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Phase separation and curvature of bilayer membranes
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Phase separation of two-component mixtures in fluid bilayers is shown to result in a stable one-phase
vesicle region near the critical composition for the mixture. The resulting phase diagram exhibits tricrit-
ical behavior: The critical point for phase separation lies on the line of continuous transitions between
lamellar and vesicle phases. Near the continuous transitions, the polydispersity of the resulting vesicles
is large. Possible implications for experiments on two-component surfactant systems are also discussed.
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Two-dimensional fluid membranes composed of amphi-
philic molecules such as phospholipids or surfactants
form a variety of structures of scientific as well as techno-
logical importance. In particular, fluid bilayer mem-
branes can form open, flat lamellae or closed, curved vesi-
cles. Recent experimental studies [1,2] have concerned
membranes composed of mixtures of oppositely charged
ionic surfactants. These studies have shown that a wide
variety of such mixtures can result in stable (equilibrium)
vesicles, in contrast with single surfactant systems.
Motivated by these experiments, previous theoretical
work [3,4] has focused on the nature of interactions be-
tween the two species which can lead to complex forma-
tion and to spontaneous vesicle formation. Complex for-
mation, however, leads to stable vesicles only in special
cases. In this work, we show quite generally that for am-
phiphilic mixtures in bilayers, phase separation within
the membrane can lead to curved bilayers, and in fact, to
closed vesicles of well-defined size. In addition, we com-
pute the polydispersity of vesicles and show that near
lamellar-vesicle phase boundaries, the polydispersity can
grow without bound. Finally, we discuss the relevance of
this work to experiments as well as previous theoretical
work.

In simple binary liquid mixtures, attractive interactions
between like species result in phase separation in an ap-
propriate temperature and composition range. The coex-
isting phases are of different compositions and the sample
can contain metastable domains of these phases. Due to
the surface tension or excess free energy associated with
the interfaces between these domains, the equilibrium
configuration corresponds to two macroscopic regions
separated by an interface with minimal surface area, such
as occurs when water and oil are mixed at room tempera-
ture. In this case there is no characteristic length scale
for the domains in the thermodynamic limit. In contrast,
we find that for binary mixtures of amphiphiles in fluid
bilayers, phase separation chooses an intermediate length
scale for the formation of stable vesicles. This is due to
the coupling of composition and curvature degrees of
freedom [3-5]. Another feature of phase separating fluid
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bilayers is that the two phases can coexist on opposite
sides of a bilayer; the phase separation can occur without
interfaces between the two phases. We predict a stable,
one-phase vesicle region near the critical composition,
with a simple dependence of the vesicle size on composi-
tion. We also determine the regions of coexistence of
vesicles with lamellae.

In order to illustrate this behavior, we introduce a
model free energy, which we then treat within mean-field
theory. First, we assume that the bilayer membrane is
composed of a mixture of two amphiphiles, for which the
relevant interactions (e.g., those which promote phase
separation) are primarily between molecules in the same
monolayer. This should apply, for example, to a mixture
for lipid molecules in water, which molecules differ only
in their polar head groups [6]. In this case, the only in-
terfaces which we need consider are those between re-
gions of different (polar) composition within each mono-
layer.

For simplicity, we consider only isotropic curvatures of
the membrane. We thus focus on the transition from
lamellae to spherical vesicles. Furthermore, we assume
that the local mean curvature of the membrane is free to
adjust to minimize the curvature energy. In other words,
only equilibrium membrane shapes are considered. Since
the spontaneous curvature comes from a delicate balance
of the head and chain packing densities, we assume that
the composition (e.g., relative fraction of one of the am-
phiphiles) primarily affects the spontaneous curvature
and not the bending modulus. Again, this should apply
to mixtures of amphiphiles which differ only in their po-
lar segments, since bending moduli are determined prin-
cipally by chain properties [7].

We shall consider a model for phase separation of sur-
factant heads in a bilayer. For simplicity, we shall con-
sider the Landau free energy

fo=1t¢*+1o*, (1)

where ¢ is the composition relative to the critical compo-
sition ¢, and t ~(T —T,) is the reduced temperature. In
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the bulk, this would lead to coexisting phases of composi-
tions ¢ =+V —t¢, for t <0. A gradient term in S 4 results
in an excess free energy or surface tension associated with
interfaces between coexisting phases [8]. As will be
shown below, such a term is not important, provided that
the bending rigidity is large. The curvature energy [9] of
a mixed amphiphilic monolayer can be expressed as [10]

fe=1tkle—co($)]?, 2)

where co(¢)=co—7y¢ is the spontaneous curvature as a
function of composition ¢, and ¢ is the spontaneous cur-
vature of the monolayer at the critical composition ¢,.
We have assumed a simple linear, dependence of spon-
taneous curvature on ¢ for illustrative purposes. This
linear assumption is valid for systems where the spon-
taneous radius of curvature is much larger than the
correlation length associated with phase separation and a
simple averaging over the local spontaneous curvatures is
appropriate. For a bilayer, the free energy is

f=51(g1+¢2)+ (o1 +42)
+ixl(c+yd)’+(c =y 1—p(d,+4,) 3)

where ¢, and ¢, refer to the compositions of the inner
and outer layers, which may or may not be homogeneous,
and p is the chemical potential. For a closed system, the
Lagrange multiplier, u is determined by the constraint of
fixed composition. We have also eliminated terms pro-
portional to ¢, which merely shift the chemical poten-
tial.

Minimizing the free energy with respect to ¢, and ¢,
gives

1+ +ry’d=p—yxc , 4
t,+d3+kyp,=u+yec . (5)

We shall denote the mean composition of a bilayer by
Y=(¢,+¢{)/2 and the composition asymmetry by
¢=(¢,—,)/2. For t +ky>>0, the compositions ¢, and
¢, of each layer are uniform by Egs. (4) and (5). As a re-
sult, we need not consider a gradient term in Eq. (1).
Hence, ¢ and ¢ are constants, and the free energy can be
written as

F=+3")¢>+ 1o*+ (¢ +ry* W+ Lot —2uy (6)

after minimization with respect to ¢. The mean curva-
ture of the bilayer is related to the composition difference
¢ by ¢ =y¢. The orientation of the bilayer (i.e., choice of
“inside” and ‘“‘outside”) is arbitrary, as is the sign of the
bilayer curvature: one monolayer has curvature y ¢, while
the other has curvature —y¢. Thus the system is degen-
erate with respect to the sign of ¢.

For p =0, which corresponds to a closed system at the
critical composition, the system is macroscopically uni-
form, and ¥=0. Below ¢=0, the bilayer spontaneously
breaks the symmetry in composition between the inside
and outside, such that ¢=+V —¢. By our assumption
that the curvature of the membrane is isotropic, the equi-
librium is characterized by vesicles of radius
R =(y|¢|)~!. This has a lower free energy than a lamel-
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lar phase.

A more detailed analysis of the free energy shows that
vesicles are indeed more stable than lamellae in a region
around the critical composition. This is due to the ability
of the vesicles with different compositions in the inner
and outer layers to relieve the frustration of the curvature
energy. The possibility of vesicle formation precludes the
usual coexistence of lamellar systems with two composi-
tions for temperatures near ¢t =0 where we find a transi-
tion from lamellae with uniform compositions to vesicles
with composition asymmetries. At lower temperatures,
vesicles are stable for compositions near ¥»=0 and a two-
phase coexistence of symmetric lamellae and vesicles is
predicted for larger values of .

For a given temperature ¢t and chemical potential u the
minimum of f with respect to ¢ is determined. From the
value 1, corresponding to this minimum, both ¢ and
c=vy¢ are determined. Vesicle and lamellar phases are
distinguished by the order parameter ¢ which breaks the
composition symmetry between inside and outside: if
¢ =0, the bilayer is flat, which we identify with the lamel-
lar phase; if $7<0, the bilayer is curved, which we identify
with the vesicle phase. For 0>t > —ky?%/6, the transi-
tion from vesicles to lamellae is second order. At a criti-
cal value p. the asymmetry, ¢ and the curvature ¢ go
continuously to zero. Below t,= —K’}/2/6, the transition
becomes first order. This is illustrated by the phase dia-
gram in Fig. 1. For a closed system, the first-order tran-
sition corresponds to the coexistence of uniform, flat
lamellae with vesicles of a finite radius and composition
difference between inside and outside. This two-phase re-
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FIG. 1. (a) The phase diagram as a function of rescaled
chemical potential & =u(ky?) 32, and temperature 7=1¢/(ky?).
Vesicle (V) and lamellar (L) phases are labeled. Below the tri-
critical point (@), the transition becomes first order, as indicated
by the dashed line. (b) The phase diagram as a function of re-
duced temperature T and composition m =9V ky%. The region
of coexistence of vesicles with lamellae is denoted by V+L. In
this example, we have set ky2=1.
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gion is indicated by “L + ¥ in Fig. 1(b).

The symmetry of the phase diagrams about ¥»=0 and
1=0 is a consequence of the ¥?¢* coupling in Eq. (6). A
P¢? is also allowed by symmetry. Such a term, however,
results in phase diagrams which, although asymmetric,
have the same form.

The calculated phase diagrams in Fig. 1 are reminis-
cent of diagrams for metamagnets and for *He-*He mix-
tures at low temperatures [11]. In particular, these sys-
tems exhibit a critical point for phase separation which
lies on a line of continuous transitions (e.g., the A line).
In fact, it can be shown that the present model is formal-
ly equivalent to the mean-field theory of metamagnets in
Ref. [11]. At the critical point, a uniform lamellar phase
and two degenerate (ordered) phases, with positive and
negative ¢, coexist [12,13]. In the limit of large ky?,
coexistence of vesicles with lamellae is not expected, since
t,=—ky2/6 becomes unphysical. We expect, however,
that the intermediate case (ky%<1) is most relevant for
experiments, since the bending modulus « may be
significantly renormalized by composition fluctuations,
and since the (dimensionless) curvature ¢ and coupling y
are expressed relative to a molecular dimension.

Similar phase behavior has been obtained for models of
the so-called sponge phase [14]. In this phase there are
two relevant order parameters, one of which is an inside-
outside order parameter. Although the model of Ref.
[14] differs from the present one in certain essential
respects, the resulting phase diagrams also exhibit tricrit-
ical behavior. Provided that the bending modulus and
the coupling y are sufficiently large, the present work
predicts vesicle and lamellar phases. For small bending
modulus and low surfactant concentration, on the other
hand, a dilute vesicle phase may exist (as predicted in
Ref. [14]). However, such vesicles are stabilized by their
entropy of dispersion. As a result there is no single
characteristic size for these vesicles, in contrast with the
present model.

In the present model, we have not considered either the
entropy of dispersion or possible interactions between
vesicles. As mentioned before, for dilute solutions the en-
tropy of dispersion tends to favor vesicles over lamellae.
Furthermore, related experiments [2,15] have shown that
vesicles remain stable up to relatively high concentrations
(i.e., comparable with close packing of vesicles). This
suggests that interactions between vesicles will not
significantly affect vesicle stability at lower concentra-
tions. Thus, our results are strictly valid in the limit of
dilute solutions. At finite concentrations, for example,
the second-order transition may become first order.

The bending modulus « is also the principal factor
determining the polydispersity of the vesicles. The
effective bending modulus may be significantly reduced
by composition fluctuations, especially near the line of
continuous transitions in the figure. For example, just
above the point =0, t =0 (m =0, 7=0 in the figure),

f=ke?>=2kydc+(t+ry*)d? . (7)

After minimization with respect to ¢, the effective bilayer
curvature energy is f .5 = K.qC 2, where

F. C. MacKINTOSH AND S. A. SAFRAN 47

kg=k——~-L < (8)
off t+xy? 7/2 '

Similarly, below the transition k.;~2|t|/y? and the po-
lydispersity (which is inversely related to the rigidity [4])
diverges at t —0. Thus both the width of the distribution
as well as the mean vesicle size depend on temperature
and composition: the polydispersity diverges near the
line of continuous transitions between vesicles and lamel-
lae. This is in contrast with the work of Ref. [4], where
complex formation alone results in a small polydispersity
of order kT /«k.

The present work demonstrates that mixtures of in-
teracting amphiphiles can stabilize vesicles with different
compositions in the inner and outer layers. These vesi-
cles are predicted to form spontaneously and to be ener-
getically favored over flat, lamellar phases for composi-
tions near the critical composition for phase separation.
The physical origin of the vesicle stability is the coupling
between the tendency for the amphiphiles to phase
separate and the composition dependent, spontaneous
curvature of each monolayer.

Experiments on mixtures of surfactants with oppositely
charged polar head groups have investigated in detail the
nature of equilibrium vesicle formation and the resulting
structures and phase diagrams [2]. In these systems, one
expects attractive interactions between the two different
surfactant species 4 and B due to the Coulomb interac-
tions. Previous theoretical studies have shown under
what conditions complexation can lead to stable vesicles.
When the vesicle curvature is small and the interactions
are weak, these conditions are expected to apply only in
special cases. For strong interactions, on the other hand,
the result is an effective mixture of surfactants A (as-
sumed to be the majority) and B’ (complexes of the two
species A and B), and in the absence of repulsive interac-
tions between these two effective species, spontaneous
vesicle formation does not occur: the system is predicted
to be lamellar. In the present work, we have shown how
phase separation (i.e., repulsive interactions between the
two different species) can stabilize vesicles for a range of
compositions and temperatures. These results may be
applicable to the mixed-charge systems if one considers
the usual case of strong Coulomb interactions, where
complexing occurs. In this limit, the result is an effective
mixed-amphiphile system, where the two species are the
surfactant complexes and the unpaired majority surfac-
tants. The interaction between these two effective surfac-
tants may indeed be repulsive, leading to phase separa-
tion of complexes from the excess majority phase. Such
an interaction may arise from variations in the surfactant
density in the mixture: each complex corresponds to a
distortion of the local head group packing within the
membrane, and the resulting elastic energy can be re-
duced by the aggregation of complexes [16]. A similar
sort of indirect interaction has been considered in the
context of surfactant films with absorbed polymer [17].
In the present case, the low-temperature state would be
one where all of the complexes are on one side of the bi-
layer with the excess species on the other side of the bi-
layer. Thus one would expect two critical compositions
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of ¥, =1, 2 with single-phase vesicle regions near .. By
the same token, one would also expect that the composi-
tions of 4 and 2 would be the most stable in the surfac-
tant concentration-composition plane; this seems to be
consistent with the experimental phase diagrams for sur-
factants with comparable chain lengths and oppositely

charged head groups [15,18].
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