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Dynamical intermediates in the collapse
of semiflexible polymers in poor solvents
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PACS. 36.20.Ey – Conformation (statistics and dynamics).

PACS. 87.15.He – Dynamics and conformational changes.

PACS. 87.15.-v – Biomolecules: structure and physical properties.

Abstract. – We investigate, by a Brownian Dynamics (BD) simulation, the collapse of a single,
semiflexible or stiff polymer in solution, in the presence of short-range, attractive interactions.
In contrast to the mechanism for flexible chains, our results suggest that the collapse occurs
via a series of long-lived, metastable intermediates. These intermediates form a well-defined,
hierarchical family of conformations. Experiments with DNA condensation have shown similar
shapes, which were described as “tennis racquets”. In addition to our primary observation
concerning the collapse pathways of stiff filaments, we note that, in the absence of fluctuations
(upon annealing), the shape of these intermediates can be calculated exactly in certain limits,
and is given by a particular case of Euler’s elastica. This shape is unique up to an overall scale
factor determined by the parameters for bending stiffness and short-range attraction.

One of the most basic properties of an isolated polymer chain is its size and shape under
various solvent conditions [1–3]. For completely flexible chains in good solvent the monomers
effectively repel one another, favoring contact with the solvent, and a swollen coil is formed.
In poor solvent the monomers attract one another, and an isolated chain forms a compact
globule, roughly spherical in shape, which minimizes the surface area between monomers and
solvent. However, in contrast to the flexible case, many polymers exhibit substantial bending
stiffness, which makes a compact globule unfavorable because it involves a large amount of
bending. Such chains are described by the worm-like chain model [3], and examples include
many biopolymers such as F-actin and DNA as well as some synthetic polymers such as kevlar.
Semiflexible polymers thus introduce a new balance to this collapse: bending stiffness, favoring
extended conformations, competes with the effective self-affinity of a filament in poor solvent,
which favors compact structures with maximal overlap.

Questions of equilibrium statistical mechanics often have simple answers which can be
found at least qualitatively by intuition. The same cannot be said for questions involving
c© EDP Sciences
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dynamics. For instance, a sausage model was first proposed for the collapse of a flexible poly-
mer [4]. The actual dynamics were recently found by computer simulation which showed that
the collapse proceeds instead by the formation of a pearl necklace and the gradual diffusion
of large pearls from the chain ends [5]. Our system of interest here is a semiflexible or stiff
chain, and its collapse dynamics upon quenching in poor solvent could be expected to have
similarly interesting features.

It is known from experiments [6–11] and Monte Carlo simulations [12,13] that semiflexible
chains can form toroids, which reduce the monomer-solvent contacts without incurring as much
bending penalty as a sphere or globule. Although there is no theoretical proof that a torus is
the ground state, there is clear experimental evidence for its formation and stability, and its
detailed features and packing have received considerable theoretical attention [9,10,14,15]. In
this letter, we present a different aspect of this phenomenon: to study the actual time evolu-
tion of filament collapse, which Monte Carlo cannot address, we chose a molecular dynamics
(Brownian dynamics) simulation and found not only additional evidence for the stability of
the torus, but also, and more importantly, interesting aspects to the kinetic collapse process.
We emphasize that we do not describe a system in equilibrium and therefore cannot discuss
our results in the language of phase transitions. The analog of the coil-globule transition for
semiflexible chains is addressed elsewhere with more appropriate techniques for that question,
in refs. such as [12, 16]. Rather, we study the kinetic pathways of collapse of an individual
chain at constant temperature upon a quench in effective solvent quality. Given an extended
chain with bending stiffness, we ask: what are the pathways of collapse towards a ground
state, and can we confirm this ground state to be the torus?

Simulation details. – Our simulation applies a standard Brownian dynamics (BD) al-
gorithm [2] to a bead-and-spring model of the polymer chain. In order to capture the most
general features of this process, we chose this most basic model, which does not include any
of the biological machinery or structural details involved in a real problem such as DNA
condensation. For a polymer chain in solution, with length scales at the molecular level, all
motions are overdamped (at low Reynolds numbers), making BD an efficient dynamical tool.
For simplicity, our simulation is two-dimensional—the chain moves only in the plane. To
allow for filament crossing, we omit any chain-chain exclusion so that the chain can inter-
sect itself freely. Consequently, the effects of topological entanglements are neglected. Our
simulation also omits hydrodynamic interactions between particles, which would likely give
corrections to time scales and such, but not change our findings concerning kinetic pathways
and intermediate states.

Experimentally, this setup could be realized by a biopolymer chain constrained to two
dimensions by its affinity to a charged lipid bilayer [17], a mica surface [8, 18], or a treated
microscope cover slip [19].

Our dynamics are based on a Langevin equation of the form [2]

ξ
dxi

dt
= − ∂U

∂xi
+ ηi(t) = Fxi

(1)

for each bead i, where ξ is the coefficient of viscous drag (Fvisc = ξv) and η is the random
noise. In the BD simulation, each bead is displaced by ∆xi = (Fxi

/ξ)∆t in each time step
∆t. The potential U contains all interactions internal to the chain,

U = Ubend + Usolvent + Uspring , (2)

where Ubend represents the bending energy, Usolvent is a short-range attraction between beads
(mimicking poor solvent conditions) that induces collapse, and Uspring includes a very stiff lon-
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gitudinal compliance for each bead-bead link along the chain. The electrostatics of counterion-
induced attraction in polyelectrolytes is described in [20] and references therein.

Ubend is implemented as a discrete analog of the worm-like chain [2, 3]:

Ubend =
κ

2b

∑
i

θ2i , (3)

where the {θi} are the bond angles, b is the equilibrium link length, and κ is the bending
modulus. The persistence length of such a chain in two dimensions is �p = 2κ/kBT . For the
parameters used here, a persistence length consists of 15 links. For the attractive interaction
Usolvent we chose a pairwise quadratic potential between beads with a finite-range cutoff of
10/3 link lengths and a depth of 5/8 kBT . The last term, Uspring, models the links between
beads as quadratic springs with equilibrium length b. Their force constant exceeds that of the
poor solvent interaction by a factor of 200 which allows for deviations from the equilibrium link
length b of about 30% due to the thermal fluctuations at kBT . This represents a compromise
between stiffer springs modeling a more realistically inextensible chain and weaker springs
allowing for longer simulation time steps without interfering with the spring relaxation time.
Every chain was initialized with a Gaussian distribution of bond angles and then allowed to
thermalize in the absence of contact interactions over several times the longest relaxation time
of the filament. Attractive interactions were switched on suddenly (solvent quality quenched)
at t = 0.

We have not investigated to what degree the dynamical results depend on our choices of
parameters. Any modeling of a particular system would need to include the various molecular
details we have ignored here. Because of the relatively long run time required for each simu-
lation, it appeared impractical to systematically map out the phase space of all parameters.
Instead we reasonably approximated the effective physical conditions in experiments which
observe such an induced collapse. The filament length L for the majority of runs were about
7�p, long enough to make contacts through thermal motion alone likely.

Dynamics results. – The left panel in fig. 1 shows nine snapshots taken during the typical
dynamical evolution of a relatively short chain (50-mer, about 3�p). The sequence shows
a progression through well-defined stages, identified by four types of chain conformations:
extended chain (A-B), single-headed racquet (D-E), higher-order or multiple-headed racquets
(F-G), and finally the torus (H-I). The right panel in fig. 1 shows, for the same run, the end-to-
end distance Re-e of the filament as a function of time. Distinct changes in Re-e correlate well
with conformational transitions: e.g., the rapid drop in the vicinity of C and D corresponds
to the equalization of length between the two arms of a newly formed racquet. It is important
to note that the described conformations persist in time, as seen by the quasi-plateaus in
the right panel of fig. 1, each lasting for the considerable time of ∼ 106 BD steps. These
persistent structures are seen throughout most of our BD runs, suggesting that metastable
intermediates are a general feature in this collapse. Structures similar in appearance to the
racquet configuration have previously been observed (and named “tennis racquets”) in electron
microscopy of DNA during condensation [7].

Over one hundred runs follow the theme of fig. 1, with variations in the exact sequence of
structures and the degree of completion. This particular example was chosen as it displayed
most of the observed features in a single run. Some sequences skip various of these interme-
diates: e.g., an extended chain can roll up into a torus from the ends directly. However, it
appears from all our observations so far that transitions between configurations occur only in
the direction (in time) shown in the sequence of snapshots, although not every run reaches
completion in the torus. This directionality suggests that the progression is energetically
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Fig. 1 – Left panel: Time evolution snapshots A-I of a single chain (50-mer, about 3�p) during a
simulation of 107 BD steps. We see the chain go through the stages: extended chain, single racquet,
multiple racquets, and torus. The scale bars are an arbitrary unit length and merely indicate the
increasing degree of magnification. Right panel: End-to-end distances Re-e vs. time, for the same
run. The letters indicate the correspondence to the various conformational states shown on the left.
As the structures get more compact, the variance in Re-e is increasingly supressed.

driven, with the torus representing the presumed ground state, and that large energy barriers
between the intermediates are responsible for their metastability [21].

Our general picture is thus as follows: after quenching the solvent, the chain typically fluc-
tuates randomly until a loop forms from one end (fig. 1C). We distinguish two cases: if two
segments of the chain first meet at a tangent angle of 2π, the loop immediately rolls up into
a torus. More commonly, as it requires less bend in the filament overall, segments meet at an
angle π and form a racquet head, whose two arms rapidly equalize in length (fig. 1C through
E) and form a neck region. This process is driven by an increasing number of monomer-
monomer contacts without increase in bending penalty. The resultant structure is the first in
a hierarchy of possible long-lived intermediates. A next step may involve forming another head
at the neck end of such a racquet. By a series of similar events, higher-order racquets (such as
in fig. 1F and G) are produced, making up a family of metastable intermediates [21]. In this
case, formation of the torus occurred by separation of the filaments in the neck by random
fluctuations. However, good statistics on this step would require much longer run times.

Figure 2 shows the number of chains per conformation among over one hundred chains as
a function of time. The number in each species initially increases. If a torus were the ground
state, one would expect all other species to vanish over time, while the torus population
should grow and finally saturate. We infer that our runs are not long enough to show this full
evolution, but merely its early stages. In fact, the data in fig. 2 suggest that only about 10%
of our chains actually became toroids during the time allowed. The majority of filaments were
trapped in the local minimum of one of the racquet states. However, we take it as evidence
for the stability of the torus that no transitions were observed from a torus to either racquets
or open filaments. To date, long processing times have prevented us from gathering better
statistics on longer runs. Each run in fig. 2 takes about a day on a dual-processor Pentium
CPU.
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Fig. 2 – Statistics of chain conformations (100-mer) with time for a given set of parameters. The non-
zero initial values result from the onset of compact structures immediately following thermalization
and the change in solvent quality. Longer runs than these should reveal the late-stage behavior, where
we expect all racquets to vanish in favor of toroids.

Analytical racquet shape. – Having identified the racquet head as the common element
in the intermediate states, we calculate its geometrical shape (see fig. 3) in the absence of
thermal fluctuations. The general problem of the bending of a thin rod by forces and couples
applied at its ends only is known as the elastica. Its solutions were first studied by Euler in
1744. The particular solution we seek is schematically drawn in fig. 51 of ref. [22].

Since the problem is symmetric about the neck axis, we consider one half of the head only,
and label its contour length by L. Starting at the curved end, the tangent angle increases
from θ = 0 at arc length s = 0 to θ = π/2 at s = L (where the head joins the handle). As a
constraint, this curve must be traced out through a length L and with zero net displacement
in the direction perpendicular to the axis of symmetry:

∫ L

0
ds cos θ(s) = 0. The elastica is

solved by minimizing the bending energy U = κ
2

∫ L

0
ds (dθ/ds)2 subject to the constraint.

This leads to the differential equation

d2θ
ds2

= −ω2 sin θ(s) , (4)

where ω2 is a Lagrange multiplier. Equation (4) also describes a simple pendulum under-
going large oscillations, with arc length corresponding to time. It has the solution θ(s) =
2 sin−1[k sn(ωs)] and a period T = 4K(k)/ω, where K(k) and sn(ωs) are elliptic functions.
Our goal is to find the two unknown parameters, k and ω. These can be found by calculating
the time (or arc length) required to go from θ = 0 through π/2 to θ = θm and back to θ = π/2.
Here, θm is the amplitude of the pendulum. Equating this time to L gives one equation,

ωL = K(k) + F

[
k, sin−1

(
1

k
√
2

)]
. (5)

A second equation comes from the constraint, which yields L−2k2[I(0, T/4)+I(T/4, L)] = 0,
where I(x, y) ≡ ∫ y

x
ds sn2(ωs). Solving numerically gives k = 0.85509 and ωL = 3.22383.

The solution thus corresponds to a pendulum with an amplitude θm = 2 sin−1(k) = 2.05146
radians. Plotting both (symmetric) halves of this particular elastica results in a curve indis-
tinguishable from the one in fig. 3 showing a simulated chain upon annealing. The racquet
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Fig. 3 – Annealed racquet from the numerical simulation. Once formed, the “temperature” was slowly
reduced to yield the annealed shape for comparison with the formal solution from elasticity theory.
The curves superpose to within the linewidth.

shape is unique up to an overall scale factor; it is the same for macroscopic “thin rods” as well
as microscopic polymer chains (when annealed), provided there are no long-range interactions.

Discussion. – There is a large literature on the collapse of flexible chains [5]. The
collapse of single, stiff chains has also been studied previously, using Monte Carlo simulations
[12, 13, 16], but was approached primarily as a phase transition. Reference [12] describes
structures which appear similar to our single racquets, but differ in conformational detail and
interpretation. In contrast and as a complementary technique to molecular dynamics, Monte
Carlo simulations do not provide actual time evolution and can thus not describe the dynamical
formation of intermediates and their persistence in time. Only one of the above references [13]
discusses Langevin dynamics of stiff chains in addition to Monte Carlo simulations, but does
not report any metastable intermediates.

Biopolymers have increasingly provided convenient experimental systems with the large
persistence lengths needed for the visualization of single molecules with optical techniques.
In preliminary experiments [19], fluorescently labeled filaments of F-actin in multivalent salt
buffers have formed rings and single-headed racquets with features on the micron scale. Some-
what different conformations—flower-shaped intermediates—have been observed by AFM in
the condensation of DNA on mica [18].

We have shown that single, semiflexible chains with short-range attractive interactions (in
poor solvent) evolve toward a compact state (a torus, the presumed ground state) via a series
of long-lived, intermediate states. These intermediates appear to be metastable, due to large
bending energy barriers. Certain limitations in our study are, first of all, that the simulation
considers chain motion only in the plane, although we do allow for self-intersections. Secondly,
we have considered only relatively short chains. Preliminary examples of longer chains (up
to 20�p) intermittently displayed a superstructure of racquets within racquets, before turning
into a multiple racquet with long neck acting as a renormalized, stiffer filament that finally
collapsed to a torus. Finally, we note that our results for the collapse of a stiff polymer chain
differ qualitatively from those available for flexible polymers [5]. The collapse of a flexible
chain proceeds without long-lived intermediates, whereas a persistent chain appears to spend
a large amount of time in non-trivial metastable states.
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