Evanescent-wave cavity ring-down detection of cytochrome c on surface-modified prisms

L. van der Sneppen, C. Gooijer, W. Ubachs, F. Ariese

**Abstract**

Adsorption kinetics and molecular interactions on different surface interfaces are studied by means of evanescent-wave cavity ring-down spectroscopy, using total internal reflection surfaces onto which different self-assembled monolayers are covalently attached. The adsorption of cytochrome c (a positively charged, spherical heme protein) to a negatively charged bare silica surface, as well as to C18-coated (hydrophobic) and C3NH2-coated (positively charged) silica have been studied. It is experimentally verified that these surface layers do not interfere with the sensitive measurement of adsorbed cyt c monolayers using the evanescent wave in a ring-down scheme. Attaching monolayers covalently to the silica total internal reflection surface is a first step towards the development of a biosensor that makes use of immobilized biomolecules for specific detection of analytes in solution.

**1. Introduction**

Cavity ring-down spectroscopy is a sensitive mode of absorption spectroscopy that is based on the rate of decay of light measured behind (at the exit port of) an optically stable cavity. This decay rate depends on reflection and scattering losses in the cavity; the additional presence of an absorber in the cavity will increase these losses and can thus be detected. In evanescent-wave cavity ring-down spectroscopy (EW-CRDS) [1], one of the reflections in the cavity is a total internal reflection (TIR) event. Only the (exponentially decaying, i.e., in the spatial domain) evanescent wave associated with this TIR event is being used for absorbance measurements. Since the penetration depth of the evanescent wave is on the order of a wavelength, only molecules adsorbed at or near the surface are being probed. In contrast to other TIR techniques such as EW-fluoro-immunoassays [2,3] or waveguide spectroscopy [4], EW-CRDS is spatially localized: a small sample volume is repeatedly probed. This permits miniaturization of the flow cell while maintaining an excellent sensitivity due to the multi-pass character of the measurement.

Techniques that are commonly used for studying adsorption kinetics of cytochrome c (cyt c) to surfaces include electrochemistry [5] and surface-enhanced resonance Raman spectroscopy [6]. However, these techniques are not quantitative or are only capable of detecting the molecules in the first monolayer on the surface. A strong feature of EW-CRDS, as with attenuated total reflectance (ATR) measurements, is the capability of measuring only molecules near the surface, and with a proper correction for bulk absorbance, also the molecules adsorbed in multiple layers on top of the first monolayer are detected. Several studies have been described involving cyt c adsorption to silica surfaces using ATR or waveguide absorption techniques [4,7–11]. Some of these studies involve the cyt c adsorption to surface-modified silica [7,9,10]. Unlike single-pass internal reflection spectroscopy, EW-CRDS is very sensitive due to its multi-pass character, while maintaining a small probing volume. EW-CRDS is therefore suitable for small-volume time-dependent studies (since the signal does not have to be integrated over a long time-span).

In a previous paper we have explored the possibility of using EW-CRDS as a detection technique in dynamic flow systems [12]. However, a crucial point regarding its potential as a detection system is the question whether modification of the TIR surface is possible without significantly affecting its total reflection qualities. This is the objective of the present study. We will show that self-assembled monolayers made in a one-step reaction from commercially available reagents provide a fast and user-friendly means of surface modification.

**2. Experimental section**

The set-up (see Fig. 1) is similar to the one used in a previous study [12]. Briefly, a cavity was constructed using mirrors...
(R > 99.996% at 532 nm, 50 mm radius of curvature) from RED Inc. (Boulder, CO, USA). Instead of the previously used 45° anti-reflection coated prism, a 70° Dove prism is used at normal incidence. The additional reflection losses at the intra-cavity surfaces are maintained in an embedded cavity [13]. The entrance and exit faces are polished to a flatness of λ/10 at 632.8 nm while the TIR face is polished to a flatness of λ/2. The rationale behind this modification is that the ring-down time of the cavity decreased from 1–1.5 μs to 20–25 ns upon inserting the 45° prism suggesting that there is room for improvement: new designs with lower reflection losses will provide increased sensitivity. Previously, we found that superpolishing of the TIR face to a surface roughness of only 0.2 nm did not improve the ring-down time but worked counterproductive for the observed signal [12]. With both the coated and the uncoated 70° prism, obtainable ring-down times were between 45 and 65 ns; they decreased to 30–45 ns for the highest concentrations of absorber used in this study. These ring-down times are still limited by the scatter and diffraction losses at the normal incidence surfaces on the prism, and not by the properties of the EW-surface nor by the mirror reflectivity. Another advantage of using a normal-incidence geometry for the entrance and the exit faces of the prism, rather than the previously used 45° anti-reflection coated prism, is that it permits for polarization-dependent studies. Although this advantage has not been exploited in the present study, measurement of the dichroic ratio can be used for determining the average molecular alignment of molecules in self-assembled thin films [14,15].

Laser pulses from an optical parametric oscillator (OPO), pumped with the 3rd harmonic of a Coherent Infinity single-mode Nd:YAG laser (Santa Clara, CA, USA), at a wavelength of 538 nm (the optimum of one of the two Q-transitions in the absorbance spectrum of cyt c) were used to excite the cavity at a repetition rate of 100 Hz. The wavelength used is close to the design wavelength for which the mirror coatings were produced. A moving average of 1 s or 100 data points was applied after fitting of the raw data. Transients were recorded using a photomultiplier tube (Hamamatsu, Shimokanjo, Japan) and a fast sampling oscilloscope of 1 GHz analog bandwidth (Tektronix 5104; 5 GS/s).

The baseline noise of the system is typically between 3 and 5 × 10^-4 AU, an improvement over the set-up previously used (employing an anti-reflection coated 45° Dove prism in a linear cavity) which showed a baseline noise on the order of 10^-4 AU [12].

Covalently bound monolayers were deposited on the TIR faces of the prisms according to a standard protocol for self-assembly from solution. Before the surface modifications, the prisms were thoroughly cleaned using chromic mixture (K2Cr2O7 in H2SO4) followed by rinsing with abundant water. In order to obtain a uniform deposition of a silane monolayer, the surface was fully hydroxylated according to [16]: the prisms were immersed for 30 min in 1:1 (v/v) methanol:water followed by 30 min of immersion in 96% H2SO4. For the C18-coating, trichloro-octadecylsilane (≥ 90%, Sigma–Aldrich, Germany) was used as a reagent. This reagent is very reactive towards water and should be handled in an anhydrous environment (e.g. N2-filled glove-box). The reaction is completed by immersion of the TIR-face of the prism for 6 h in a solution of 20 μl of trichloro-octadecylsilane in 20 ml of toluene [17]. It should be emphasized that traces of water are appropriate since they accelerate the hydrolysis reaction. That is why the toluene (obtained from Riedel-de-Haen, Germany, containing 0.05% of water) was not dried prior to the reaction [18]. After the reaction, the prism was carefully cleaned and subsequently flushed with chloroform for 24 h. For the NH2-coating, after the cleaning and hydroxylation steps, the prism was immersed for 5 min in methanol. Subsequently, the TIR face of the prism was immersed for 15 min in an aqueous solution (1%, v/v) of triethoxy-aminopropylsilane (≥ 90%, Sigma–Aldrich, Germany) followed by 5 min of ultrasonic cleaning in methanol and rinsing with abundant water [19]. Completion of the self-assembled layers was roughly estimated by monitoring the contact angle between a drop of water and the surface. Whereas the contact angle on a hydroxylated surface is 0°, the hydrophobic surfaces will yield a contact angle that is considerably larger. The coatings could be removed by leaving the prisms for several days in an abundance of chemic mixture.

The composition of the top surface after treatment was studied by XPS. Monochromatic Al Kα X-ray radiation was used to investigate the top 10 nm. Compositional information can be obtained from the element specific binding energies. Furthermore, limited in-depth information can be extracted from the intensity ratios. For quantification XPS sensitivity factors from the Scofield library [20] were used. In order to be able to accurately analyze composition, substrate charging was prevented by using silicon wafers instead of quartz prisms. Measurement of a treated prism and overlapping the oxygen signals to charge compensate, showed that a similarly treated Si wafer has the same top layer composition as the prism.

An XPS analysis of the clean and treated silicon wafer samples (see Fig. 2) shows that after treatment and transport through atmosphere, the elements oxygen (O 1s), carbon (C 1s) and silicon (Si 2s, Si 2p) are identified on all samples. Only the NH2-coated sample shows a trace of nitrogen (N 1s) accounting for approximately 5% atomic concentration, whereas the amount of carbon present on the silica accounts for 10% atomic concentration (and somewhat higher

![Fig. 1. The cavity with the 70° prism inserted. The prism is clamped on a platform that permits tilting in two directions as well as rotation of the prism; the platform is mounted on an x, y table. The insert shows the flow cell where the analyte solution is brought in contact with the TIR surface and is probed by the EW.](image)

![Fig. 2. XPS survey of differently treated 10 mm × 10 mm Si wafers. The elements oxygen (O 1s), nitrogen (N 1s), carbon (C 1s) and silicon (Si 2s, Si 2p) are identified.](image)
for the NH₂-treated surface). It can be estimated from the XPS analysis that a 100% coverage was obtained for the C₁₈-modified surface. The layer thickness on the C₁₈-modified wafer was measured to be on the order of 3-5 nm, which corresponds to a monolayer with fully stretched C₁₈ chains [17]. Chlorine was not detected in the XPS surveys indicating that the reaction was complete. The NH₂-layer was immobilized using a different approach based on the less reactive triethoxysilane rather than trichlorosilane. The estimated monolayer coverage is only 50–75%.

The relatively small protein cytochrome c is often used as a benchmark molecule; the extinction coefficient was determined to be 1.0×10⁴ M⁻¹ cm⁻¹ at 538 nm by measurement of the absorbance spectrum of a 100 μM solution of cyt c on a Varian UV–Vis Cary 50 absorbance spectrometer. Cyt c has a net positive charge at a pH of 7.4 and is assumed to be spherical with a diameter of 3.0–3.5 nm [21]. Cytochrome c adsorption experiments are performed using a stopped-flow approach: 100 μL of a cyt c solution in 10 mM of potassium phosphate buffer at pH 7.4 is injected in a continuous flow (0.1 ml/min) of the same buffer. When the injection plug reaches the 14 μL-sized teflon flow cell, that is clamped leak-tight on the TIR face of the prism, the flow is stopped. The evolution of the absorbance signal is monitored for a period of 10–15 min. No degradation of the absorbance signal is observed after prolonged time-spans, it is therefore assumed that photodegradation of cyt c is negligible.

3. Results and discussion

3.1. Cytochrome c adsorption to bare silica

First of all we explored the performance of the system before chemical modification of the TIR surface. A typical flow profile of a stopped-flow experiment is shown in Fig. 3: immediately after stopping the flow, the absorbance (measured by CRDS) increases to a constant level. Starting the flow again leads to a gradual desorption of the cyt c monolayer coverage is only 50–75%.

The absorbance in units ε Cl can directly be related to the 1/e or ring-down time of the measured decays via:

$$
eff = \frac{\alpha_{\text{anal}}l}{2.303} = \frac{n_{\text{avg}}L}{2.303c} \left[ \frac{1}{\tau} - \frac{1}{\tau_0} \right]$$

$$
de = \frac{n_{21} \lambda(2 \sin^2 \theta - n_{21}^2)}{n_1 \pi(1 - n_{21}^2)(1 + n_{21}^2)\sin^2 \theta - n_{21}^2} \sqrt{\sin^2 \theta - n_{21}^2}$$

where ε is the molar extinction coefficient in M⁻¹ cm⁻¹ at 538 nm, C₀ the effective concentration in the penetration layer in M and l the effective path-length of the evanescent wave through the sample in cm. L is the cavity length (71–73 mm in this study), navg the average refractive index, c the speed of light, and α_{anal} is the absorption coefficient in cm⁻¹; τ and τ₀ are the ring-down times in presence or absence of analyte.

The evanescent waves emanating from a surface exhibit an exponentially decaying field intensity along the spatial coordinate perpendicular to the surface; different from a propagating wave an evanescent wave exhibits a field amplitude in all three spatial dimensions, Eₓ, Eᵧ, and E₂. The effective depth dₑ of the EW is defined as the path-length in a conventional transmission geometry that when inserted in the Lambert–Beer law would result in the same degree of absorbance. For p-polarized (in the plane of the beam and the surface normal) light, this dₑ can be calculated according to [22]:

$$d_\varepsilon = \frac{n_{21} \lambda(2 \sin^2 \theta - n_{21}^2) \cos \theta}{n_1 \pi(1 - n_{21}^2)(1 + n_{21}^2)\sin^2 \theta - n_{21}^2} \sqrt{\sin^2 \theta - n_{21}^2} \quad (2)$$

where n_{21} is the angle of incidence (70° in our case), λ the wavelength of the light (538 nm) and n₁ and n₂ are the refractive indices of fused silica (1.46) and the liquid medium (1.33), respectively, and n_{21} = n₂/n₁.

Equation (2) specifically holds for a situation in which a bulk sample is probed near a surface. The presently calculated effective depth of 1100 nm is much larger than that of the previous set-up (400 nm) due to a difference in reflection angle at the TIR surface and the refractive index of the prism material [12]. This can also be considered as a rough measure of the distance and the volume of the bulk over which detection takes place near the surface, although the relationship between a penetration depth dₑ and the effective depth dₑ is nontrivial and has led to confusion [23]. For p-polarization the effective depth dₑ is found to be larger than for the case of s-polarization and is also much larger than dₛ for our set-up; in our case n_{21} = 0.91.

An intriguing characteristic of evanescent waves, as exploited in total internal reflection (TIR) and attenuated total reflection (ATR) spectrocopies, and now also in evanescent-wave CRDS, is that the absorbance close to the surface is strongly enhanced. For a thin layer with thickness d (d ≪ dₑ) the effective depth due to absorption by this layer for p-polarization is calculated [23]:

$$4n_{21}d \cos \theta(1 + n_{21}^2)\sin^2 \theta - n_{21}^2)$$

Inserting the values for the angle of incidence θ, the indices of refraction (n₂ = n₁/n₂), and n₁ referring to the thin layer (n₁ = 1.35), the resulting value for dₑ is much larger than d, the thickness of the cyt c layer (ca. 3–3.5 nm). This gives rise to an enhancement factor η = dₑ/d of 8.3 for the presently chosen experimental conditions. This factor is largely due to a strong electromagnetic intensity of the EW along the z-coordinate.

An isotherm (shown in Fig. 4) was measured and the data were fitted to

$$A = \frac{A_{\text{max}}K_{\text{eq}}}{1 + K_{\text{eq}}}$$

where A is the measured absorbance, A_{max} the absorbance that would be measured at maximum coverage (both in AU and corrected for the bulk absorbance for a effective depth of 1100 nm), K the equilibrium constant for the adsorption (in μM⁻¹) and K_{eq} is the equilibrium concentration in the bulk (in μM), which given the concentrations and volumes applied was taken as equal to the initial (injected) concentration. Parameters obtained from the

---

**Fig. 3.** Flow profiles on the different surfaces; cyt c concentration: 10 μM. From top to bottom: the bare silica surface, the NH₂-coated surface and the C₁₈-coated surface.
3.2. Cytochrome c adsorption to modified surfaces

A future application of EW-CRDS is the development of a biosensor. Such a device requires the immobilization of a protein, an antibody or another biomolecule in order to monitor its interactions with analytes in the liquid mobile phase. Ideally, the biosensor will only exhibit specific interactions while non-specific binding of analytes is minimal. Of course, in EW-CRDS the crucial point is whether such an immobilization deteriorates the reflection quality of the TIR surface or not. To make EW-CRDS feasible the surface of the prism has to be modified in such a way that the measured ring-down signal is not strongly shortened with respect to the original signal measured on a bare prism. Various possibilities exist for the immobilization of proteins and antibodies on a silica surface. For example, one can add SH-groups to the "tail" of an IgG antibody in order to link the antibodies to a maleimide-activated NH$_2$-coated surface. Another possibility is using the non-specific binding on a hydrophobic surface (for example, C$_{18}$-coated surface); the disadvantage of this approach is that the active region of some of the immobilized antibodies may not be accessible for the antigen (analyte) anymore.

Previously, we determined that surface roughness (possibly induced by an imperfect layer on the surface) is not a serious problem: when using an EW-CRDS configuration with an intra-cavity prism, most optical losses will occur at the entrance and exit face of the prism rather than from scattering at the TIR surface. As reported earlier, higher surface roughness appeared to be advantageous for analytical purposes, presumably because imperfect flow results in more efficient exchange between the analytes of interest and the surface: the flow was estimated to be turbulent based on calculation of the Reynolds number for this particular system [12].

In the present study we demonstrate a user-friendly one-step protocol for attaching the C$_{18}$ or NH$_2$-layer. Again, cyt c was chosen as a test molecule. In Fig. 3, it is immediately seen that at the 10-μM level the adsorption on bare silica is about 2 to 4 times higher than on the coated surfaces. In view of the development of a biosensor this is a rather encouraging result, since a-specific binding is successfully being suppressed. On the C$_{18}$ surface, the flow profile shows no gradual decrease after re-starting the flow indicating that cyt c is irreversibly attached to this layer. Such an irreversible binding is not unexpected since the aliphatic chains on the surface are known to denature the protein. The NH$_2$-surface should be positively charged at the used pH 7.4 and is therefore expected to repel cyt c. The fact that also for this layer some adsorption can still be seen suggests that the bare silica surface is not completely shielded or covered by the NH$_2$-layer.

For all three surfaces cyt c adsorption is at least partly irreversible at the time-scale and under the conditions of the measurements. Contrary to the bare silica surface, cleaning of the coated surfaces after performing an adsorption experiment is not trivial. The original ring-down time as measured on the clean C$_{18}$ and NH$_2$ surfaces is recovered after one night of flushing (at 2 ml/min) with pure methanol (C$_{18}$) or 1:1 methanol/water (NH$_2$). The nature of the interactions for the three surfaces will most probably be different. In the case of bare silica and NH$_2$-coated surface electrostatic interactions will be significant, whereas adsorption to the C$_{18}$ surface will be dominated by hydrophobic interactions while electrostatic contributions will be small. Especially for the C$_{18}$ surface, considerable irreversible binding should be expected, but flushing with abundant organic solvent (e.g. methanol) is sufficient for completely removing strongly bound cyt c. A prism that was used for months yielded the same results as a newly coated prism.

Finally, we tried to fit a Langmuir isotherm to the data points obtained for the NH$_2$- and C$_{18}$-coated surfaces, but this attempt was not successful. Presumably, the requirement of equilibrium
Fig. 5. Adsorption isotherms as measured on the C18 and NH2 surfaces, measured in triplicate. The straight lines indicate the calculated bulk (background) absorbances using an effective penetration depth of 1100 nm. Data points were obtained on different days using fresh solutions.

conditions is not fulfilled; in the case of the C18-layer the binding is even irreversible. The measured adsorption isotherms for the two surfaces are shown in Fig. 5. One may argue that a fit to the data to a simple Langmuir isotherm is not adequate for the determination of thermodynamic parameters such as a maximum coverage. A more appropriate model would take into account adsorption to three different adsorption sites (the surface, the first, oriented, cyt c monolayer and possibly also layers on top that are more randomly oriented). In the case of the C18 surface where adsorption will be due to hydrophobic rather than electrostatic interactions, only two sites should be taken into account since the first monolayer will probably not be oriented. However, it is clear that the affinity of cyt c is highest towards the bare silanol surface, followed by the NH2–coated and the C18–coated surfaces.

4. Conclusion

Surface modification of the TIR face of a prism used in EW-CRDS by self-assembly from solution has been demonstrated to be feasible. By means of surface modification, EW-CRDS could be developed into an interesting tool for sensitive absorbance spectroscopic studies of adsorption kinetics towards surfaces with different properties. In the present geometry reflection and scattering losses in the system are still high and are limiting further detection sensitivity improvements. It is expected that an improved design of the prism used for EW-CRDS, for example the use of a folded resonator [29], can drastically increase the sensitivity of the system. Finally it is noted that the current design involving normal-incidence entrance and exit faces would allow for polarization-dependent flow injection analysis conditions, Appl. Spectrosc. 62 (2008) 649–654.


Acknowledgements

We wish to thank Dr. E. Zoethout and E. Louis at FOM institute for Plasma Physics at Rijnhuizen, the Netherlands for providing silicon wafers used for XPS measurements and performing the XPS analyses and data interpretation. This research is supported by a project (02PR2243) from the Netherlands Foundation for Fundamental Research of Matter (FOM).

References


Biographies

L. van der Sneppen (born 7th of January 1981) obtained her PhD from the Vrije Universiteit Amsterdam on 10th of November 2008. She received a Rubicon grant from the Netherlands Foundation for Scientific Research (NWO) for her current research at the University of Oxford, United Kingdom. She will continue the current research using different measurement principles as well as develop fiber-based trace gas-sensors.

C. Gooijer is Full Professor and head of the Applied Spectroscopy group of the Laser Centre of the Vrije Universiteit Amsterdam. He is an enthusiastic lecturer and is involved in analytical chemistry and physical chemistry oriented research, specifically spectroscopic detection and identification methods for analytical separation methods, high-resolution luminescence, time-resolved luminescence and Raman spectroscopy.

W. Ubachs obtained a PhD degree from Nijmegen University and is currently Professor of Atomic, Molecular and Laser Physics at VU University Amsterdam, as well as Director of the Laser Centre VU. His interests are in high resolution spectroscopy, non-linear optics, and optical techniques for chemical sensing.

F. Ariese obtained his PhD at the Vrije Universiteit Amsterdam in 1993 for his research on cryogenic fluorescence techniques. He then worked as a postdoc at Iowa State University (USA) and at the Institute for Environmental Studies/VU-IVM. He is currently associate professor in the Applied Spectroscopy group of the Laser Centre VU. His main research interest is the development of new analytical applications for fluorescence, phosphorescence, Raman spectroscopy, cavity ring-down spectroscopy, and the coupling of these techniques to separations.