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The mechanics of cells is strongly affected by molecular motors that generate forces in the cellular
cytoskeleton. We develop a model for cytoskeletal networks driven out of equilibrium by molecular
motors exerting transient contractile stresses. Using this model we show how motor activity can
dramatically increase the network’s bulk elastic moduli. We also show how motor binding kinetics
naturally leads to enhanced low-frequency stress fluctuations that result in nonequilibrium diffusive
motion within an elastic network, as seen in recent in vitro and in vivo experiments.
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The mechanics of living cells are largely governed by
the cytoskeleton, a complex network of filamentous protein
aggregates and various specialized proteins and enzymes
that couple the filaments together and generate forces [1].
As materials, in vitro networks of cytoskeletal filaments
have been shown to have unusual mechanical properties,
including a highly nonlinear elastic response [2–6] and
negative normal stresses [7]. Cytoskeletal networks in vivo,
however, are far from equilibrium materials, due in large
part to molecular motors that exert internal forces within
the networks. This presents a challenge for quantitative
statistical or thermodynamic modeling. Recent studies of
in vitro networks that include molecular motors have
shown nearly a 100-fold stiffening of the networks due to
motor activity, as well as pronounced low-frequency, non-
equilibrium fluctuations [8]. Here, we develop a model for
such active gels that can explain both the strong stiffening
of networks with motor activity, as well as the large
nonequilibrium fluctuations at low frequencies. We also
show how motor (un)binding kinetics naturally leads to a
very simple and general form of stress fluctuations and
diffusivelike motion, which are consistent with observed
nonequilibrium dynamics in living cells [9,10]. This model
can form the basis for quantitative design principles for
creating synthetic polymeric materials with tunable elastic
properties and musclelike activation.

Active solutions consisting of polymers and motors con-
stitute a strikingly new kind of material that can actively
change or adapt its macroscopic mechanical properties due
to small-scale motor activity that drives relative sliding of
polymers past each other [11–15]. In permanently cross-
linked networks, however, such motor activity can produce
tensile stresses [8]. This musclelike contraction is sketched
in Fig. 1(a). It is well known that single semiflexible
polymers stiffen under extension [16], and that this can
result in macroscopic stiffening of networks under external
strain [3,4,17]. This effect can also account for the ob-
served dramatic stiffening of active networks [8,18].
Assuming an average state of tension in the network

strands due to motor activity, we can calculate the expected
degree of network stiffening as follows. The tension � in a
single filament is calculated as a function of longitudinal
extension ‘ as in Ref. [17], from which an effective spring
constantK � d�=d‘ is calculated. In the nonlinear regime,
this increases as K / �3=2 [3]. The network modulus is
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FIG. 1 (color online). (a) Schematic diagram of contractile
motor activity in a network. A myosin minifilament (blue) slides
two network filaments (red) past each other, generating an equal
and opposite pair of forces (green arrows). (b) Plot of the
predicted relative stiffening of a semiflexible network as a
function of (normalized) motor-induced tension. The inset shows
the nonlinear force-extension relation of a single semiflexible
filament [3,4,17].
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given by G � 1
15�‘cK, where � is the density (length per

volume) of polymer, and ‘c is the distance between cross-
links [19,20]. The predicted stiffening is shown in
Fig. 1(b), where the filament tension has been normalized
by the characteristic tension �0 � kT�2‘p=‘2

c required to
pull out the fluctuations on a filament of length ‘c in the
network. Here, ‘p is the persistence length. For a network
of actin filaments, such as in Mizuno et al. [8], where ‘p �
17 �m and ‘c ’ 3 �m, this characteristic average tension
is of order 0.1 pN, meaning that a tension of just a few pN,
which is easily reached by myosin motors, can lead to the
observed 100-fold stiffening of active networks.

The quasistatic picture sketched in Fig. 1(a) shows a
motor (myosin minifilament) generating a pair of equal and
opposite forces � ~f applied at points ~r� � ~r� ~a=2, sepa-
rated by ~a. We expect a to be a few microns in an in vitro
network. Since actin filaments are not able to support
compressive loads over this distance, the resulting force
dipole is contractile: the points are pulled together by a sort
of musclelike activity. While individual myosin motors are
nonprocessive and are incapable of persistent, directed
motion, they self-assemble into minifilaments, which are
processive. These minifilaments still have a finite duty
ratio. When they unbind, the tension is instantaneously
released, as sketched in the inset of Fig. 2 [8]. Such a
steplike force f�t� corresponds to a power spectrum of
force fluctuations that varies as !�2, proportional to the
square Fourier transform of f.

As we show, this physical picture of steplike contractile
forces naturally leads to nonequilibrium fluctuations that
dominate only at low frequencies, as sketched in Fig. 2.
Surprisingly, this generates motion that appears to be dif-
fusive: hjx�t� � x�0�j2i �Dt, but occurring in an elastic
material. The effective diffusion constant D is controlled
by motor activity and not temperature. Using well-
established viscoelastic properties of cross-linked F-actin
networks [19,20], we find distinct regimes of both thermal
and athermal (motor-induced) fluctuations sketched in

Fig. 2, which are consistent with the observations both
in vivo [9] and in vitro [8].

To model the active gel we use a continuum description
for a viscoelastic homogeneous and isotropic medium, but
in which the motor activity couples to this medium as
illustrated in Fig. 1(a). For in vitro networks such as in
Ref. [8], the distance between cross-links, and thus a, is
expected to be of order 3–10 �m. On this scale, we can
model the action of a motor as the introduction of a pair for
equal and opposite applied forces in the (visco-)elastic
continuum. The resulting displacement field ui at position
~r0 of the network we describe by a linear response function
�ij depending on position and frequency as

 ui�~r0; !� � ��ij�~r0 � ~r�; !� � �ij�~r0 � ~r	; !�
fj�!�;

(1)

using the fact that the motor-generated forces� ~f are equal
and opposite. Stability also requires that ~f and ~a be paral-
lel. The response function to a point force �ij can be
written in terms of �k and �?, where �ij�~r� � r̂ir̂j�k�r� 	
��ij � r̂ir̂j��?�r�.

We calculate these two response components within a
two-fluid approximation, in which the cytoskeletal fila-
ments are treated as a porous elastic network immersed
in a viscous solvent [21–24]. Here, the network displace-
ment u and solvent velocity v satisfy the coupled equations

 0 � �r2 ~u	 ��	 �� ~r� ~r � ~u� 	 �
�
~v�

d ~u
dt

�
	 ~fn; (2)

 0 � �r2 ~v� ~rP� �
�
~v�

d ~u
dt

�
	 ~fs; (3)

where � and � are Lamé coefficients, � is the solvent
viscosity, and the forces fn;s represent the forces on the
network and solvent, respectively. Given a meshwork with
a pore size 	, the coupling � is expected to be of order
�=	2. These are solved for the response of the combined
system to an applied point force. The resulting response
functions are given by

 �k�r;!� �
1

4�rG�!�

�
1	

G�!�
B�!�


k�r
�����
�
p
�

�
; (4)

and

 �?�r;!� �
1

8�rG�!�

�
1	

G�!�
B�!�


?�r
�����
�
p
�

�
; (5)

where 
?�x� � 2i�1� �1	 x
������
�i
p
�e�x

�����
�i
p


=x2 and

k�x� � e�x

�����
�i
p

� 
?�x�. Here, G is the shear modulus
and B � 2�1���

1�2� G is the longitudinal modulus, where � is
the Poisson ratio, and � � !�=B. This coupling can be
understood in terms of the solvent flow through the highly
porous gel: rapid solvent flow through the filament mesh
gives rise to large shear stresses, effectively dragging the
network with the solvent. This drag prevents the large-
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FIG. 2. The displacement power spectral density (PSD) in an
active gel. Here, frequency is measured in terms of � � !�=B.
The thermal PSD (dashed line) shows a plateau at low frequen-
cies. Thus, the active component of the PSD dominates at low
frequencies, while the thermal PSD is expected to dominate at
high frequencies. (Inset) Schematic of the time-dependent force
due to molecular motor activity.
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scale relative motion of the network and solvent beyond a
range of order ��1=2. On larger length scales r or at higher
frequencies !, the drag effectively inhibits the relative
motion of solvent and network so that for r

�����
�
p
� 1, the

combined network and solvent act as a single incompress-
ible material [23,24], and 
k;? both vanish [Fig. 3(a)].
Here, the response of the medium is purely transverse
(the displacement vector field is divergenceless) and is
given by the generalized Oseen tensor, given by leading
terms in square brackets above [24]. The corresponding
volume-preserving flow response of an incompressible gel
when subject to a symmetric pair of point forces is shown
in Fig. 4(a).

In this incompressible case, the displacement field u�!�
of the network resulting from motor activity varies with an
overall frequency dependence proportional to the ratio of
the force f�!� to the shear modulus G�!�, according to
Eqs. (1)–(3). Thus, we find for the model illustrated in
Fig. 1(a) that hju�!�j2i / hjf�!�j2i=jG�!�j2 / j!Gj�2.
Cross-linked biopolymer networks typically exhibit a con-
stant or weakly frequency-dependent elastic regime as a
function of frequency. Here, we expect to see hju�!�j2i /

!�2, which is consistent with recent displacement fluctua-
tions observed in cells [9], and which corresponds to
diffusive motion. At higher frequencies, such networks
typically exhibit a power-law increase in the shear modulus
with frequency [19,20,23], in which G / !3=4. In this
frequency regime stain fluctuations in the active gel take
the form hju�!�j2i / !�7=2, as shown in Fig. 2. For com-
parison, the equilibrium thermal fluctuations for such a
network are shown as the dashed line. At low frequencies
the motor-driven fluctuations will dominate over the ever-
present thermal fluctuations, consistent with the results of
both Lau et al. [9] and Mizuno et al. [8].

Since biopolymer and cytoskeletal networks are generi-
cally porous with pore sizes of order 1 �m, they can de-
form compressibly. This density mode, however, is
strongly suppressed by drag at high enough frequencies.
The loss of the density mode at high frequencies is illus-
trated in Fig. 3(a), where the effects of finite compressi-
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FIG. 3. (a) Graphs of the spatial dependence of the longitudi-
nal parts of the parallel (k) and perpendicular (?) response
functions [Eqs. (2) and (3)]. The effect of compression of the
network on the response functions can be reduced to a universal
form when plotted against the dimensionless quantity r

�����
�
p
�

r
�������������
!�=B

p
, demonstrating the diffusive nature of the propagation

of the network density mode. (b) The effect of network com-
pression can be isolated in experimental data by examining the
difference in the parallel and perpendicular response functions
given in Eq. (4). Here we plot the predicted form of the real (Re)
and imaginary (Im) parts of that difference vs the dimensionless
variable r
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�
p
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FIG. 4. (a) The displacement vector field of an incompressible
network shown in a plane passing through the two force centers
for a contractile motor acting at the origin. The forces are applied
symmetrically at points (�3=4, 0) and are each directed towards
the origin. (b) The network displacement field for the compres-
sion mode shown in the limit of low frequency or weak hydro-
dynamic coupling (�! 0). Again, the forces are applied
symmetrically at points (�3=4, 0) and are each directed towards
the origin. The resulting displacement field induces network
density variations in the material.
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bility, represented by 
k;?, vanish at high frequency.
Although the basic physics of these effects have been
discussed before for both flexible polymer systems
[21,22] and semiflexible biopolymer systems [23,24], there
has been no direct experimental observation of these com-
pressibility effects in porous biopolymer systems.

We can isolate the effects of the network compressibility
by the examining the combination

 �?�r;!� �
1

2
�k�r; !� �

�
?�r
�����
�
p
� � 1

2
k�r
�����
�
p
�


8�rB�!�
; (6)

which is plotted in Fig. 3(b). This measurable combination
of response functions strictly vanishes in the incompress-
ible limit. This, along with the specific combined r and !
dependence, may permit the first direct measurement of
compressibility effects that are expected to be character-
istic of biopolymer or cytoskeleton networks. Furthermore,
the flow or displacement field corresponding to this com-
pressible mode [shown in Fig. 4(b) in the limit �! 0]
strongly differ from the case of an incompressible system
[Fig. 4(a)]. Here, the longitudinal (irrotational displace-
ment field) contributions to the response function are
��L�
k
� 0 and ��L�? � 1=�8�rB�. The difference in spatial

structure of these strain fields may also be used to experi-
mentally identify the effects of compression.

To consider the effect of multiple contractile events
within the medium, we can represent the resulting dis-
placement field at the origin ui by a sum

 ui �
X

��ij� ~r; ~a�âjf; (7)

where ��ij�~r; ~a� � �ij�~r� ~a=2� � �ij�~r	 ~a=2� is the re-
sponse to a contractile force pair. We suppress the fre-
quency dependence. This sum represents the combined
effect of temporally uncorrelated contractile events occur-
ring homogeneously throughout the medium. This assump-
tion remains valid provided that the events rarely occur
with a separation of order a� ‘c during the typical pro-
cessivity time t0. Such a sum or average has been per-
formed in calculating the fluctuation spectrum in Fig. 2 for
the case of an incompressible network. In this case the
scaling described above is a good approximation.

This model shows how motor activity within a semi-
flexible gel, together with the well-established nonlinear
response of such networks, leads to a strong stiffening of
the network, and that this stiffening increases more than
linearly with the motor force. This can account for the
recently observed nearly 100-fold network stiffening with
motor forces of order 1–10 pN [8]. Furthermore, the (un)-
binding kinetics of the motors naturally leads to a specific
characteristic time dependence of the force fluctuations in
active gels. Given a finite processivity time t0 over which
minifilaments remain bound and generate force, the un-
binding results in 1=!2 force fluctuations for frequencies
!> 1=t0. This spectrum is a direct result of the expected

sharp time dependence of motor unbinding and is insensi-
tive to slow variations of force during motor motion. For
frequencies!> 1=t0, the divergence of the force spectrum
will be suppressed. Our model is for uncorrelated motor
activity, in that the total fluctuations can be represented as a
sum of independent fluctuations due to individual motor
force generation and unbinding. At sufficiently high motor
densities, one might expect cooperativity of motor activity,
whose consequences can be studied in extension of the
present model.
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