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A theoretical model for binary mixtures in fluid membranes is developed to study possible
modulated phases in confined geometries. It is shown that two-component fluid bilayers can exhibit
modulations of both membrane shape and composition when subject to confinement. In particular,
lyotropic smectic phases can exhibit a transition to an undulated structure similar to that of the
Helfrich-Hurault instability. In the case of binary mixtures, however, the resulting structure is stable.
These results are also extended to freely suspended films, for which a transition to a modulated phase

is predicted as a function of the film thickness.

PACS number(s): 61.30.Cz, 64.70.Md, 83.70.Jr

I. INTRODUCTION

Under a broad range of experimental conditions, am-
phiphiles such as phospholipids or surfactants can form
bilayer membranes in water. These membranes are typ-
ically fluidlike—lacking any positional order of the con-
stituent molecules. Such membranes are flexible and can
form a variety of structures on length scales large com-
pared with the individual amphiphilic molecules. Lamel-
lar or smectic phases consist of ordered stacks of nearly
flat bilayer “sheets.” These phases are studied experimen-
tally both in bulk solutions and in freely suspended films
of a few layers to hundreds of layers in thickness [1-3].
In solution, closed, single-bilayer or unilamellar vesicles
can also form under certain conditions. In many cases of
interest, mixtures of two surfactants or a surfactant and
a cosurfactant have been studied. For instance, mixed-
surfactant systems have been widely studied in connec-
tion with stable vesicles [4-7]. Single-surfactant vesicles
appear to be possible (with or without cosurfactant) only
in special cases [8-10].

The presence of more than one component in a fluid
membrane leads to the possibility of phase separation or
segregation within the two-dimensional membrane. An
“internal degree of freedom,” such as composition, within
the membrane can significantly influence the shapes and
phase behavior of the membrane. A number of experi-
mental and theoretical [5-7,11-15] studies have focused
on the effects of segregation on the curvature properties
of membranes. On the one hand, binary fluid mixtures
provide a particularly simple example of a possible phase
transition within a membrane. Such a phase transition is
characterized by a single scalar order parameter 1, which
is the local composition of the two-dimensional fluid. On
the other hand, this simple example would appear to be
applicable to a variety of systems from the surfactant
mixtures mentioned above to biological cell membranes
involving multicomponent mixtures.

In this paper, we show that for mixtures of amphiphiles
in membranes, lamellar phases can become unstable to
modulations of both shape and composition. This is first
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illustrated with an example of a single membrane con-
fined between hard walls. We also consider the similar
case of a stack of membranes either confined between
walls or in a freely suspended film. The resulting in-
stability is similar to the Helfrich-Hurault [16,17] effect
in smectic liquid crystals subjected either to an applied
magnetic field or an external tension. In contrast with
the latter case, which is only metastable [17], however,
the modulated structures of mixed bilayers can be stable.

Ordinary binary mixtures of simple liquids have been
widely studied, in part, because of their critical behavior.
Such mixtures are characterized by a single scalar order
parameter 1, which is the composition of the mixture. In
the case of two-dimensional fluid membranes, however,
the ability of the membrane to curve in the three dimen-
sions in which it is embedded can lead to novel behavior
for which there is no analog for ordinary fluids. Fluid
membranes involving two or more components occur in
a variety of systems from biological cell membranes to
synthetic vesicles.

Several previous theoretical studies have concerned bi-
nary mixtures of surfactants or lipids in fluid membranes.
Leibler and Andelman [12,13], for instance, showed that
there can be phases of modulated composition and cur-
vature of fluid monolayers. Such a phase can be stable in
the case of a fluid film under tension because of the cou-
pling of composition to curvature. Regions of different
composition have different spontaneous curvatures.

In the case of a bilayer membrane, however, such a
direct coupling of local composition of the bilayer to its
curvature is not allowed by symmetry. Rather the cur-
vature can couple to the local composition difference be-
tween the two halves (1 and 2) of the bilayer [5-7]. This is
shown schematically in Fig. 1. Because regions of differ-
ent average bilayer composition remain symmetric, such
variations in the composition of a bilayer do not result in
variations of the spontaneous curvature. (On time scales
for which the exchange of surfactants between the two
halves of the bilayer can be ignored, the composition of
the bilayer can couple to the curvature of the membrane.
This coupling can also arise if one of the surfactant com-
ponents is constrained to only one side of the bilayer,
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FIG. 1. Schematic view of a modulated bilayer composed
of two surfactants A and B. If 4,2 represent the relative
concentrations of A in the top and bottom monolayers, re-
spectively, then the composition asymmetry ¢ o ¥; — 92 is
positive in the region on the left and negative in the region
on the right. The presence of nonzero asymmetry ¢ results in
curvature of the bilayer membrane.

in which case the bilayer symmetry is broken explicitly.
Models based on such a constraint have been studied re-
cently in the context of vesicles [15].) If, on the other
hand, there is a difference in composition between the
two halves of the bilayer, then this symmetry is broken
and the bilayer can be curved. Thus ¢ o ¥; — 13, the
difference in composition between the two halves of the
bilayer, is the order parameter that has the strongest
(i.e., lowest order) coupling to membrane shape.

II. MODEL

Below we assume the following Landau free energy per
unit area at constant chemical potential p for each half
(monolayer) of the bilayer,

1

f¢=§

1 1

50(‘71/})2 + §t¢2 +ayp® + byt —pp| . (1)
Here v is the local composition of the monolayer. The
normalization in Eq. (1) is chosen for simplicity of the
resulting free energy per unit area of the bilayer. For a
bilayer, there are two such contributions: one for each

half of the bilayer. Thus

= 2e (V9 + (Vo)) + 3t (9 + )

a (¢ + 39d?) + b (v* + 69%¢° + ¢*) — uip,
(2)

where the compositions of the two halves of the bilayer
are ¥; = ¥ + ¢ and ¥ = ¢ — ¢. Here it is assumed that
the interactions leading to eventual phase separation are
primarily between the surfactant head groups. Thus, for
instance, Eq. (2) is valid for a mixture of lipids with dif-
ferent polar head groups, but with the same hydrocarbon
chains. From here on, we shall set a = 0, since it can be
shown that the presence of the third-order terms in Eq.
(2) will not affect the resulting phase diagrams in an es-
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sential way because of the absence of a third-order term
in ¢. For a = 0, the critical composition for the mixture
is ¢ = 0. Not only is there no third-order term in ¢, but
there is no chemical potential associated with the order
parameter ¢. For a bilayer, such terms can be present
in the free energy only if the symmetry of the bilayer is
explicitly broken. This would be the case, for instance, in
a bilayer vesicle that has distinct “inside” and “outside”
environments. Of course, such terms (as considered in
Ref. [13]) must also be present for a fluid monolayer.

The sign of the order parameter ¢ depends on the
orientation (choice of “inside” and “outside”) of the bi-
layer. Thus it is not strictly a scalar, but rather a pseu-
doscalar. [Note, for instance, the absence of a @3 term
in Eq. (2).] These symmetry considerations alone would
lead to a phenomenological model with each of the terms
in Eq. (2), plus higher-order terms. The most general
phenomenological model based on symmetry would have
many more parameters than Eq. (2). The precise rela-
tionship between all of the parameters implied by Eq.
(2) is not essential for the results derived below. For in-
stance, the coefficients of ¢? and 2 need not be equal.
In simple physical terms, this can arise from an interac-
tion between the lipids on opposite sides of the bilayer.
This might become important for short-chain surfactants.
Provided that this interaction is not too strong, however,
the phase diagrams predicted by the model in Eq. (2) will
still be valid.

The curvature of the membrane also changes sign un-
der inversion of the membrane. Therefore, the lowest-
order coupling between composition and curvature is
¢V2h, where h(z,y) represents the height of the mem-
brane above a reference plane. This Monge representa-
tion is valid for membranes that are nearly flat with only
gradual variations of h. The mean curvature of the mem-
brane in this representation is H = TrK;; = V2h, where
K;; is the curvature tensor. [In contrast, the lowest-order
coupling of average bilayer composition ¢ to curvature
is (V2h)2.] From the symmetry considerations above,
the leading curvature contributions to the free energy are
given by

Jeuer = (V2R + 9672 h. (3)
Here k is the bending elastic modulus for the bilayer.
This curvature energy can also be motivated by consid-
eration of the two monolayers that make up the bilayer,
as was done for Eq. (2) above. The essential curvature
properties of the two monolayers are summarized by

fi

I

1 2
2 H = Ho(¥)]"

(4)
1 2
2F1=H = Ho(¥2)]
Here Ho (1) represents the preferred or spontaneous cur-
vature of an individual monolayer. This spontaneous cur-
vature depends on the composition 3 of the monolayer.
Furthermore, because of the opposite orientation of the
two halves of the bilayer, there is a relative sign difference

f2=
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between the curvatures of the two halves represented by
Eq. (4). Near the critical composition, Hy can be ex-
panded about the critical composition:

Ho(¢p) =co+crp+--- . (5)

Here only the leading terms have been retained. Higher-
order terms have also been implicitly ignored in assuming
that the bending modulus in Eq. (4) is independent of
the composition. The resulting curvature energy for the
bilayer, f1 + f2, is given by Eq. (3)—apart from terms
that shift the energy, the chemical potential, or the tran-
sition temperature by constants. The coupling constant
v = Kkcy has units of energy per length. The relevant en-
ergy scale is that of the bending modulus & (typically sev-
eral kT'), while the length scale is given by spontaneous
radius of curvature Ry for an asymmetric distribution of
the two surfactant components. Depending on the choice
of the two surfactants, we expect this radius to be of or-
der a few hundred angstroms. The other relevant param-
eters of the present model can also be estimated. For a
binary fluid mixture that exhibits phase separation below
a transition temperature 7., the microscopic interaction
energy is approximately kT.. Equation (1) represents an
energy per unit area of the membrane. Thus, if the area
per molecule is a3 ~ 40 A [18], then ¢t ~ ay*(T — T.).
Furthermore, for a short-range interaction between head
groups, ¢ ~ kT..

Strictly speaking, an additional Gaussian bending en-
ergy Kdet K;; must be included. This contribution to
the energy can be neglected for an asymptotically flat
and homogeneous membrane, as it is a topological in-
variant. In the case of a mixed fluid membrane, this
contribution can no longer be neglected in general since
the Gaussian modulus & may depend on the composition
of the membrane. However, not only will this effect be
of higher order than the terms in Eq. (3), but for the
one-dimensional modulations considered here it can be
neglected altogether.

III. CONFINEMENT OF A SINGLE MEMBRANE

As a simple illustration of the effects of confinement,
we first consider the case of a single bilayer membrane
confined between walls. This is sketched in Fig. 2. For a
short-range interaction between the membrane and con-
fining walls, the effect of the confinement can be mod-
eled by the addition of a potential energy V'(k), which
is a function of the membrane position h(z,y) between
the walls. For simplicity, we shall consider a harmonic
potential, so that [19]

1
f = fcomp + fcurv + Ekhz (6)

The free energy density f.uv can easily be integrated
over the area A of the membrane, with the result that

Fcurv = /fcurvdm dy (7)

= A [5(rg* + K)|hg|* — 7¢°boh—q]- (8)
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FIG. 2. The confinement of a single bilayer between hard
walls is modeled by a potential V (k) as a function of the
height of the membrane above the midplane.

Within the mean field approximation, the effective free
energy in terms of ¢ and ¢ is determined by minimization
of F = [ fdxdy with respect to the amplitudes kg, i.e.,
we set 0F/0hg = 0. This leads to

2
Yq ¢’q
hy = ——%. 9
q Kaq4+k ( )
In the following, we consider a = 0 and g = 0. The
effective free energy is

1
Fur=AY STP6," + b/¢4 dz dy, (10)
q

where

,Y2q4

I® =t4eg?— 11
q + cq (nq4+k)

(11)

In this model, three phases can occur. These are shown
in the phase diagram as a function of ¢ and + in Fig. 3 for
¢ =0 and a = 0. At high temperatures t there is a sin-
gle uniform flat phase. For 42 < 42 = V4c2kk, ordinary
phase separation (in this case of flat lamellae with ¢ = 0)
occurs for ¢ < 0. This is the two-phase region indicated
in Fig. 3. The two phases have compositions ¥ > 0 and
1 < 0. For 42 > ~2, there is an intermediate modulated

phase for I‘((,Z) < 0. On cooling, both transitions from the
uniform phase are second order. The modulated phase is
characterized by ¥ = 0. Both ¢ and the membrane shape
h are modulated. The wavelength A = 27/go of the mod-

ulation is determined by minimizing I' f,z) with respect to
q. In physical terms, this corresponds to the wavelength
at which the uniform flat phase is most unstable. This
analysis is valid near the transition, i.e., for I‘flz) < 0. For
v? 2 ~¢, this model predicts g3 2 v2/(2¢ck).

Near the transition, the modulated phase can be de-
scribed in the single-mode approximation. The com-
position is assumed to have the simple form ¢(z) =~
¢o cos(gz), where it is also assumed that the modulation
is in the z direction. The averaged free-energy density
over one spatial period is

(f) = ;TDH + oo (12)
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FIG. 3. The phase diagram for the model in Eq. (6) as a
function of the reduced temperature ¢t and the coupling v for
a = 0 and g = 0. The solid lines denote second-order transi-
tions, while the broken line represents a first-order transition.
There are three equilibrium phases. The uniform phase at
high temperature is characterized by ¢ = 0. For v < ~o,
ordinary phase separation of two homogeneous phases occurs
below t = 0. The two-phase region is indicated by 2 — ¢. The
two phases are flat (b = 0), but of different average compo-
sition ¢¥. For v > 70, on the other hand, an intermediate
modulated phase occurs in a temperature range near t = 0.

Within the mean field approximation, the free-energy
density is

() =55 1] (13)
To48b L]

As indicated in the phase diagram, for v > ~Z, the
second-order transition from the uniform phase to the
intermediate modulated phase occurs at a temperature
t > 0. At a lower temperature, there is a first-order tran-
sition from the modulated phase to the two-phase region
described above.

The phase diagram as a function of ¢t and u (or ¥)
for fixed ¥2 > ~2 is shown in Fig. 4. For u # 0, the
equilibrium state is characterized by ¥ # 0. For small
enough |u|, the transition from the uniform phase to the
modulated phase in the t-u plane or the t-1 plane remains
second order, but it is suppressed as shown in the figure.
This transition becomes first order at tricritical points at
(to, £po) for a = 0. Below t = tg, the modulated phase
can coexist with either of two uniform flat phases.

IV. CONFINEMENT OF A SMECTIC DOMAIN

Consider an ideal single domain in the smectic-A4
phase. This is characterized by a stack of parallel mem-
branes equally spaced in the direction perpendicular to
the individual sheets. This defines the z direction. Thus
the membranes are parallel to the z-y plane. Distortions
of this ideal state can be described by the local displace-
ment field u(zx, y, z), which represents the vertical (z) dis-
placement of a membrane at (x,y, z) away from its ideal
position. This is sketched in Fig. 5. The elastic energy

of distortions per unit volume can be described in terms
of gradients of u(z,y, z) [17,20]:

2
_ [ Ou

fsmectic = %K(Vzu)z + % (%) s (14)
where V refers to two-dimensional gradients in z and y.
Here K = k/d, where d is the average layer spacing and &
is the bending modulus of an individual membrane. The
first term represents the curvature of the membranes at
(z,y,z), while the second term represents the compres-
sion of the stack. The phenomenological coupling of the
curvature to ¢(z,y, z), the local composition difference

between halves of a bilayer at (z,y, z), becomes

f’y = g¢($,y72)v2u(may7z)' (15)

Again, this is an energy per unit volume. Similarly, the

uniform

uniform

t

FIG. 4. (a) The phase diagram as a function of reduced
temperature t and chemical potential y for v > 7. For a
range of temperature ¢t and chemical potential ¢ an equilib-
rium modulated phase m is predicted. This phase diagram ex-
hibits both first- and second-order transitions. The solid line
indicates a second-order transition from the high-temperature
uniform phase to the modulated phase. The line of sec-
ond-order transitions ends in a tricritical point, below which
modulated and uniform flat phases coexist. (b) This coexis-
tence is indicated by m +u. Here the phase diagram is shown
in the ¢, u plane.
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FIG. 5. For either a single smectic domain confined to a
region —D/2 < z < D/2 or a freely suspended lyotropic film
of thickness D a modulated phase can occur for increasing
thickness or number of layers n = D/d.

mixing terms in the energy are

fromp = 5 [V + 400 19)

As above, only the case ¥ = u = 0 will be discussed in
detail. The results are valid for compositions close to the
critical composition. In Egs. (15) and (16), only in-plane
gradients of ¢ have been included. Thus direct inter-
actions between adjacent membranes are not included.
This should be valid, for instance, for lyotropic phases of
phospholipids in water at sufficiently high water content.

For a stack of membranes confined between hard walls
at z = +£D/2, a modulation of u must satisfy the bound-
ary conditions u = 0 at z = £D/2. Thus we assume a
single undulation mode of the form [16,17]

u(z,y, z) = ug cos(zm/D) cos(qx). a7

We also assume a similar form for the accompanying
modulation of the composition ¢:

&(z,y,z) = ¢o cos(zm/D) cos(qz). (18)

Within this single-mode approximation, the integrated
free energy is given by

AD |1 1_ 72
T2 1 2yg2 4 9 4
dq Pouo + 2d(t+cq )$o + 16d¢0 , (19)

where A is the area of the sample in the z-y plane. The
equilibrium amplitude of the modulation

2
_ 79 ¢q
Ug = d(Kq* + Br? /D7)’ (20)
Thus
AD J1 9b
_ AV r@ g2, P04
F= 47 [frod g, (21)
where
2.4
P¢(12) —¢ +cq2 7aq (22)

~ (Kq*+ Bn?/D?)d’
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As in Sec. III, there are three possible equilibrium
phases. At high-temperatures t there is a single, uni-
form, flat phase. At lower temperatures, one of two flat
phases can occur. These have different compositions .
In addition, an intermediate modulated phase can occur
for 42 > 274e\/K B. Thus, for example, as the thickness
D of the sample is increased, there can be a transition
from the high-temperature uniform phase to a modulated
phase. For thick samples, this transition occurs for

t~~v%/k. (23)

In this limit, the wavelength of the modulated phase is
given approximately by

1/6
A~ 2 (:—:DZA?,) < /Do, (24)

where Ao = /K/B is the bare penetration length of
the smectic. This is of order the layer thickness d. The
phase diagram as a function of ¢ and the number of layers
n = D/d is shown in Fig. 6. The transition occurs for
cK
n > 27r72d/\0. (25)
While this phase diagram has been derived for the case
of an oriented smectic domain between hard walls, a sim-
ilar analysis can be done for a freely suspended film. In
this case, instead of hard-wall boundary conditions, there
is an excess free-energy proportional to the area of the
top and bottom layers of the film, which we assume to be
at z = £D/2. As in the case of the hard-wall boundary
conditions, this also has the effect of suppressing undula-
tions of the membranes. In fact, it can be shown that in
the limit of thick films, the above results are applicable to

uniform

modulated

2-0

FIG. 6. The phase diagram for a confined smectic or a
freely suspended film as a function of the reduced temper-
ature ¢t and the number of layers n. The solid lines denote
second-order transitions, while the broken line represents a
first-order transition. There are three equilibrium phases.
The uniform phase at high temperature is characterized by
¢ = 0. In thin films, for example, ordinary phase separation
of two homogeneous phases is predicted below ¢ = 0. The
two phases are flat, but of different average composition .
For thick films, an intermediate modulated phase occurs in a
temperature range near t = 0.
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freely suspended films. For thin films, on the other hand,
the finite compression modulus B leads to a modulated
phase characterized approximately by

u(z,y, z) = ug cos(qz), (26)

which is independent of z. The free energy in this case is

_ AD

F=3

1 2,2  3b
[ng Vg% + ~8—¢3] : (27)
where

,y2q4

F(z):t—f-c 2Tz
q q (Kq4+%"q2)d

(28)
This model is similar to that of Ref. [13], although no
linear or third-order terms in ¢ are allowed by symmetry
here. In this model, the intermediate modulated phase
occurs for v2 > 20cd/D. Thus a transition is expected

with increasing thickness D for a fixed value of . The
optimal wave vector is given by

2 20cd 20d
o=\""\Vp DrZ (29)

At this transition, the

The transition is second order.

wavelength of the modulation diverges. Furthermore,
with increasing sample thickness D,
go ~ D% (30)

For thicker films, the effect of surface tension at the
boundaries is to suppress undulations at z = £D/2. As
D — oo, the effect of surface tension becomes the same as
that of hard walls. This is because the hard-wall bound-
ary conditions cost an elastic energy

2
Af ~B—u2~D2, (31)

averaged over the volume of the sample. For a modula-
tion given by Eq. (26), however,

g _
Af ~ quug ~ D73/2, (32)

Thus the amplitude of the undulation at the surface of
the film is expected to decrease relative to the center
of the film as the film thickness is increased. A similar
effect has been reported for the amplitude of fluctuations
in single-component films of varying thickness [21].

V. DISCUSSION

As the above shows, the coupling of membrane com-
position to curvature can lead to undulated membrane
structures in confined geometries. In the case of a single,
oriented smectic domain confined between hard walls, the
resulting instability of the uniform flat smectic phase is
reminiscent of the Helfrich-Hurault instability of single-
component smectics under mechanical tension. This oc-
curs if the separation between the confining plates is
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increased. An undulated structure forms in order to
achieve the ideal spacing between layers. However, this
structure is only metastable, as the true constrained equi-
librium structure can be achieved by changing the num-
ber of layers.

In the case of the two-component system studied
above, the undulated structure is an equilibrium phase.
Such modulated phases are also predicted for freely sus-
pended films of mixed surfactants. In this case, for thin
films the modulated phase is similar to that predicted for
monolayers in Ref. [13] since the surface tension is respon-
sible, in part, for the instability of the flat film. In con-
trast with the model of Ref. [13], however, no hexagonal
modulated phase is expected here. This is because of the
symmetry considerations for bilayers described above. In
particular, no third-order term in ¢ is allowed by sym-
metry. Similarly, no chemical potential associated with
¢ is possible. This is analogous to the absence of a physi-
cally realizable staggered magnetic field conjugate to the
staggered magnetization in magnetic systems. In the ab-
sence of such a “staggered chemical potential,” only the
stripe phase was predicted in Ref. [13]. Furthermore, as
Sec. IV shows, with increasing thickness of a freely sus-
pended film, the behavior of this model is expected to
approximate that of the confined smectic domain. The
finite compression modulus of the smectic allows the film
to reduce the excess free energy of the top and bottom
layers of the film. For typical values of the parameters

k>~ 10kT, ¢~kT, Xo~d=~50A,

Ro = K/~ ~ 500 A, (33)

the modulated phase is predicted for n 2 100 layers.
From Eq. (24) the corresponding wavelength is approxi-
mately A ~ /nd 2 500 A. Furthermore, by Eq. (23), the
temperature range of stability of the modulated phase is
given by

At ~ ag *kAT ~ v* /K. (34)

For the parameters given above, together with 7T, ~
300 K, this temperature range is about 1 K in thick films.
For a greater asymmetry between the constituents, the
characteristic radius of curvature is smaller. This would
lead to a modulated phase for thiner films [22] and for a
broader temperature range.

In contrast with both the confined smectics and freely
suspended films considered above, similar modulated
phases are not expected in bulk smectics within the model
considered here. In the bulk, the wavelength of the re-
sulting instability becomes infinite. (It can also be shown
that the penetration length A\, diverges near the transi-
tion [17].) The resulting ¢ = 0 instability, however, is
not necessarily that of phase separation of flat lamellar
phases. Rather it was shown in Ref. [7] that, in bulk
solutions of sufficiently low concentration of surfactant,
an equilibrium phase of vesicles is predicted for compo-
sitions near the critical composition for the mixture. In
this case, the size of the vesicles is determined by the
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amplitude of the instability.

The model described above has been treated within
mean field theory. Thermal fluctuations, which have been
ignored above, can significantly affect the stability of
modulated phases. It is known [23] that in systems char-
acterized by preferred fluctuations of finite wavelength
[as illustrated by Egs. (11), (22), and (28)], thermal fluc-
tuations can destabilize the uniform phase relative to a
modulated phase. Furthermore, the resulting transition
is first order. Thus we expect that the presence ther-
mal fluctuations may lead to first-order transitions from
the high-temperature uniform phases to the modulated
phases as the temperature is lowered in Figs. 3 and 4.
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