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Elasticity of Semiflexible Biopolymer Networks
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We develop a model for cross-linked gels and sterically entangled solutions of semiflexible
biopolymers such as F-actin. Such networks play a crucial structural role in the cytoskeleton of
cells. We show that the rheologic properties of these networks can result from nonclassical rubber
elasticity. This model can explain a number of elastic properties of such networksin vitro, including
the concentration dependence of the storage modulus and yield strain.

PACS numbers: 61.25.Hq, 82.70.Gg, 83.80.Lz,
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A variety of semiflexible biopolymers and protein fila
ments affect cell structure and function. The most prev
lent of these in eucaryotic cells is actin, which forms th
cytoskeletal rim [1,2]. This actin cortex is a polymer g
that provides mechanical stability to cells, and plays a k
role in cell motion. Networks of actin and other prote
filaments in vitro have been the subject of considerab
recent interest [1–7], not only because of their structu
role in cells, but also because of the unusual viscoela
properties of these networks. Such protein filaments
actin are novel in that they form viscoelastic networks,
which a ø j & ,p , wherea is the size of a monomer,j

is the characteristic “mesh” size of the network, and,p is
the persistence length of a chain. In the case of actinj

and,p are of order 1mm, as illustrated in Fig. 1. This,
for instance, has permitted direct visualization of polym
dynamics such as reptation [8,9] by optical microsco
[7]. Insight into the control of viscoelasticity in network
of both natural and synthetic semiflexible polymers
this intermediate regime is also important for the desi
of biocompatible materials. For instance, aqueous g
of stiff protein filaments or biocompatible polymers hav
both structural and pharmaceutical applications. Howev
neither models of flexible-chain solutions nor models
rigid-rod networks [8,9] are directly applicable to such sy
tems. Here we report a model for the elasticity of sem
flexible polymer networks that can account for many of t
observed properties of such networksin vitro.

Concentrated solutions and gels of flexible polyme
are characterized by entanglement points where polym
strands cross and loop around each other. Perma
networks or gels can be formed by chemical cros
links that determine the average distance between po
along a given chain that are effectively constrained
the surrounding network. For a solution, on the oth
hand, the viscoelastic properties depend on trans
entanglements of an individual chain with its neighbo
[8,9]. Despite the transient nature of these entangleme
over intermediate time scales of interest, the effect
much the same as that of chemical cross-links, althou
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the effective degree of entanglement or the avera
length Le between entanglements is more subtle. Th
intermediate regime is the “rubber plateau,” for which th
solution behaves as an elastic solid. It is this regime th
we address below.

F-actin at concentrations between 36mgyml and
2 mgyml forms viscoelastic solutions without permanen
cross-links, but the arrangement of filaments is differe
from that of flexible polymers. Solutions of actin fila-
ments in vitro exhibit a polydisperse length distribution
of about 2 to 70mm in length, with a mean length of
22 mm [10]. On the scale of the mesh sizej , ,p ,
chains cannot form loops and knots [11–13] since the
persistence length is substantially longer. Therefore, t
structure of a molecular constraint between two act

FIG. 1. Entangled network of semiflexible actin filaments
(A) In physiological conditions, individual monomeric actin
proteins (G-actin) polymerize to form double-stranded helic
filaments known as F-actin. These filaments exhibit a pol
disperse length distribution of up to 70mm in length. The
persistence length of these filaments is of order 2mm. (B) A
dense solution (1.0 mgyml) of actin filaments, approximately
0.03% of which have been labeled with rhodamine-phalloid
in order to visualize them by fluorescence microscopy. The a
erage distancej between chains in this figure is approximatel
0.3 mm. Note the nearly straight conformation of the filament
on this scale.
© 1995 The American Physical Society 4425



VOLUME 75, NUMBER 24 P H Y S I C A L R E V I E W L E T T E R S 11 DECEMBER 1995

at
by

e
m
e

s:

th

ht

la-

e.

y

of

,
n

filaments will differ from that of two entangled random
coils, and perhaps the term entanglement is not entir
appropriate in this context. Nevertheless, we shall reta
the term entanglement length and the corresponding sy
bol Le in analogy with flexible systems, and to emphasiz
that the relevant length for elastically active contacts
distinct from the average difference between overlappi
polymers, or the mesh size.

Many of the properties that are apparently important f
the function of the actin cortex are essentially differe
from those of gels and concentrated solutions of flexib
polymer chains. Although some viscoelastic properti
of actin and other biopolymer networks resemble tho
of high molecular weight solutions of flexible polyme
chains, the rubber plateau regime exhibits novel behavi
Actin solutions, for instance, exhibit relatively high platea
moduli, of order 100 Pa or higher for actin monome
concentrations of order 1 mgyml (i.e., for volume fractions
of order 0.1%) [6]. Similarly high shear moduli are
also measured for the biopolymer fibrin. For compariso
high molecular weight polystyrene solutions at highe
concentrations of order 1% exhibit moduli of only abou
1 Pa [14]. The plateau modulus of actin networks al
exhibits significant strain hardening for modest strains.
rather small linear regime is observed; e.g., in many ca
they have a threshold strain as low as (5–10)%, beyo
which they lose their mechanical integrity. In the cas
of actin, this maximal strain also weakly decreases w
increasing actin concentration [15]. As we show, this
a direct consequence of the intrinsic bending rigidity o
biopolymers such as actin, and is direct evidence of t
inapplicability of the freely jointed chain model for the
concentrations of interest [16,17].

We propose a mechanism for elasticity in thes
networks that is still entropic in origin, but which can
account for the rather large moduli. We shall focu
primarily on actin networks, although our model i
applicable to other semiflexible polymers at intermedia
concentrations. We develop a model for dense
crosslinked actin gels and entangled solutions, in whi
the elastic properties arise from chains that are ve
nearly straight between entanglements, as illustrated
Fig. 1. As we shall focus on the elastic rubber platea
modulus, we shall not distinguish between cross-link
gels and entangled solutions, except insofar as
entanglement lengths may differ. We show that fo
an entangled solution, the plateau modulus scales w
concentrationcA as G0 , c

11y5
A . As shown in Fig. 2

this is consistent with the measurements to date
the concentration dependence ofG0 in the range of
0.3–2.0 mgyml [4]. For densely cross-linked gels
however, a somewhat stronger,G0 , c

5y2
A , dependence

is predicted.
In our model for the linear elasticity in the platea

regime, we consider an ensemble of chain segments
length Le (either between cross-links or entangleme
4426
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points), which are embedded in a continuous medium th
undergoes a uniform shear deformation characterized
angleu. This assumption of a simple, affine deformation
should be valid only to describe the linear response of th
network. The elastic response of the network results fro
the tension in such chain segments as a function of th
extension,L 2 L0, whereL0 is the relaxed length. When
a semiflexible chain segment is stretched by a tensiont, the
energy per unit length of the chain depends on two effect
the bending of the chain, and the work of contracting
against the applied tension. The energy per unit leng
can be written [19]

H 
1
2 ks=2ud2 1

1
2 ts=ud2, (1)

wherek is the chain bending modulus, andusxd describes
the (transverse) deviation of the chain away from a straig
conformation along thex axis. k is related to the persis-
tence length of the chain,p (the length over which the
chain appears straight in the presence of thermal undu
tions) by,p . kykT . We letL` denote the full contour
length of the chain (i.e., fork  ` or t  `). We neglect
the possibility of “internal” stretching of the chain; i.e.,
the chain is assumed to have no longitudinal complianc
Thus, for fixed contour length,L` 2 L . 1

2

R
dx s=ud2.

At a given temperature and for a given tensiont, the trans-
verse thermal fluctuations ofu determine the equilibrium
length L. The chain conformation can be described b
the Fourier seriesusxd  Squq sinsqxd, where we include
wave vectorsq  pyL, 2pyL, . . . consistent with fixed
ends of the chain segment. For the harmonic energy
Eq. (1), the mean square amplitudesku2

ql can be calculated

FIG. 2. The plateau modulusG0 of actin networks as a
function of concentration in mgyml [4]. The predicted scaling
for entangled networks, from Eq. (8), is shown. In this case
G0 , c

11y5
A . A nematic phase of actin filaments has been show

to form above a concentration of approximately 2 mgyml [18].
Our model is valid for the entangled isotropic regime [11]
skTykd2ya , cA , kTyska2d.
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from the equipartition theorem, with the result that

L` 2 L . kT
X
q

1
kq2 1 t

, (2)

where we have included both transverse polarizations
u. To linear order in applied tensiont, the average
end-to-end distance of the chain segment isL . L` 2

kTL2ys6kd 1 kTL4ys90k2dt. The second term repre
sents the equilibrium contraction of the end-to-end d
tance at finite temperature. The last term gives the lin
relationship between the applied tension and extensiondL
of the chain segment beyond its relaxed length. For sm
deformations, the restoring force for either extension
compression is given by [20]

t ,
k2

kTL4 dL . (3)

The above results for the behavior of individual chai
can be used to estimate first the maximum shear str
umax that a network can withstand. This will, in genera
decrease with increasing concentration, since the en
glement length will then decrease. This means that
fraction of the excess chain length in the form of the
mal undulations decreases, and hence there is less c
available to “pull out” under the applied stress. Mo
precisely, the relative extension of a segment of leng
Le between entanglements is proportional to the strainu:
dL , uLe. Considering the total excess lengthL` 2 L0
above, the maximum strain for chain segments of len
Le is given by umax , kTLeyk. Thus, the maximum
strain is predicted to dependlinearly on Le. Further-
more, this maximal strain decreases with increasing ch
stiffness (for the same entanglement lengthLe). This is
consistent with the observation that the yield strain do
indeed increase with increasing flexibility of the networ
networks of ADP actin, ATP actin, and vimentin sho
such a trend [17].

For the modulusG0 we use the relation above for th
tension on an individual chain segment as a function
the shear strain in the linear regime. For a network,
consider a chain segment of lengthLe that is deformed by
an amount given bydL , uLe. Of course, the deforma-
tion depends on the orientation of the segment. For sm
strain u, the restoring force under both extension a
compression [Eq. (3)] contributes to the linear elasticity
a network. Solutions and gels are characterized by a m
size j that describes the average spacing between ch
or the size of voids between filaments. Along a plane p
allel to the shear, there are1yj2 chains per unit area [9].
The stresss is therefore given bys , k2yskTj2L3

edu in
the linear regime. Thus the modulus scales as

G0 ,
k2

kT
j22L23

e . (4)

This is in contrast with the behavior of gels and networ
of flexible chains, for whichG0 , kTyj3 [8].
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Both the entanglement lengthLe and the mesh size
j decrease with increasing concentration of chains, a
though, unlike concentrated solutions of flexible chains
the scaling of these quantities with concentration nee
not be the same whenLe * j [21]. The characteris-
tic mesh sizej for a network of stiff chains is given
by j , 1y

p
acA, wherecA is the concentration of actin

monomers of sizea [22]. This is valid when the persis-
tence length of the chains is longer than the mesh si
j. For a densely cross-linked gel,j is also the typical
distance between cross-links, and therefore entanglem
points;Le . j. In this case,

umax ,
kTj

k
,

kT
k

sacAd21y2 (5)

and

G0 ,
k2

kT
j25 ,

k2

kT
sacAd5y2. (6)

The precise dependence of the entanglement leng
on concentration in a solution of semiflexible chains i
less obvious than for flexible systems. We expect th
Le may become substantially larger thanj for j &

,p , since the transverse fluctuations of a semiflexibl
chain are greatly reduced over distances comparable
or smaller than the persistence length of the chai
We assume that the scaling of this entanglement leng
is the same as that of the typical distance betwee
binary collisions between chains in solution. This lengt
can be obtained in the following way [11]. From the
above energy in Eq. (1), the transverse fluctuations
temperatureT of a chain confined (entangled) at one en
grow askL2

'l , kTL3yk, whereL is the distance from
the entanglement. Thus, the fluctuating chain segmen
of length Le between entanglements occupy a volum
LekL2

'l , kTL4
eyk. For a given concentrationcA, the

probability of an intersection with another chain is o
order unity forLe , skykT d1y5sacAd22y5, which becomes
larger thanj for j ø ,p. Thus

umax , skTykd4y5sacAd22y5 (7)

and

G0 , kskykT d2y5sacAd11y5. (8)

This model provides a consistent framework with
which to understand the macroscopic viscoelasticity o
chemically cross-linked and sterically entangled biopoly
mer solutions. Based on the semiflexible nature of se
eral biopolymers, including F-actin, the model can explai
both the large storage moduli as well as the observe
strain hardening of networks at moderate to low strain
[23], a feature in contrast with the behavior of flexible
polymer networks. For instance, at equal volume frac
tions, vimentin filaments, which are approximately an or
der of magnitude less stiff than F-actin, form solution
4427
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with smaller shear moduli than F-actin, although vimen
solutions can withstand approximately 10 times larg
strains than F-actin before rupturing. Experimental obs
vations of shear moduli and yield strain for varying act
concentration, as well as for modest changes in F-ac
stiffness induced by binding of different nucleotides, a
also in support of this model.

This model makes several additional predictions th
can be tested experimentally. First, as indicated abo
for densely cross-linked gels,G0 , k2. Since it is now
possible to measurek directly for actin and some othe
biopolymers by video microscopy [17], and there are
number of actin binding proteins and metabolites that c
alter filament stiffness under conditions where filame
length is held constant, the viscoelastic parameters
be directly measured as a function ofk. Furthermore, the
scaling behavior of entangled solutions and cross-link
gels as a function of concentration are predicted to diff
A third prediction is that the viscoelasticity of relativel
dilute filament networks will be extremely sensitive t
filament length even if the average filament length is mu
greater than the mesh size, and this dependence wil
greatest for the stiffest polymers. This is because
semiflexible filaments the entanglement length requir
for effects on elasticity can be much greater than the m
size [12,13], and this difference depends onk. Therefore,
subtle changes in filament length can have large effects
viscoelasticity even when all filaments exhibit significa
overlap. This feature may be one of the reasons
cytoskeletal actin filaments in cells are under the tig
control of proteins that regulate their length.
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