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The field generated by scattering of light from a quasi-homogeneous source on a quasi-homogeneous, random
medium is investigated. It is found that, within the accuracy of the first-order Born approximation, the far field
satisfies two reciprocity relations (sometimes called uncertainty relations). One of them implies that the spec-
tral density (or spectral intensity) is proportional to the convolution of the spectral density of the source and
the spatial Fourier transform of the correlation coefficient of the scattering potential. The other implies that
the spectral degree of coherence of the far field is proportional to the convolution of the correlation coefficient
of the source and the spatial Fourier transform of the strength of the scattering potential. While the case we
consider might seem restrictive, it is actually quite general. For instance, the quasi-homogeneous source model
can be used to describe the generation of beams with different coherence properties and different angular
spreads. In addition, the quasi-homogeneous scattering model adequately describes a wide class of turbulent
media, including a stratified, turbulent atmosphere and confined plasmas. © 2006 Optical Society of America
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1. INTRODUCTION

A class of model random sources that play an important
role in statistical optics are the so-called quasi-
homogeneous sources (see, for example, Ref. 1, Sec. 5.2.2).
They have the property that their spectral density (spec-
tral intensity) Sq(r, ») at a particular frequency o varies
much more slowly with position than the correlation coef-
ficient of the source ug(ry,re;w)=pg(re—ri;w) varies
with r’=rs-r;. Well-known members of this class are
Lambertian sources (Ref. 1, Sec. 5.3.3). The far field gen-
erated by a quasi-homogeneous source satisfies two reci-
procity relations. One implies that the angular distribu-
tion of the spectral density is proportional to the spatial
Fourier transform of the spectral degree of coherence of
the source. The other implies that the spectral degree of
coherence of the far field is proportional to the spatial
Fourier transform of the spectral density of the source.
The intimate relation that exists between radiation
and scattering is well illustrated by so-called quasi-
homogeneous, random scatterers. Such scatterers were
introduced by Silverman (who called them locally homo-
geneous media).? Quasi-homogeneous media are charac-
terized by the property that the strength of their scatter-
ing potential Sp(r,w) at a particular frequency w varies
much more slowly with position than the correlation coef-
ficient 7p(r{,ry; w)= yp(re—r;;w) varies with the differ-
ence r'=ry—r;. The troposphere, for example, is some-
times modeled as such a medium,3 as are confined
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plasmas.4 An analysis of the spectral changes produced by
scattering from a quasi-homogeneous, anisotropic random
medium was carried out in Ref. 5.

The far field generated by scattering of a plane mono-
chromatic wave that is incident on a quasi-homogeneous,
random medium is known to satisfy two reciprocity rela-
tions that are strictly analogous to those pertaining to the
radiation from three-dimensional quasi-homogeneous
sources. More specifically, it can be shown that, within the
accuracy of the first-order Born approximation, the angu-
lar distribution of the spectral density of the far field is
proportional to the spatial Fourier transform of the corre-
lation coefficient of the scattering potential and that the
spectral degree of coherence of the far field is proportional
to the spatial Fourier transform of the strength of the
scattering potential.6 These two reciprocity relations were
used to study certain inverse problems.7 Because these
reciprocity relations are less well known, and also to es-
tablish our notation, a short derivation of them is pre-
sented in Section 2. The significance of these results is il-
lustrated by applying them, in Section 3, to the case of a
plane monochromatic wave scattered by a Gaussian-
correlated spherical medium.

The more general problem of scattering of light from a
quasi-homogeneous source on a quasi-homogeneous me-
dium does not appear to have been studied so far. In Sec-
tion 4 we show that, within the accuracy of the first-order
Born approximation, the scattered field satisfies two gen-
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eralized reciprocity relations. One pertains to the spectral
density of the far field; it connects the spectral density of
the source and the correlation coefficient of the scattering
potential. The other pertains to the spectral degree of co-
herence of the far field and relates the correlation coeffi-
cient of the source and the strength of the scattering po-
tential.

2. SCATTERING ON A QUASI-
HOMOGENEOUS, RANDOM POTENTIAL

Let us consider a monochromatic plane wave V@(r,t) of
frequency w and (possibly complex) amplitude a propagat-
ing in a direction specified by a unit vector sy, i.e.,

Vi(r,t) = UY(r,w)exp(- iwt), (1)

where r is a position vector of a field point, ¢ denotes the
time, and

U (r,w) = a(w)exp(iksy - r) (si=1), (2)

with £=w/c, ¢ being the speed of light in vacuum. Suppose
that the wave is incident on a deterministic scatterer that
occupies a finite domain D. The space-dependent part of
the scattered field U®)(r, w) is, within the accuracy of the
first-order Born approximation, given by the expression
(Ref. 8, Sec. 13.1.2)

U (r,w) = f Fx',0)UYr',0)Gr,r ;0)d’, (3)
D

where

2
F(r,0)= 4—[n2(l‘, w) - 1] (4)

is the scattering potential, n(r, w) being the refractive in-
dex of the medium, and

) exp(ik|r —r’|)
Gr,r';0) = o] (5)

is the outgoing free-space Green’s function of the Helm-
holtz operator.

For a random scatterer the scattering potential is a
random function of position. Let

CF(ri’ré;w) = (F*(ri,w)F(ré,w)) (6)

be its correlation function. The angle brackets denote the
average, taken over an ensemble of realizations of the
scattering potential. Because of the random nature of the
scatterer, the scattered field will, of course, also be ran-
dom. Its spatial coherence properties may be character-
ized by its cross-spectral density function (Ref. 1, Sec.
4.3.2)

W(S)(rl,rz;w) = <U(S)*(I'1,w) U(S)(r2,w)>~ (7

On substituting from Egs. (3) and (6) into Eq. (7) and on
interchanging the order of integration and ensemble av-
eraging we obtain the formula
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Wy 050) = f f WO 130)Colrlrh50)
DYD

X G (11,17;0)G(re,rh; 0)d3r|d3r),  (8)

where W@ denotes the cross-spectral density of the
(monochromatic) incident plane wave, i.e.,

Wi(r},rh;0) = UV (r], ) U (1}, 0)
=19 (w)expliks, - (ry,-1})], 9)
with I)(w) =|a(w)|?. We choose the origin O of a Cartesian
coordinate system in the region containing the scatterer
and consider the field at a point r in the far zone. Setting

r=ru, with u?=1, we have for the Green’s function the
well-known asymptotic approximation

G(ru,r’;w) ~ explikr) exp[-iku-r'] askr— o,
(10)
u being kept fixed. Let
i =)
VSp(ry, 0)Sp(ry, )
where
Sp(r,w) = Cp(r,r;0). (12)

Since, according to Eq. (6), Sp(r,»)=(F"(r,w)F(r,»)), we
call Sy the strength of the scattering potential. The func-
tion 7y is the normalized correlation coefficient of the
scattering potential. We assume that the scatterer is ho-
mogeneous in the sense that 7p(r;,r);w) depends on rj,
and r; only through the difference ry-rj, ie.,

7p(r1, Ty 0) = 7p(ry — 11 0). (13)

We also assume that the strength of the scattering poten-
tial varies so slowly with position that over the effective
width of |7z the function Sp(r,w) is essentially constant.
Such a situation may be described by saying that Sp(r, w)
is a slow function of r and that 7p(r’;w) is a fast function
of r’. Evidently, over regions of the scatterer for which
|7p(ry—r]; )| is appreciable, we may make the approxi-
mations

Sp(ry, w) = Sp(ry, w) = Spl(r] + ry)/2, w]. (14)
We then see from Eq. (11) that

Cr(ry,ry;0) = \Spry, 0)Sp(ry, w) 7p(ry,ry;w),  (15)

~Spl(ry +1)/2, w]np(ry - ri;0).  (16)

Scatterers whose correlation functions have this form,
with Sy being a slow function of its spatial argument and
nr being a fast function of its spatial argument, may be
said to be quasi-homogeneous.

It will be useful to make the change of variables:
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Rs=r;-r;, R§=(r;+ry)/2. (17)

On substituting from expressions (9), (10), and (16) into
Eq. (8), we obtain for the cross-spectral density of the
scattered field in the far zone the expression

WO (ruy, roug; 0) = A(ry,re; 0)Splk(u; - uy), 0]
X7k (8o — (01 +1y)/2); 0]
(ui=uj=1). (18)
Here

explik(ry—ry)]

A(rl,r2;w)=l(i)(w) (19)

rirs

and

Silku, ] = f Sr(RE, wexp(ikRE - w)d°RE,  (20)

7w, 0] = f 7p(Rg, w)exp(ikRE - u)d®Rg (21)

are the three-dimensional spatial Fourier transforms of
Sr and 7, respectively, the integrals extending formally
over the whole space. The spectral degree of coherence
(Ref. 1, Sec. 4.3.2) of the scattered field is defined by the
formula

W(s)(l'hrz; w)

V89, ) SOy w)

w1y, ry;0) = (22)

and the spectral density of the field is, evidently, given by
the expression

SO (r,w) = W (r,r;w). (23)

On substituting from expression (18) into Eqgs. (22) and
(23), we find that in the far zone

1(0)Sp(0,w)

S9(ru,w) = 3 wlk(so-w,el (24)

and

p(ruy,rouy; )

_ plk(so— (uy + ,)/2), 018l k(u; - uy), 0]

Varlk(so — uy), 0] 76l k(so — uy), 0]

explik(ry - r1)]
X (25)
Sp(0,w)

Because 7y is a fast function of its spatial argument, it
follows from well-known properties of Fourier transforms
that 7 is a slow function of £u. Hence

rlk(sg —uy), 0] = 7plk(s) - ug),w]
~ nplk(so - (uy +uy)/2),0].  (26)

On making use of these approximations in Eq. (25) we ob-
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tain for the spectral degree of coherence of the far field
the formula

“ Selk(u; —up),0]
wO(ryuy, Py ) = ———————— explik(ry —ry)].

Sp(0,w)
(27)

Equations (24) and (27) bring into evidence the following
two reciprocity relations, valid within the accuracy of the
first-order Born approximation, for scattering of a plane
monochromatic wave on a quasi-homogeneous, random
scattering potential:

1. The angular distribution of the spectral density of
the scattered field in the far zone is proportional to the
three-dimensional spatial Fourier transform of the nor-
malized correlation coefficient of the scattering potential.

2. The spectral degree of coherence of the scattered
field in the far zone is, apart from a simple geometrical
phase factor, equal to the normalized three-dimensional
spatial Fourier transform of the strength of the scattering
potential.

The second result will be recognized as an analogue to
the van Cittert—Zernike theorem for the field in the far
zone generated by a spatially incoherent source (Ref. 1,
Sec. 4.4.4). It is known that this theorem also holds for ra-
diation from quasi-homogeneous, random sources (Ref. 1,
Sec. 5.2.2).

The above two results can be used to study inverse
problems pertaining to quasi-homogeneous, random me-
dia (cf. Ref. 7).

3. SPHERICAL, GAUSSIAN-CORRELATED
SCATTERER

We will now apply the two reciprocity relations that we
just derived to the scattering of a plane monochromatic
wave on a nonuniform, quasi-homogeneous, Gaussian-
correlated spherical scatterer with radius «. A similar, but
somewhat less general, analysis dealing with the angular
distribution of the intensity of the far field generated by
scattering on a homogeneous random medium was pre-
sented in Ref. 9.
One has, in this case,

7r(Rg; 0) = exp[- (R5)%/207%], (28)

Sp(R§, ) = A exp[- (R§)/20%], (29)

with A, o,, and og positive constants and a>0g>0o,. The
Fourier transforms of these two expressions are

p(k,0) = (0,,2m%exp[- (ko,w?2],  (30)

Sp(ku,w) = A(og\2m3exp[- (kogu)®/2].  (31)

On substituting from expressions (30) and (31) into Eq.
(24), one finds that
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(0,052 m)PAID (w)

S®(ru, w) = 5 exp[— 2}320%7 sin?(60/2)],
r

(32)

where 6 denotes the angle between the direction of inci-
dence sy, and the direction of scattering u, i.e., sy-u
=cos 6 (see Fig. 1). A striking example of the correspon-
dence between scattering and radiation is evident when
one compares Eq. (32) with Eq. (5.2-45) of Ref. 1. The lat-
ter deals with the spectral density of the far field radiated
by a three-dimensional, Gaussian-correlated, quasi-
homogeneous source. It is seen that the spectral density
in that case has the same functional dependence on the
correlation length of the source (o,) as does the spectral

_ u
_— > / o o e s S 1 e i S

Fig. 1. TIllustration of the notation.

SO (ru,0)/8 (rs ,0)
1

40 20

0 5 10 15 20
0 [deg.] —

Fig. 2. Normalized spectral density S®(ru, 0)/S®(rs,, ) of the
far field [Eq. (32)], as a function of the angle 6 between the direc-
tion of incidence s, and the direction of scattering u, for selected
values of the scaled correlation length ko,

(PO
20
15
10
5
5 10 15 20
ko'n—>

Fig. 3. (Color online) Normalized time-averaged total scattered
power (P(s))k3/AI(i)(w)ag(ZTr)‘*, given by Eq. (34), as a function of
the scaled correlation length ko, of a Gaussian-correlated, ran-
dom spherical scatterer.
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Fig. 4. Directions of observation u; and u,, located symmetri-
cally with respect to the direction of incidence s.

UO(ru,,ru,;0)

5 10 15 20
(I) [deg.] —
Fig. 5. (Color online) Spectral degree of coherence of the far
field [Eq. (36)], for two symmetrically located directions of scat-
tering, u; and u,, as a function of the angle ¢ between the vec-
tors u; and u,, for selected values of the scaled effective radius
kog of the sphere.

density of the far field generated by scattering a plane
monochromatic wave on a Gaussian-correlated, quasi-
homogeneous sphere on the correlation length of the scat-
tering potential (o).

The behavior of the spectral density of the scattered
field in the far zone, given by Eq. (32), is shown in Fig. 2
for selected values of the scaled correlation length ko, It
is seen that when the correlation length of the quasi-
homogeneous scatterer increases the effective angular
width of the spectral density of the far-zone field de-
creases, in agreement with the general considerations of
Section 2.

The (time-averaged) total scattered power is given by
the expression

T 27
(P©)y = f J S®(ru, w)r? sin #d6d ¢, (33)
0o Jo

k202

7

1 - exp(- 2k20>
= AI(‘V)((u)cr?ycrg(Z7'r)4 |: M} .

(34)

The behavior of this quantity, as calculated from Eq. (34),
is shown in Fig. 3. It is seen that, within the validity of
the first-order Born approximation, for a completely ran-
dom, uncorrelated spherical scatterer (ko,— 0), the aver-
aged scattered power (P®))—0, i.e., no scattered power is
generated. On increasing the correlation length, the total
scattered power is seen to increase approximately linearly
with ko,

On substituting from expression (31) into Eq. (27), one
obtains for the spectral degree of coherence of the far field
the expression
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;L(S>(r1u1,r2u2;w) = exp[- kzO?g(lh - u2)2/2]exp[ik(r2 -r)l.
(35)

Without loss of generality we may take the z direction to
be along the direction of incidence s, and the x direction
along the vector u;-uy. If we restrict our attention to
pairs of observation points placed symmetrically along
the direction of incidence, then ru;=r(u,,0,u,), and ru,
=r(-u,,0,u,) (see Fig. 4). Formula (35) then takes on the
simple form

wO(ruy, ruy; ) = exp[- 2k2cr§ sin?(¢/2)], (36)

where ¢ is the angle between u; and u,. The behavior of

©)(ruy,rug;w) is shown in Fig. 5 for selected values of
the scaled effective scatterer radius kog. It is seen that
when the effective radius of the scatterer increases the
angular width of the spectral degree of coherence of the
far-zone field decreases, in agreement with one of the gen-
eral results of the previous section.

4. QUASI-HOMOGENEOUS SOURCE
ILLUMINATING A QUASI-HOMOGENEQOUS
SCATTERER

The correlation properties of a three-dimensional random
source @ may be characterized by its cross-spectral den-
sity function

Weo(ry,ro;m) = <UZ;(1'1,0))UQ(I‘2,0))>. (37)

Here the brackets denote the average taken over an en-
semble of realizations Ug(r, w) of the source distribution.
The spectral density of the source is given by the diagonal
element of its cross-spectral density, i.e.,

SQ(r5 (1)) = WQ(I',I';Q)), (38)

and its spectral degree of coherence is given by the ex-
pression

( ) WQ(I'l,I'z HO)) (39)
/-LQ r),Iy,w)= _— "
\\“’SQ(rla w)SQ(rZ’ w)

We will from now on not display the frequency depen-
dence of the various quantities. As already mentioned,
when a source is quasi-homogeneous its spectral degree of
coherence depends on r; and ry only through the differ-
ence ro—ry, i.e.,

He(ry,Te) = pg(ry —ry); (40)

and if, in addition, its spectral density varies so slowly
with position that over the region where |ug(rs—ry)| is ap-
preciable Sg(r, w) is essentially constant. So one has, to a
good approximation,

WQ(I'1,1‘2) =~ SQ[(I‘1 + Pz)/Z]MQ(I‘z -1y). (41)

If the field generated by a quasi-homogeneous source is
incident on a scatterer that is located in the far zone of
the source, the cross-spectral density of the incident field
at the scatterer is given by the formula (Ref. 1, Sec. 4.4.5)
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W(i)(rlirZ) = f f WQ(ri’ré)G*(rl’ri)G(rZ’ré)dsridSré’
(42)

with the integrals extending over the domain that is oc-
cupied by the source and the far-zone expression for the
Green’s function G(r,r’) given by expression (10). On in-
troducing new spatial variables

Ry=ry-ry, o= (r1+1y)/2 (43)
and on substituting from expression (41) into Eq. (42), we
obtain for the cross-spectral density function of the inci-
dent field the expression

: explik(ry—r1)]
Wi(ry,ry) ~ ———— S ffSQ RQ Ho(Ry)

rire
Xexplikr; - (Rg - Rg/2)/rq]
Xexp[-ikry- (R + Ré/2)/r2]d3R5d3Rb,
(44)

the integrals formally extending over the entire space. In
the denominator of the factor in front of the integral we
can make the approximation

r1r2~R2, (45)

=|R| being the distance from the origin (located in the
source region) to the region of the scatterer (see Fig. 6).
Further, each of the factors r; and r, appearing in the de-
nominator of the two exponentials in the integrand of ex-
pression (44) may also be approximated by R. It is shown
in Appendix A that this latter approximation introduces
an error in the phase of the exponential functions, A, say,
that is bounded in absolute value by

k
INE (46)

with Ly and Lg denoting the linear dimensions of the
source and of the scatterer, respectively. It is seen from
this inequality that |A,| may be made arbitrarily small by
taking the distance R between the source and the scatter-
ing medium large enough. Within the validity of the first-
order Born approximation, the cross-spectral density of
the scattered field in the far zone has the general form
[see Eq. (8)]

quasi-homogeneous
scatterer

quasi-homogeneous
source

0

Fig. 6. Illustration of the notation.
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W(w)(r1,1'2)=f j wt
DYD

X (ri>ré)CF(ri’ré)G*(rl’ri)G(rZ’ré)d?ridSré’

(47)

with the integrations extending over the domain D occu-
pied by the scatterer. On substituting from expression
(44) into Eq. (47), it is advantageous to absorb the factor
explik(ry—r1)] into the function Cp. Accordingly, we define
a modified correlation function:

C’F(ri,ré) = Cp(ry,ry)explik(rs —ry)]. (48)

It is seen from Eq. (12) that the strength of the scattering
potential, S, remains unchanged when this modification
is made. It follows immediately from Eq. (11) that the
modified correlation coefficient, 7, is given by the expres-
sion

np(ry,ry) = 7p(ry,re)explik(ry —ry)]. (49)

The term (ry—r]) appearing in Eq. (49) may be approxi-
mated by [see Fig. 6 and Ref. 8, Sec. 8.8.1, Eq. (2)]

ro—ri=(ry—ry) -ro/ro=(ry—ry -R/R. (50)

The last step follows from the fact that the scatterer is lo-
cated sufficiently far from the source. Since |7p(r],r))]

=|pp(r;,ry)|, it follows that Cp(r},r,) can also be ex-
pressed as the product of a fast function and a slow func-
tion. Moreover, since 7= 7(Ryg), it follows from expression
(50) that 7=7(Rg). Hence

Cr(r] - r}) = 7p(R3)Sp(RY), (51)

with the variables R§ and Ry defined by Egs. (17). We
thus obtain for the cross-spectral density function of the
far-zone scattered field the expression

W (rys1,r282)
exp[lk(r2 r1)]
f f f f SRy 1eRg)SF(RY)
’r 17’2

X ﬁF(Rg)exp(ikQJ)d3R5d3Rbd3R§d3R§, (52)

with the integrals extending over the entire space. Also,

s% =s§= 1, and the phase ® of the propagator term is given

by the formula
®=r;-(Ryg-Rg/2)/R -1y (Ry+ Ry/2)/R - Rg - (s5 - 51)
- Rg . (Sl - 52)/2, (53)

=— Rg . [(Sz - Sl) + Ré/R] - Rgv . [(Sl + Sz)/z + Ra/R],
(54)

where we have used Eqgs. (17). On carrying out the inte-
grations over Rg and Rg, we find that
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explik(ry—ry)]

W(m)(’"lsl,’“252) = A(sy — s1)B[(s1 +89)/2],

R2r1r2
(55)
with
A(sy—s1) = f 1qRQ)SH- kl(sy - s1) + RYRJA°Ry,

(56)

B[(s1 +89)/2] = fSQ(R )7ir{— K[(s1 + 89)/2 + RG/RT}A®RY,

(67)

and
Sp(ku) = f Sr(RYexp(ikRS - wdRE,  (58)
np(ku) = f 7r(Rg)exp(ikRg - u)d®Rg, (59)

begin the three-dimensional spatial Fourier transforms of
the strength of the scattering potential, Sy, and the modi-
fied correlation coefficient of the scattering potential, 7,
respectively. We note that both functions A and B have
the form of a (scaled) convolution. It follows from Eq. (55)
that the spectral density of the far field is given by the for-
mula

1
5@)(rs) = W(rs,rs) = —s—A(0)B(s). (60)
r

On using Egs. (22) and (55) we obtain for the spectral de-

gree of coherence of the far field the expression

A(sg - s1)B[(s; +89)/2]
A(0)yB(s1)B(sy)

,u(m)(rlsl,rgsz) = explik(rg —ry)].

(61)

Since 7 is a fast function of Ry, it follows that 7 is a
slow function of Zu. Hence

B(s;) = B(ss) = B[(s1 + 89)/2]. (62)

On making use of these approximations in Eq. (61), we
obtain for the spectral degree of coherence of the far field
the expression

A(sy - s9)

W explik(ry —ry)]. (63)

M(m)(r151,r252) =

Equations (60) and (63) are generalized reciprocity rela-
tions that may be stated as follows:

1. The spectral density of the far field generated by ra-
diation from a quasi-homogeneous source scattered on a
quasi-homogeneous medium is proportional to the convo-
lution of the spectral density of the source, S¢, and the
spatial Fourier transform of the modified correlation coef-
ficient of the scatterer, 7.
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2. The spectral degree of coherence of the far field gen-
erated by radiation from a quasi-homogeneous source
scattered on a quasi-homogeneous medium is, apart from
a geometrical factor, given by the convolution of the cor-
relation coefficient of the source, ug, and the spatial Fou-
rier transform of the strength of the scattering potential,

Sp.

We mention in passing that the convolution of two
Gaussian functions with widths w; and w, is again a
Gaussian function with width w3=(w%+w%)1’2. Therefore,
if, for example, both Sg and 7y are Gaussians, then the
spectral density of the far-zone field will also be a Gauss-
ian. This observation implies the existence of an equiva-
lence theorem in which both Sg and 7 are altered, with-
out affecting the spectral density of the far field. In other
words, a suitably chosen trade-off between the width of
the spectral density of the source and the width of the cor-
relation length of the scattering potential will leave the
spectral density of the far field unchanged.

5. CONCLUSIONS

We reviewed and extended various reciprocity relations
relating to quasi-homogeneous sources and quasi-
homogeneous scatterers. The usual reciprocity relations
were applied to analyze the far-zone field generated by a
monochromatic plane wave incident on a Gaussian-
correlated, spherical scatterer. Further, we analyzed the
more general case when light emitted by a quasi-
homogeneous, random source is incident on a quasi-
homogeneous, random medium. Two generalized reciproc-
ity relations for the scattered field in the far zone were
derived. These relations were found to have the form of
convolutions of a function describing properties of the
source and a function describing properties of the scat-
terer.

In recent years, there has been much interest in the
scattering of partially coherent light by the turbulent at-
mosphere (see, for example, Refs. 10-12), and our results
may find application in the analysis of problems of this
kind.

APPENDIX A: DERIVATION OF AN
APPROXIMATION RELATING TO
EXPRESSION (44)

We will derive here the approximation that is applied in
expression (44), viz.,

exp[-ikr, - (RG + Rg/2)/ry] = exp[— ikry - ro/ry]
=~ exp[- ikr, - ro/R]. (A1)

Making the approximation in expression (Al) introduces
an error A, in the phase of the exponential function, i.e.,

, 1 1
A,=—kry 1y 2 ol (A2)

Iy

For the factors ry and ry appearing in Eq. (A2), we have
(see Fig. 6)
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ro| ~ R, (A3)

vyl <Lg, (A4)

where Lg denotes the linear dimension of the source. On
making use of these two expressions in Eq. (A2), we find
that

1A,

ry

<EkRLg (A5)

Because the scatterer is in the far zone of the source, we
have

R>Lg, (A6)

where Lg denotes the linear dimension of the scatterer.
Also (see Fig. 6),

R-Lg/2<ry<R+Lg/2. (A7)
Hence,
1 1 iLs/Z iLS
— = 2 ~ op2? (AS)
R R=xLg2| R“+RLg2 2R
and consequently
1 1 Lg
——-—| <= (A9)
R ry 2R

On substituting from expression (A9) into expression
(A5), we obtain the inequality

kLgLg
2R

[FAWES (A10)
which is expression (46). One can derive the approxima-
tion of the other exponential in expression (44) in a
strictly analogous manner.

ACKNOWLEDGMENTS

This work was supported by the U.S. Air Force Office of
Scientific Research under grant F49260-03-1-0138, by the
Engineering Research Program of the Office of Basic En-
ergy Sciences at the U.S. Department of Energy under
grant DE-FGO02-2ER45992, by the Air Force Research
Laboratory under contract FA 9451-04-C-0296, and by the
Dutch Technology Foundation (STW).
T. D. Visser’s e-mail address is tvisser@nat.vu.nl.

*Permanent address. Department of Physics and As-
tronomy, Free University, De Boelelaan 1081, 1081 HV
Amsterdam, The Netherlands.

Also with The Institute of Optics, University of Roch-
ester, and College of Optics, CREOL, University of Cen-
tral Florida, Orlando, Florida 32816.

REFERENCES

1. L. Mandel and E. Wolf, Optical Coherence and Quantum
Optics (Cambridge U. Press, 1995).

2. R. A. Silverman, “Scattering of plane waves by locally
homogeneous dielectric noise,” Proc. Cambridge Philos.
Soc. 54, 530-537 (1958).



1638

3.

J. Opt. Soc. Am. A/Vol. 23, No. 7/July 2006

J. Gozani, “Effect of the intermittent atmosphere on laser
scintillations,” Opt. Lett. 24, 436-438 (1999).

J. Howard, “Laser probing of random weakly scattering
media,” J. Opt. Soc. Am. A 8, 1955-1963 (1991).

D. F. V. James, “The Wolf effect and the redshift of
quasars,” Pure Appl. Opt. 7, 959-970 (1998).

W. H. Carter and E. Wolf, “Scattering from quasi-
homogeneous media,” Opt. Commun. 67, 85-90 (1988).

D. G. Fischer and E. Wolf, “Inverse problems with quasi-
homogeneous media,” J. Opt. Soc. Am. A 11, 1128-1135
(1994).

M. Born and E. Wolf, Principles of Optics: Electromagnetic
Theory of Propagation, Interference and Diffraction of
Light, 7th (expanded) ed. (Cambridge U. Press, 1999).

10.

11.

12.

Visser et al.

J. Jannson, T. Jannson, and E. Wolf, “Spatial coherence
discrimination in scattering,” Opt. Lett. 13, 1060-1062
(1988).

J. Wu and A. D. Boardman, “Coherence length of a
Gaussian-Schell beam and atmospheric turbulence,” J.
Mod. Opt. 38, 1355-1363 (1991).

G. Gbur and E. Wolf, “Spreading of partially coherent
beams in random media,” J. Opt. Soc. Am. A 19, 1592-1598
(2002).

H. Roychowdhury and E. Wolf, “Invariance of spectrum of
light generated by a class of quasi-homogeneous sources on
propagation through turbulence,” Opt. Commun. 241,
11-15 (2004).



