatial distribution of the
form

fmotor(x, t) = f0â [δ(x + a/2) − δ(x − a/2)] . (24)

The direction with the force pair â is also a random vari-
able that is isotropically distributed since we assume that
the filaments themselves are so distributed. The distri-
bution of the magnitude of the force pair separation is
presumably peaked at a scale comparable to the mean
distance ℓc between cross-links along a filament, which is
larger than the mesh size of the network and less than the
contour length of a filament. In Ref. [32], for instance, a
distance ℓc ∼ 2.5µm was inferred from the experiments.

We now focus on the temporal dependence of these
motor-induced forces. The individual myosin motors
that drive the network have a short duty cycle producing
only transient kicks to the network. These motors, how-
ever, polymerize in solution to form aggregates of order
102 motors. The motor aggregates collectively generate
forces on the scale of a few pN acting for on the order
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FIG. 5: (a) A representative example of a time series of motor
forces from one myosin motor. The duration of the periods
where the force takes the value F0 is selected from the proba-
bility distribution P (t) as discussed in the text. (b) The power
spectrum of the motor forces. The angled brackets represent
an average over P (t) and is not a thermal average.

of tens of seconds. These forces generically rise gradu-
ally from zero to their maximum and the drop back to
zero abruptly when the aggregate detaches from its sub-
strate, one or both of the two F-actin filaments to which
it was bound. We will show that the rapid off kinetics in-
jects a great deal of low frequency noise. To capture this
effect we model the non-equilibrium motor forces as a se-
ries of square pulses of amplitude F0 ≈ 5pN and varying
duration. A typical example is shown in Fig. 5a. Given
that the probability per unit time of a motor detachment
event from its substrate is independent of duration over
which the motor has been active, it is reasonable to as-
sume that the distribution of durations of motor activity
T is Poisson distributed with mean τ

P (T ) =
1

τ
e−T/τ . (25)

For the experiments in question τ is on the order of tens
of seconds.

Working in the frequency domain, a square pulse of
force of duration T (as shown in Fig. 5a) generates a
force spectrum in the frequency domain of

f(ω; T ) =
2f0 sin(ωT/2)

ωT
. (26)

The instantaneous turn-off of the force is the source of
the ω−1 growth of force spectrum at small frequencies.
We assume that the forces making up the time series as
shown in Fig. 5a are mutually uncorrelated in time so
that the temporally averaged motor-induced force fluc-
tuation spectrum is given by

〈|f(ω)|2〉M =

∫ ∞

0

dT
1

τ
e−T/τ |f(ω; T )|2 =

2f0τ
2

1 + (τω)2
.

(27)
The spectrum of force fluctuations is Lorentzian as shown
in Fig. 5b. We emphasize that the angled brackets in
Eq. (27) represent an average over the distribution of on-
times for the motors given by Eq. (25), and not a thermal
average. The end of the plateau of the Lorentzian in the
mean on-time τ ∼ 10s of the motors. At frequencies high
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enough that ωτ > 1, the force power spectrum decays as
ω−2 at least out to frequencies comparable to inverse of
the force decay time of an individual myosin motor. The
available data on myosin-II suggests that this frequency
is on the order of 103Hz [69]. The thermal forces act-
ing on the network generate white noise (assuming the
network’s shear modulus is not viscoelastic) of an am-
plitude proportional to the solvent viscosity and to the
absolute temperature. This frequency-independent ther-
mal noise, not shown here, eventually sets a noise floor for
the system. The cross-over point to thermal noise dom-
inance at high frequencies depends on overall amplitude
of the motor-induced noise, which in turn depends on the
density and activity of the ATP-consuming motors. In
Fig. 5b this amplitude is set arbitrarily.

III. RESULTS

A. The fluctuation spectrum

We now calculate the fluctuation spectrum of the non-
thermal motor-driven strain field. We do this by setting
thermal driving terms to zero and then averaging the
displacement field at the origin of the coordinate system
over the spatially and temporally varying motor fluctua-
tions. This average is computed by integrating over the
position of the center of force pair r, and the separation
vector between the two forces making up the force pair
a. Using the response function αij(r, ω) computed above,
we may write the strain fluctuation spectrum (evaluated
at the origin) as

〈|u(ω)|2〉M = n

∫

d3r

∫

d3aPf (a)|x(ω; r,a)|2, (28)

where we define x(ω; r,a) to be the amplitude of the
displacement field at the origin and at frequency ω in
response to a motor-induced force pair of the form of
Eq. (24), but centered at r. The distributed dipole of
forces is separated by the vector a. Using the response
function of the two-fluid model to a point force and su-
perposition, this displacement is given by

|x(ω; r,a)|2 =

3
∑

i=1

∣

∣

∣

[

αij(−r + a/2, ω) (29)

−αij(−r− a/2, ω)
]

f0(ω)âj

∣

∣

∣

2

.

In the above response function αij is given by Eq. (18)
and the temporal correlations in the motor force fluctua-
tions are defined by Eq. (27); we work in the limit where
ωτ ≫ 1. We have implicitly assumed in Eq. (28) that
the density n of active motors is uniform in space and
in time. The distribution of separation vectors of force
pairs

Pf (a) =
1

4π
pf (|a|) (30)

is rotationally isotropic and strongly peaked at a length
scale on the order of the mean distance between cross-
links in the network. This distance is greater than the
mesh size and less than a typical filament length. Note
that in an isotropic elastic medium it is sufficient to in-
tegrate over all positions of the center of the force pair r

at a fixed orientation of that pair â. In the following we
approximate this strongly peaked distribution in Eq. (30)
by a delta function.

We compute the motor-driven strain fluctuation power
spectrum for a semiflexible network having a frequency-
dependent complex rheology given by a low frequency
plateau modulus G (ω) ≃ G0 and a high frequency

G(ω) ∼ (−iω)
3/4

regime for frequencies above some ω0,
typically of order 1-10s−1 [18, 70, 71]. We approximate
this behavior by

G(ω) ≃ G0

[

1 +

(

−i
ω

ω0

)3/4
]

(31)

B(ω) = 3G(ω). (32)

Using Eqs. (31), (32) in Eq. (28) and computing that
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FIG. 6: (color online) The power spectral density of net-
work strain fluctuations predicted for a motor-driven network
(solid, blue) and for a network in thermal equilibrium (dashed,
red). The vertical position of the motor-induced spectrum
(solid, blue) depends on an arbitrarily set density of active
motors. Both spectra as plotted against the dimensionless
frequency ω/ω0 as described in the text.

integral numerically we plot (blue) the predicted fluctu-
ation spectrum in Fig. 6 the power spectral density of
the strain fluctuations of the network entirely due to the
action of endogenous molecular motors. The fluctuation
spectrum is show as a function of the dimensionless fre-
quency ω/ω0. We note, however, that this is only an
approximation. In particular, although this incorporates
both the low frequency plateau and high-frequency stiff-
ening of the network due to the dynamics of individual
filaments, it does not accurately capture the imaginary
part of the shear modulus in the plateau regime. Al-
though this may invalidate the thermal spectrum at low
frequencies, it does not significantly affect the active fluc-
tuations that dominate at low frequency. Thus, this sim-
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ple approximation in Eqs. (31), (32) illustrates an ex-
pected 〈|u|2〉 ∼ ω−2 in the low-frequency plateau regime,
where active stress fluctuations dominate [13, 15, 56], as
well as a high-freqency regime dominated by thermal ef-
fects, in which 〈|u|2〉 ∼ ω−7/4 is observed for equilibrium
gels [18].

To examine how the shape of the motor-driven fluctu-
ation spectrum differs from the equilibrium one, we com-
pute the latter using the fluctuation-dissipation theorem.
Specifically, we compute the mean squared fluctuations
for the transverse and longitudinal parts of the strain
field in thermal equilibrium using

〈|uT (ω)|2〉 ∝ T

ω
Im

[

1

G(ω)

]

(33)

〈|uL(ω)|2〉 ∝ T

ω
Im

[

1

B(ω)

]

. (34)

Here uT,L(ω) are the transverse (T) and longitudinal (L)
parts of the strain field evaluated at frequency ω and
at one location in real space, i.e. x = 0. In Eqs. (33),
(34), we have implicitly assumed that the displacement of
a tracer particle embedded in the material depends only
on the strain field of the network; the effect of the solvent
is only to make a correction to the effective viscoelastic
moduli of the network: G(ω) and B(ω). From our ex-
ploration of the transverse modes of the system, this is
likely to be accurate there validating Eq. (33). The use
of Eq. (34) is more suspect. This is especially true at
high frequency, since since B(ω) should actually increase
more rapidly with frequency within the two-fluid model
than suggested by Eq. (32); i.e., the medium becomes
strictly incompressible at high frequency, while it retains
a finite shear modulus.

As in the case of the motor-driven fluctuations, the
thermal fluctuation spectrum is translationally invari-
ant; we suppress the positional degrees of freedom. The
elastic moduli are taken from Eqs. (31), (32). Finally,
the proportionality constants above are irrelevant as the
overall scale of the motor-driven fluctuation spectrum
is proportional to the number density of active motors,
which is not independently known. Thus, we are free to
shift the motor-induced fluctuation spectrum (blue line)
vertically relative to the thermal fluctuation spectrum
(red line). We note that expected fluctuation spectrum
seen in active gel experiments will be the sum of the two
curves shown in Fig. 6 since the expected force fluctua-
tion spectrum is the incoherent or uncorrelated sum of
the colored motor-induced noise and the white thermal
noise.

In spite of this remaining freedom to shift the two
curves relative to each other, we can make some un-
ambiguous predictions based on the theory. The first
is that motor-induced or non-thermal fluctuations will
always dominate the spectrum at low enough frequen-
cies while the thermal fluctuations of the material domi-
nate at higher frequencies. The cross-over frequency be-
tween these two regimes depends on the density of ac-

tive motors, moving to higher frequencies as that den-
sity increases. Secondly we note that the normally seen
low-frequency plateau typical of the thermal fluctuation
spectrum of elastic solids disappears in the motor-driven
system. At these low frequencies the fluctuation spec-
trum dominated by motor activity grows as 1/ω2. This
can be understood as follows: At these low frequencies
the elastic moduli of the are essential frequency inde-
pendent, i.e. G(ω) −→ const. The expected fluctuation
spectrum then takes the form

〈|u|2〉 ∼ 〈|f(ω)|2〉M
|G(ω)|2 ∼ ω−2, (35)

since the motor-driven spectrum exhibits ω−2 growth at
low frequencies as long as ωτ > 1 as seen from Eq. (27).

Transforming back to the time domain, Eq. (35) im-
plies that the position of a tracer embedded in the active
network x(t) appears to diffuse so that 〈|x(t)−x(0)|2〉 ∼ t
at least for time scale smaller than τ , the mean active
time of the motors. Since this time scale can be on the
order or tens of seconds, tracer particles fixed in an active
gel or embedded cytoskeletal components such as micro-
tubules, will appear to diffuse over typical experimental
time scales even though the tracer is not actually moving
through the network[13, 15, 56].

B. The modulus in the active state

We can understand the dramatic increase in the mod-
ulus of the active network relative to the same system in
thermal equilibrium as a simple application of the force
extension relation of a worm-like chain in the limit that
the filament length L is significantly smaller than the
thermal persistence ℓP of the chain [34]. In this limit
the Hamiltonian for the transverse undulations t(s) of a
filament under tension f can be linearized as

HWLC =

∫ L

0

ds
1

2

[

κ

(

d2t

ds2

)2

+ f

(

dt

ds

)2
]

, (36)

where the bending modulus of the chain is given by κ =
kBT ℓP . The vector field t lies in the plane normal to the
average direction of the filament and is parameterized
by the arc length s on that filament. The total filament
contour length is L so that 0 < s < L. For the network to
which we will apply this calculation, the contour length
L refers to the mean distance between consecutive cross-
links along a F-actin filament since the cross-links are
expected to effectively pin the transverse undulations.

Working with this quadratic Hamiltonian and pinned
boundary conditions, i.e. t(0) = t(L) = 0, one can cal-
culate the length stored in these transverse undulations
of the filament in thermal equilibrium at a given tension.
This stored length ∆L can be written as a sum over si-
nusoidal undulatory modes of the chain as

∆L =
kBTL2

κπ2

∞
∑

n=1

1

n2 + f/f0
, (37)
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where f0 = κπ2

L2 . For F-actin filaments having a persis-
tence length of 17µm and a contour length on the order
of microns, this tension scale is ≈ 0.1pN. Applied tensile
stresses larger than this value will significantly change
the spectrum of transverse thermal undulations of the
filament.

The remaining sum in Eq. (37) can be performed so we
may write the thermal equilibrium value of the extension
of the filament LT as

LT (f)

L
= 1 − L

ℓP π2
g

(

f

f0

)

, (38)

where

g(x) =
−1 + πx1/2 coth

[

πx1/2
]

2x
. (39)
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FIG. 7: The extensional modulus of a semiflexible actin fila-
ment normalized by it value in thermal equilibrium as a func-
tion of the non-dimensionalized applied tension f/f0. The
nonlinear stiffening of individual actin filaments under motor-
induced tension can account for the overall increase of the
network’s modulus in response to motor activity.

From Eqs. (38), (39) we compute the effective extensional
modulus

K =
df

dL
(40)

by taking the inverse of the negative derivative of the
stored length ∆L from Eq. (37) with respect to the ap-
plied tension σ.

In Fig. 7 we plot the relative increase in the exten-
sional modulus of an actin filament as a function of
the non-dimensionalized applied tension f/f0. The ef-
fective modulus at tension f is normalized by its linear
value at vanishing small tension. Examining this curve
we see that the modulus increases approximately non-
linearly with tension, as K ∼ f3/2 in the high-tension
regime[23, 56], and that the effective modulus of the fil-
aments increases about one hundred fold for f ≈ 10f0,
which corresponds to tensions on the order of a few pN
for network strands of length ℓc ≃ 2µm. Noting that
the effective modulus of the network is proportional to
the product of K, the network density ρL (equal to fil-
ament length per unit volume), and the mean distance

between cross-links, µ = 1
15KρLℓc [70, 71], we see that,

under a mean tension of only a few pN, the network’s
modulus can increase by a factor of 102. Such tensile
forces of the magnitude expected to be produced by ac-
tive myosin motors. Thus, the interaction of the inherent
elastic nonlinearity of the semiflexible filaments making
up the network and the motor-induced tensions is suffi-
cient to account for the drastic stiffening of the out of
equilibrium system.

IV. DISCUSSION

We have developed a driven two-fluid model of a semi-
flexible network driven out of equilibrium by molecular
motors. In the limit of low active motor density, we com-
pute the predicted fluctuation spectrum of the gel and
find that it differs significantly from the typical microrhe-
ological results of such materials in thermal equilibrium.

In summary, we find a active-motor-density dependent
enhancement of the low frequency noise in the strain field
that generically dominates the tracer fluctuation spec-
trum at low frequencies. One of the consequences of this
low frequency noise enhancement is that tracers will ap-
pear to diffuse in the network even when their size is
much larger than the mesh size. At longer time scales the
mean squared displacement of the tracers will plateau,
exhibiting typical subdiffusive behavior, and both the
time scale for this plateau and the particles’ effective
diffusion constant at shorter times will depend on the
density of active motors. At high enough frequencies,
the motor-induced fluctuations will always form a sub-
dominant correction to the usual thermal fluctuations of
the gel. The cross-over frequency between the small ω,
motor-dominated part of the spectrum and the large ω
thermally dominated part itself depends on the number
density of active motors.

We also examined in a simple mean field approach that
the interaction of the inherent elastic nonlinearity of the
semiflexible filaments under tension with motor-induced
forces leads to an approximately one hundred fold stiff-
ening of the motor-driven network over the thermal one.
Motor generated tensions on the order of one pN, if dis-
tributed evenly throughout the network, can lead to this
dramatic change in the elastic properties of the system.

We conclude with a discussion of the limits of the the-
ory and the extensions of this preliminary work that we
intend to pursue. One of principal questions raised by
the use of the two-fluid continuum model concerns its
validity at short distances. This is of particular concern
in the driven system since the molecular motor induced
forces generate a type of distributed or finite size dipole
of characteristic length equal to the separation between
the two force centers ≈ ℓc, the mean distance between
consecutive cross-links along a filament. In the applica-
tion of the two-fluid model to flexible gels it is reasonable
to take the mesh size ξ to be the short distance limit of
the validity of the assumption of continuum elasticity.
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For the case of interest ℓc ≈ 10ξ, so one might conclude
that the two-fluid description is applicable to describe
even the local displacement field around a distributed
dipole. Cytoskeletal networks, however, are semiflexi-
ble; each filament has another inherent length scale, the
thermal persistence length ℓP , which for F-actin is on the
order of 20µm. Thus, for the system of interest we have
ℓP ≈ 10ℓc calling into question the application of con-
tinuum mechanics on the scale of the distributed force
dipoles.

Recent work [72–75, 77, 78] has shown that semiflex-
ible networks admit a new geometric/mechanical cross-
over between an affine regime, well described by contin-
uum mechanics down to length scales on the order of
ℓc, and a nonaffine regime where the network deforma-
tion cannot be described by continuum mechanics over
mesocscopic lengths far greater than ℓc. This cross-over
is controlled primarily by filament cross-link density. In
the affine regime the deformation around a point force
can be described in terms of the continuum elastic solu-
tion down to the scale of ℓc, suggesting that the short
distance limit of the validity of the two-fluid model is at
most marginally relevant to the theory presented here.
In sparser networks, on the other hand, we expect to see
significant deviations of the strain field around a point
force over lengths much larger than ℓc [76]. In the non-
affine regime the two-fluid model is clearly inadequate to
calculate network’s response to motor forces. New ideas
are required to explore such driven nonaffine systems.

In addition, both of the calculations presented above
ignore the interaction of motors mediated by the strain
field in the network. Such effects may become important
at higher motor concentrations. The motor interactions
are expected to take two forms. Our calculations have
so far assumed that the effects of motors can be simply
added. This will not be the case when the motors interact
through the elastic nonlinearity of the semiflexible net-
work. Such interactions should have measurable effects
on the non-equilibrium strain fluctuations of the system
when the density of active motors becomes sufficiently
high.

To explore this point, consider the effect of two motors
on the displacement of a tracer particle. If a motor is
active in a particular region it will generate a contribu-
tion to the strain field (and thus to the displacement of
nearby tracer particles using for microrheology) but also
contribute to the local stiffening of the network. Should
a second motor become active in same area, its contribu-
tion to the displacement of the tracer will be influenced
by the local stiffening of the network due to the activity
of the first motor. Since the motors generate fixed forces
and not fixed displacements, the effect of the second mo-
tor on the displacement of the tracer will be diminished
due to the increase of the network’s effective modulus
in response to the first motor’s activity. Thus, the ef-
fects of multiple active motors will not be simply ad-
ditive in the high motor concentration limit. Secondly,
the forces generated by one motor in the network may

act to detach near-by motors from their substrate. It is
well-known that the off-rate of non-covalent biochemical
bonds is exponentially sensitive to applied load [79, 80].
Since the motors act as transient cross-linkers in the net-
work, changes in the local stress state of the system will
influence the off-rate of motors. In particular we expect
that the activity of a motor will decrease the probability
of the activity of near-by motors. This effect should lead
to spatial anti-correlations in the density of active mo-
tors in the network. This effect should play a role as an
n2 correction to the integral over motor-induced strain
fluctuations leading to a type of viral expansion in the
active motor density.

The stiffening of the network in response to motor ac-
tivity will also depend on the density and spatial distribu-
tion of active motors. Our calculation shows that a typi-
cal value expected for the tension in an active network is
sufficient to explain the two order of magnitude increase
in its effective modulus. The calculation, however, does
not address how this modulus quantitatively depends on
the density of active motors. One might imagine that
each active motor creates a volume around it in which
the network’s local modulus is effectively stiffened. The
macroscopic stiffening of the network then results from
a type of percolation of such stiffer regions occurring
at a critical mean density of active motors. Based on
this reasoning, one might expect the dependence of ef-
fective macroscopic modulus on active motor density to
be highly nonlinear. This simple prediction is compli-
cated by the fact that a low density of stiffer inclusions
is known to effect the long length scale mechanics of an
elastic solid. Such an effect has been studied in the con-
text of carbon black reinforced rubbers.
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Appendix A: The M matrix

The 6× 6 matrix is most easily understood in terms of
a 2×2 block matrix in which each block is a 3×3 matrix
whose indices run over the usual Cartesian space coordi-
nates in three dimensions. In this form the matrix can
be written in the Fourier domain in terms of wavevector
k and frequency ω as

Mαβ =

(

Aij −Γδij

iωΓPT
ij(k) Bij

)

. (A1)

We have defined the 3 × 3 matrices to be

Aij = −iωΓδij + µk2PT
ij(k) + Bk2PL

ij(k) (A2)

Bij =
(

−iωρ + ηk2 + Γ
)

δij (A3)
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so that Mαβ = Aαβ for α, β ≤ 3. Similarly, Mαβ =
Bα−3,β−3 when both 3 < α ≤ 6 and 3 < β ≤ 6 hold.

The equation of motion of the two-fluid system then
can be written compactly as

MαβUβ = Fα, (A4)

where the 6-vector of the dynamical fields is given by

Uα =

{

uα 1 ≤ α ≤ 3
vα−3 4 ≤ α ≤ 6

(A5)

In the above we suppress the k and ω dependence of
this vector. The 6-vector of force densities driving these
variables has a similar form:

Fα =

{

f (u)α 1 ≤ α ≤ 3

f
(v)
j PT

α−3,j(k) 4 ≤ α ≤ 6
(A6)

where the sum on j runs over the three coordinates of
the physical system and f (u), f (v) are the force densities
driving the network and the fluid respectively. Looking
at Eq. (A1) we note that the two off-diagonal blocks cou-
ple the dynamics of the displacement and fluid velocity
fields; they are both necessarily proportional to Γ. In
order solve for the response of the dynamical field u and
v in terms of the applied force densities, it is necessary
to invert the M matrix. This is most naturally accom-
plished in the basis of longitudinal and transverse modes
of the fluid and the network as can be seen from an ex-
amination of Eq. A2. The longitudinal part of the fluid
velocity field decouples from the other dynamical vari-
ables. It is not driven due to the presence of the trans-
verse projector in Eq. A6 and thus can be neglected.

Appendix B: The longitudinal response tensor

In this appendix we transform the longitudinal re-
sponse function from wave vector to position space. Do-
ing this requires that we evaluate the integral

Lij(x) =

∫

d3q

(2π)3
eiq·x q̂iq̂j

−iωΓ + Bq2
. (B1)

Examining the structure of the integrand above it is clear
that that

Lij(x) = t1δij + t2x̂ix̂j . (B2)

To determine the remaining constants, we evaluate the
trace of the tensor and the product x̂ix̂jMij(x). The
trace of the tensor can be simply written as

Lii(x) =
1

2π2|x|

∫ ∞

0

dq
q sin(q|x|)

−iωΓ + Bq2
. (B3)

Nondimensionalizing the integral and we may write this
as

Lii(x) =
1

2π2B|x|

∫ ∞

0

ds
s sin(s)

s2 − ix2/ℓ2(ω)
, (B4)

where we have introduced the penetration length defined
by Eq. (16) and repeated indices are summed over. Per-
forming the remaining integral, we find that

Lii(x) =
1

4πBr
e−κr/ℓ(ω), (B5)

where r = |x| and κ is the root of unit defined in Eq. (15).
It is clear that in the static limit, ω −→ 0, the penetra-
tion length diverges for any elastic solid, i.e. a material
where limω→0 B(ω) = B0 > 0, so that the above result
simplifies to Lii(x) = 1/(4π|x|) as is expected for this
part of the response function of an isotropic, elastic solid
due to a point force at the origin.

To compute the scalar product, x̂ix̂jLij(x) = I, we
note this integral is actually simply related to that shown
in Eq. (B4). In this case we find

I = − 1

2π2B

∂2

∂x2
|x|

∫ ∞

0

ds
sin(s)

s

1

s2 − ix2/ℓ2(ω)
. (B6)

Evaluating the remaining integral as above and taking
the necessary derivatives we find that

I =
1

4πBr

[

e−κ r

ℓ +
2iκℓ

r
e−κ r

ℓ (B7)

−2iℓ2

r2

(

1 − e−κ r

ℓ

)

]

From Eq. (B2) Lii(x) = 3t1 + t2 and I = t1 + t2, so
by using Eqs. (B5) and (B7) we may determine the two
unknown functions making up the longitudinal response
function. From these results and simple algebra we find
that this response tensor takes the form given by Eq. (12).

It is important to check the static limit of these re-
sults. In the ω −→ 0 limit, the solvent can play no role
in generating stresses so the mechanics of the two-fluid
system must simplify to that of an isotropic continuum
elastic material. As seen in Eq. (B3), in the static limit
ℓ −→ ∞ so Lii(x) −→ 1/(4πBr) [1 − κr/ℓ]. It is simple
to check that first term corresponds to the usual result
for the elastic Green’s function in an isotropic continuum.
From Eq. (B7) it is clear that the r/ℓ −→ 0 limit is some-
what nontrivial. Expanding the exponentials, one finds
that I −→ 1/6πBr [0 + iκr/ℓ] so that this term vanishes
in the static limit in agreement again with the results of
continuum elasticity.

Appendix C: The transverse response

The transverse part of the network’s response to a
point force applied at the origin and having a sinusoidal
time dependence is given by

Tij(x, ω) = (C1)
∫

d3q

(2π)3
eiq·x(−iωρF + Γ + ηq2)(δij − q̂iq̂j)

(−iωρF + Γ + ηq2)(−iωΓ + µq2) + iωΓ2
.
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This integral can be obtained by using Eq. (9) to extract
the transverse response of the network to a force applied
directly to it, i.e. f (v) = 0, and f (u) ∼ δ(x)e−iωt. We sim-
plify this expression by setting the solvent mass density
to zero. The effect of going to this completely inertia free
regime is that the transverse network and solvent waves
now have an infinite propagation velocity. Based on our
experience with the similarly inertia free Stokes equation
(zero Reynolds number hydrodynamics) we expect the
response of the system around a point force to decay as
a power law in space and instantaneously update itself
temporally so that the response is always in-phase with
a sinusoidal drive at all points in space.

We also note that Γq2 ∼ (ξq)2 ≪ 1 since the continuum
model cannot remain valid at length scales comparable
to the mesh size. Using these two simplifications we find
that Eq. (C1) can be rewritten as

Tij(x, ω) ≃
∫

d3q

(2π)3
eiq·x (δij − q̂iq̂j)

(µ − iωη)q2
. (C2)

The physical meaning of this result is now more trans-
parent. The term in the dominator is precisely that ex-
pected for inertia free elasticity theory for a system hav-
ing a viscoelastic shear modulus G(ω) = µ − iωη. This
shear response of the composite medium is simple the
combination of the elastic response of the network (µ)
and the viscous response of the solvent (−iωη). Noth-
ing in the above analysis precludes the consideration of
a frequency-dependent viscoelastic modulus of the net-
work itself: µ → µ′(ω)+ iµ′′(ω). In fact we examine such
a case in our final computation of the expected power
spectrum of tracer motions.

Using the techniques employed in C, the remaining
integral over wavevector can be performed yielding the
result:

Tij(x, ω) =
1

8π|x|(µ − iωη)
[δij + x̂ix̂j ] . (C3)
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