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Semiflexible polymers such as filamentous ad¢kractin play a vital role in the mechanical behavior of

cells, yet the basic properties of cross-linked F-actin networks remain poorly understood. To address this issue,
we have performed numerical studies of the linear response of homogeneous and isotropic two-dimensional
networks subject to an applied strain at zero temperature. The elastic moduli are found to vanish for network
densities at a rigidity percolation threshold. For higher densities, two regimes are observed: one in which the
deformation is predominately affine and the filaments stretch and compress; and a second in which bending
modes dominate. We identify a dimensionless scalar quantity, being a combination of the material length
scales, that specifies to which regime a given network belongs. A scaling argument is presented that approxi-
mately agrees with this crossover variable. By a direct geometric measure, we also confirm that the degree of
affinity under strain correlates with the distinct elastic regimes. We discuss the implications of our findings and
suggest possible directions for future investigations.
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I. INTRODUCTION has proved quite subtle. Related theoretical approaches con-
sidered thus far have either assumed a simplifying network
The mechanical stability, response to stress, and locom@eometry, such as a lattid@4] or a Cayley treg35], or
tion of eukaryotic cells is largely due to networks of biopoly- assumed that the dominant deformation modes are affine
mers that collectively form what is known as the cytoskel-[36] or dominated by transverse filament fluctuations and
eton [1-5]. Filamentous actin(F-actin, microtubules, and bending[37,38.
other intermediate filamentous proteins make up the cyto- [N this paper we study the static mechanical properties of
skeletal network, along with a variety of auxiliary proteins random, semlerX|_bIe, cros;—lmked netv_vork; in the linear re-
that govern such factors as cross linking and filamenfPONSe regime with the aim of shedding light on the more

growth. By understanding the relation of the individual fila- complex, nonequilibrium cytoskeleton. Our approach is de-

ment properties and dynamically evolving gel miCrostructureI|berately minimalistic: we consider two-dimensional, ather-

to the rheological/mechanical properties of intracellularmal systems .W'th no polyqllspers_lty In f_llament properties.
structures, one will better understand the general framewor'le‘Ithoth obviously S|mpl_|f|ed, this restricts the parameter
' Space to a manageable size and allows for a fuller character-

for cellular forge generation gnd transd-uct[th—fﬂ. Stich ization of the network response. The central finding of our
stress production and sensing underlies such fundamentgl, ) is the existence of qualitatively distinct regimes in the
biological processes as cell division, motilft9], and adhe-  g|astic response and local deformation in networks, each
sion[10-13. Given the importance of biopolymer networks vt characteristic signatures that should be observable ex-
in determining the mechanical response of cells, there is agerimentally.
obvious interest in understanding the properties of such net- The pasic distinction between stress propagation in flex-
works at a basic level. Understanding stress propagation ifble and semiflexible networks is that in the former elastic
cells also has implications for the interpretation of intracel-deformation energy is stored entropically in the reduction of
lular microrheology experimen{d4,15. However, biopoly- the number of chain conformations between cross links
mers also belong to the class of semiflexible polymers, s§39,4Q while in the latter, the elastic energy is stored prima-
called because their characteristic bending lerigthwever rily in the mechanical bending and stretching of individual
defined is comparable to other length scales in the problemgchains. In a flexible, cross-linked mesh there is only one
such as the contour length or the network mesh size, and thusicroscopic length scale: the mean distance between cross
cannot be neglected. links or entanglementd,.. Since the actual identity of a
Such semiflexible polymers pose interesting and fundaflexible chain is immaterial on scales beyond this mean
mental challenges in their own right as polymer materialscross-linking distance, chain length plays only a very small
The understanding of the properties of individual semiflex-role [41]. In a semiflexible gel, however, chains retain their
ible polymers is quite highly develop¢d6—28; in addition, identity through a cross link because the tangent vectors on a
the dynamical and rheological properties of these polymergiven chain remain correlated over distances much longer
in solution[24,27-33 have largely been elucidated. The re- than&, the mesh size. Thus, it is reasonable to expect that the
maining problem of determining the rheology of perma-elastic properties of the network depend on both the mesh
nently cross-linked gels of semiflexible polymers, howeversize and the length of the chains.
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In this regime, elastic energy is primarily stored in the
extension/contraction of filaments. Also, in contrast to the
NA regime, the growth of the degree of nonaffinity saturates
as a function of decreasing length scale. The elastic response
of the network is governed primarily by the longitudinal
compliance of filaments, and the shear modulus can be cal-
> culated from the combination of this realization and the as-
S sumption of affine, uniform deformation as shown in Refs.
\ [24,30-33,36 We will show that there is one dimensionless
parameten that controls the NA>A crossover. It is set by

log(c) the ratio of the filament length to a combination of param-

FIG. 1. A sketch of the expected diagram showing the variouEters describing the density of the network and the individual

elastic regimes in terms of molecular weightand concentration filament stn"fr]ess. ) o
c~1/.. The solid line represents the rigidity percolation transiton N the affine regime, the longitudinal response actually
where rigidity first develops at a macroscopic level. This transitioncan arise from two distinct mechanisms: there are two forms

is given byLwc’l_ The other dashed lines indicate crossoyant of Compliance of a semiflexible filament under extensional
thermodynamic transitionsas described in the text. As sketched Stress, one essentially entrop86] and the other essentially
here, the crossovers between nonaffine and affine regimes demofechanical38]. In the first case, the compliance relates to
strate the independent nature of these crossovers from the rigidihe thermally fluctuating filament conformation, which, for
percolation transition. instance, is straightened out under tension. A change in the
length of a filament between cross links results not in simple
Upon increasing the density of filaments and thus the denmechanical strain along that filament but rather in a reduc-
sity of cross-linkghereafter we refer to filament density only tion of the population of transverse thermal fluctuations
as one quantity determines the other in two dimensgitims  along that filament thereby reducing the entropy of the fila-
system acquires a static shear modulus via a continuousent. This reduction results in an elastic restoring force
phase transition at the rigidity percolation point. This corre-along the length of the filament. This is the dominant com-
sponds to moving from left to right in the lower half of the pliance for long enough filament segmerfesg., between
phase diagram shown in Fig. 1. This critical pojsstlid line  cross link$. In the second case, the compliance is due to a
in Fig. 1) is at higher density than the connectivity percola-change in the contour length of the filament under tension,
tion point. Since our model ignores the entropic elasticity ofwhich, although small, may dominate for short segments
the network, below this critical density associated with rigid-(e.g., at high concentratipnThus, in general, we find two
ity percolation, the material has no static shear modulus andistinct affine regimes, which we refer to as entrophE)
may be considered a liquid. We will discuss the finite tem-and mechanicalAM ).
perature implications of this zero-temperature phase transi- Moving still further up and to the left in the diagram
tion in more detail. The elastic properties of the fragile gelshown in Fig. 1 we would eventually reach a regimet
(solid) that exists just above this critical point are controlled shown) in which the filament lengths between cross links are
by the physics of rigidity percolation. much longer than their thermal persistence length and stan-
By increasing the cross-link density further we encounterdard rubber elasticity theory would apply. This regime is of
a regime over which the elastic deformation of the gel isno experimental importance for the actin system. To com-
dominated by filament bending and is highly nonaffine. Thisplete our description of the diagram, we note that by increas-
nonaffine(NA) regime is consistent with prior predictions by ing the filament concentration in the entropic affine regime,
Kroy and Frey[37,38. Within the NA regime the static shear one must find a transition from entropic to mechanical elas-
modulus scales linearly with the bending modulus of theticity (AE— AM) within a regime of affine deformation.
individual filaments,x, but the elastic moduli are not con- Here we confine our attention to two-dimensional perma-
trolled by properties of the rigidity percolation critical point. nently cross-linked networks and consider only enthalpic
Most remarkably, however, the deformation field under uni-contributions to the elastic moduli of the system. In effect we
formly applied stress is highly heterogeneous spatially oveare considering a zero-temperature system, except that we
long length scales comparable even to the system size. Waccount for the extensional modulus of F-actin that is prin-
will quantify the degree of nonaffinity as a function of length cipally due to the change in the thermal population of trans-
scale and use this nonaffinity measure to demonstrate that tlverse thermal fluctuations of a filament under extension. We
degree of nonaffinity in the NA regime increases withoutdo not expect there to be a significant entropic contribution
bound as one goes to progressively smaller length scale® the free energy coming from longer length scale filament
Such materials are then poorly described by standard corcontour fluctuations because of their inherent stiffness. This
tinuum elasticity theory on small length scales. justifies our neglect of the sort of entropic contributions to
By further increasing the filament density, one approachethe filament free energy that are typically considered in the
a crossover to a regime of affifd) deformation, in which  analysis of rubber elasticity of flexible polymers. We discuss
the strain is uniform throughout the sample, as the velocitythis more below. The low dimensionality of the model sys-
field would be in a simple liquid under shear. This crossovetem, on the other hand, is more significant since the essen-
is shown in Fig. 1 by the dashed lines above the NA regiontially straight chains in two dimensions will not interact steri-
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cally under small deformations. In our model, only one !“i;l;—e}?lﬁfiifi‘\;f;;il‘—"rf“\‘ﬁ'i"&;”"i
length scale is required to describe the random network, the \‘§'~17_’ v"e;,f,',"‘w,"{/‘?bfﬁ 'L\Mlli
v, ‘.; v .‘ ’:"

mean distance between cross links, In three dimensions, » ,.",71“
however, chains can interact sterically and two quantities are
needed to fully describe the random network, the density of
cross links and density of filaments.

In our zero-temperature analysis of the system presented
in this paper, we do not explicitly probe the difference be-
tween the NA-AE and the NA— AM crossovers. Their dif-
ference enters our description of the system via a choice
made for the form ofu, the extension modulus of an indi-
vidual filament. For physiological actin, we expect that the
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relevant transition will be the NA- AE. We discuss this fur- ;;{'f;::‘}:r‘)f“.d :
ther in Sec. V. /‘\ , ’ i
The remainder of this paper is arranged as follows. In Sec. PV
Il we define our model system in terms of the mechanical
properties of individual filaments and the manner in which FG. 2. A e of work with link densit
they interconnect to form the network. An overview of the - < AN example of a network with a cross-ink density
. . . . o LI~=29.09 in a shear cell of dimension&XW and periodic
simulation method used to find the mechanical equilibrium o oo ) '
. S . oo Houndary conditions in both directions. This example is snvlll,
under an imposed strain is also given. We describe in Sec. Il 5| - more tvoical sizes ard/—5L to 20L
the rigidity percolation transition, at which network rigidity — 2~ P '

first develops. We then describe the crossover from a noryent of «, although they can both be related to the cross-
affine regime above the rigidity transition to an affine regimesectional radius and elastic properties of individual filaments
in Sec. IV. A scaling argument is also presented for thissee Sec. IV ¢
crossover. The macroscopic mechanical response is also The networks are constructed by the sequential random
demonstrated to be linked to geometric measures of the d%position of monodisperse filaments of |engtmto a two-
gree of affine deformation at a local level. In Sec. V, wedimensional shear cell with dimensioh¥xW. Since the
show how the network response in the affine regime can bgosition and orientation of filaments are uniformly distrib-
either essentially thermal or mechanical in nature. In Sec. Vlyted over the allowed ranges, the networks are isotropic and
we discuss primarily the experimental implications of ourhomogeneous when viewed on sufficiently large length
results. scales. Each intersection between filaments is identified as a
cross link, the mean distance between whiak measured
Il. THE MODEL along a filamentis denoted ., so that the mean number of

cross links per rod i&/I.—1. Deposition continues until the

The bending of semiflexible polymers has been successg ;i _linki v/l h hed. A .
fully described by the wormlike chain model, in which non- aerg;;(raegei\r/\(/)osrsk z;ne(;r:r?e(tjr?/niilg{vcena;ﬁ Il:;iegenzreac ed. An ex

zero curvatures induce an energy cost according to a bending The system Hamiltonian is found by using discrete ver-

m(_)dulus k. For small curvatures, the Hamiltonian can besions of Eqs(1) and(2) which are linearized with respect to
written as filament deflection, ensuring that the macroscopic response
1 is also linear. The detailed procedure is described in the Ap-
Hbend:_Kf ds(V2u)?, (1)  pendix. It is then minimized to find the network configura-
2 tion in mechanical equilibrium. Since entropic effects are
. ) . ignored, we are formally in th&=0 limit. The filaments are
whereu(s) is the transverse displacement of the filamentcoupled at cross links, which may exert arbitrary constraint
ands is integrated along the total contour length of the fila-fgrces but do not apply constraint torques so that the fila-
ment. Transverse filament dynamics can be inferred from thighents are free to rotate about their crossing points. We com-
Hamiltonian[19]. For finite temperatures, E() can also be  ment on the validity of this assumption in greater detail in
used to predict the longitudinal response of an isolated filagec \/| below. Specifically, we find that whether or not the
ment; however, a$—0 the filament buckles, preconfiguring physical cross links are freely rotating, the mechanical con-
a breakdown of the linear respon28]. We also consider sequences of such cross links is small for dilute networks,

2

the response of a filament to compression/extensional defoprovided that the networks are isotropic. Once the displace-
mations through the elastic Hamiltonian given by ments of the filaments under the applied strain of magnitude
v have been found, the energy per unit area can be calcu-

H :EMJ ds(m ) lated, which within our linear approximation is equalt&/2

stretcfi™ 2 ds |’ times the shear modulus or the Young's modulusy, for

shear and uniaxial strain, respectivgéfi2]. Thus the elastic

wheredl/ds gives the relative change in length along the moduli can be found for a specific network. The procedure is
filament. Equation(2) is just a Hookean spring response, then repeated for different network realizations and system
with a stretching modulug that is here taken to be indepen- sizes until a reliable estimate of the modulus is found. See
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seen by a simple Euler minimization of the Hamiltonian.
Hence we use the subscrilt, denoting “bending length.”
Since u now gives the only energy scale in the problem, it
scales out, along with one of the length scalemyL), and
thus we are left with two dimensionless control parameters:
the filament rigidityl,/L and the cross-link densitiz/I ;.
Note that there is also a fourth length scale, namely the sys-
tem sizeW, but all of the results presented below are for
sufficiently large systems that th& dependence has van-
ished.

We now explore the various deformation regimes of the
system beginning with the most fragile, sparse shear-
supporting networks that exist just above the rigidity perco-
lation transition.

lll. RIGIDITY PERCOLATION TRANSITION

For very low cross-link densitiek/| . the rods are either
isolated or grouped together into small clusters, so that there
is no connected path between distant parts of the system and

St - _ the elastic moduli vanish. As the density of cross links is
increased, there is aonductivity percolation transition at
L/I.~5.42 when a connected cluster of infinite size first ap-

FIG. 3. (Color onling An example of a low-density network  pearg[43]. If there was an energy cost for rotation at cross
with L/I,~8.99 in mechanical equilibrium, with filament rigidity links, an applied shear strain would now induce a stress re-
l,/L=0.006. Dangling ends have been removed, and the thiCknesssponse and the elastic moduli would become nonfé4d
of each line is proportional to the energy density, with a minimum-l-hiS is also the case when thermal fluctuations generate
thickness so that all rods are visilfi@ost lines take this minimum stresses along the filamerigs]. However, for networks with
value herg The calibration bar shows what proportion of the de- freely rotating cross links at iero température such as those
formation energy in a filament segment is due to stretching or bendl]nder consideration here. the network is a,ble to deform
g purely by the translation and rotation of filaments. Such a
floppy mode costs zero energy and thus the elastic moduli
remain zero. This continues to be the case untilrtelity
percolation transition at a higher dendlitil .~5.93[46—49,
when there are sufficient extra constraints that filaments must
bend or stretch and the moduli become nonzero.

A full description of the network behavior just above the
|2=—. (3)  transition has been given elsewhgsé], so here we summa-

M rize the results. Just above the rigidity transition, b@tand
Y increase continuously from zero as a powelLif., with
YHifferent prefactors but the same expongnt

Figs. 3 and 4 for examples of solved networks.

The free parameters in the model are the coefficignts
andk and the length scaldsandl.. We choose to absorb
into a third length scalg, derived from the ratio ofx and«,

Although the simulations assume a constant angular curv
ture between nodes, it is possible to asdigithe physical

interpretation of the natural length over which a free filament
bends when differing tangents are imposed at each end, as G, Y~(———

f
trans) . (4)

FIG. 4. (Color online The
same as Fig. 3 for higher densities
L/1,~29.09 (a) and L/I,~46.77
(b). For calibration of the colors
see Fig. 3.

(@)
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We have found that=3.0+0.2[50,51], consistent with the around the rigidity percolation transition by comparing the
value 3.15-0.2 found independentlf44]. It is also possible decaying zero-temperatutee., mechanicalmodulus of the
to measure geometric properties of rigid clusters, such agetwork above the phase transiti@ (L/l ;— L/l |yand" to
their fractal dimension; this has been done using the pebbléhe entropic modulus below iGe,~kgT/I3. Unfortunately
game method, and found to give exponents that are similar t& make such an estimate one implicitly makes assumptions
that of central forcei.e., Hookean springpercolation on a about the, as yet unknown, crossover exponents. Regardless,
lattice [46]. However, such networks cannot support bend-We speculate that the critical percolation point may indeed
ing, whereas we have found that the system Hamiltonian fohave physical implications at room temperature. First, due to
our model is dominated by its bending term near to the tranthe Signiﬁcant stiffness of the filamentS, this residual entropi-
sition. We conclude that our system is in a different univer-cally generated modulus should be small and thus the phys-
sality class to central force percolation, at least as far as thi€s of the zero-temperature critical point may have experi-
ideas of universality apply to rigidity percolation; indeed, it mental relevance. Second, one may interpret the observed
casts doubt on the validity of universality for force percola-difference between the numerically extracted and calculated
tion as a whole, as discussed below. Note that this discregcaling exponents which describes the dependencexadn
ancy cannot be due to any form of long range correlation i/, as evidence of corrections to mean-field scaling due to
the morphology of the system, since our random networkshe proximity of the rigidity percolation critical point. This
are constructed in such a way as to ensure that geometrigterpretation is strengthened by the fact that additional data
correlations cannot extend beyond the length of a single filapoints at smaller values df (i.e., higher cross-link density
ment. Note also that although cross links in our random netand thus farther from the rigidity percolation pgibut fixed
works are connected by filament sections of varying lengths\ conform more closely to our mean-field scaling exponent.
thus producing a broad distribution of spring constants whichrhus, it is reasonable to expect that one may observe phe-
can also destroy universality according to the integral exnhomena associated with rigidity percolation in sparsely
pression in Ref[52], our networks danot violate this con- ~ cross-linked actin systems.
dition. This is simply because there is a maximum lerigth
and hence a minimum spring constasiL, between any two
cross links, ensuring a low-end cutoff to the distribution of
spring constants. Similar considerations hold for the bending The coarse-grained deformation of a material is normally
interaction. described by the strain field that is defined at all spatial
Of the exponents that are used to characterize the criticgloints. Both the internal state of stress and the density of
regime, those measured by the pebble game method reflestored elastic energfrelated by a functional derivatiyere
topological or geometric properties of the growing rigid clus-then functions of the symmetrized deformation tensor. In our
ter. The exponerttis of a different class since it measures themodel, the underlying microscopic description consists en-
mechanical properties of the fragile solid that appears at thérely of the combination of translation, rotation, stretching,
critical point. Our observation of distinéts for two systems and bending modes of the filaments. Of these, only the latter
(i.e., our simulations and central force latticésat appear to two store elastic energy and thereby generate forces in the
share the same geometric and topological exponents suggestaterial. Thus a complete description of the energetics of a
that, although there are large universality classes for the tdilament encompassing these two modes must lead to a mac-
pological exponents describing the interactions that produceoscopic, or continuum elastic description of the material.
the appropriate number of constraints, the scaling of the The state of deformation itself, however, is purely a geo-
shear modulus admits a larger range of relevant perturbanetric quantity; it can be discussed independently of the en-
tions. We suspect that while rigidity itself is a highly nonlo- ergetics associated with the deformation of the filaments
cal property of the network, the modulus depends criticallythemselves. We will characterize the deformation fieldfas
on how stress propagates through particular fragile, lowfine if deformation tensor is spatially uniform under uni-
density regions of the rigid cluster. Thus the modulus deformly applied strain at the edges of the sample. Of course,
pends on details of how stress propagates locally througthis strict affine limit is never perfectly realized within our
perhaps a few cross links so that the mechanical characterisimulations, but, as shown below, there is a broad region of
tics of the filaments and the cross links become relevant. parameter space in which the deformation field is approxi-
The possibility of experimentally observing the physics mately affine, in the sense that quantitative measures of the
associated with the zero-temperature, rigidity percolatiometwork response asymptotically approaches their affine pre-
critical point[50] sensitively depends on the size of the criti- dictions. This entire region shall be called “affine.” Since in
cal region. As with other strictly zero-temperature phasecontinuum elastic models the stored elastic energy depends
transitions, there can be experimental consequences of tlmmly on the square@nd possibly higher even powgis the
critical point physics only if the system can be tuned to passpatial gradients of the symmetrized deformation tensor, it is
through the critical region, since the critical point itself can-clear that uniform strain is a global energy minimum of the
not be explored. At finite temperature, the network below thesystem consistent with the uniformly imposed strain at the
rigidity percolation pointbut above the connectivity, or sca- boundary.
lar percolation pointhas a residual static shear modulus gen- The spatial homogeneity of the strain field allows one to
erated by entropic tension in the system. One might imagindraw a particularly simple connection between the elastic
that one may crudely estimate size of the critical regimeproperties of the individual elements of the network and its

IV. ELASTIC REGIMES
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collective properties. Because under affine deformation evE€onsider what happens whe—0. In this limit, filaments
ery filament experiences exactly the same deformation, thean freely bend and only stretching modes contribute to the
collective elastic properties of the network can be calculatedlynamic response. Thidookeancase has already been in-
by determining energy stored in a single filament under thevestigated by Kellom et al. for the same random network
affine deformation and the averaging over all orientations ofjeometries as considered h¢&8]. They found the striking
filaments. Note this calculation constitutes a mean-field deresult that flexible modes exist for all densities in the linear
scription of elasticity. response, i.e.5=Y=0. In these flexible modes, the fila-

If the strain field is purely affinéi.e., is uniformly distrib-  ments will bend at cross links, but without costing energy
uted throughout the samplen length scales larger than the since k=0. If x is now continuously increased from zero,
microscopic length scale@.g., the distance between crossthen there should be a range of sufficiently smaih which
links), then it can be Taylor expanded to give a locally uni-the angles remain unchanged but now incur an energy cost
form strain in which all elements of the strain tensor areaccording to Eq(1), giving a total energy and henégthat
constants. It is then straightforward to see that the filamentis proportional tox.
would purely stretci{or comprespand the moduli would be  To make this idea more specific, suppose that wken

independent of filament bending coefficient Indeed, itis =0 the angles of filament deflection at cross link&9}, are
possible to derive exact expressions ®andY in this case, distributed with zero mean and varianeé,. By assump-
as described below. tion, o2, can only depend on the two geometric length scales

Conversely, nonaffine deformation on microscopic| andi,, or to be more precise on their rafigl .. From Eq.
lengths arises as a result of filament bending, and hence @) the energy at each cross link is

dependency or and well asu. This is what we find above
the rigidity percolation transition, on increasing network 050\ 2
concentration or molecular weight. Surprisingly, however, 5Hbend”’<<f) le. ®)
this is not restricted to the neighborhood of the transition, but
constitutes a broad regime of the available parameter space.
This nonaffine regime is dominated by bending, as can bdhe mean number of cross links per unit areaNis/2| .,
seen by the fact tha® andY are independent gf below. It ~ whereN is the number of filaments per unit ardé.can be
is important to note that continuum elasticity breaks down orexactly related td_/I; using the expression derived in Ref.
length scales over which the deformation field is nonaffine[50]; however, for current purposes it is sufficient to use the
In addition, the appearance of nonaffine deformations invaliapproximate relationL/l~(a—1)/(1-2/a), where «
dates the simple, mean-field calculation of the moduli which=2L2N/#. Thus Eq.(5) summed over the whole network
assumes that every filament undergoes the deformation. Ggives
nerically, the moduli in the nonaffine deformation regime
will be smaller than their value calculated under the assump- 5
tion of affine deformation. Nonaffine deformation fields in G T 50 ®)
effect introduce more degrees of freedom since the deforma- bend™ K 13
tion field is nonuniform. Using those extra degrees of free- ¢
dom, the system is able to further lower its elastic energy by
nonaffine deformations and thereby reduce its modulus. Onlifherefore plottingGL/ u= af;(,LItZ,/IS versusl,/L on log-log
upon increasing the number of mutual constraints in the sysaxes will give a straight line of slope 2, as confirmed by the
tem can one constrain the system to affine deformations arsimulations below. It is also possible to infer the variation of
thereby maximize its modulus. os9 On L/l from either the simulations or the scaling argu-
ment presented below, but since this is not an easily measur-
able quantity experimentally, nothing more will be said about
A. Nonaffine, bending dominated it here. A bending-dominated response was assumed in the
Starting from the most sparse networks just above th&alculations of Frejet al.[38] and Joly-Duhameét al.[54],
rigidity percolation transition, we first encounter the non-although the two-dimensiondD) and 3D density depen-
affine regime on increasiny/l.. We find empirically that dencies will of course be different.
throughout this regiméuntil the crossover to affine deforma-
tion of one kind or the other—AM or AEthe moduli of the
network are controlled by the bending modes of the fila-
ments. This nonaffine response can be distinguished from the Under an affine strain, the network response consists
scaling regime around the transition, which is also nonaffinepurely of stretching modes and it is straightforward to calcu-
by the lack of the diverging length scale associated with date the corresponding moduléS,qne. Consider a rod of
continuous phase transition; in the simulations, this correlengthL lying at an angled to thex axis. Under a sheay,, ,
sponds to the independence@fandY on system siz&V for  this will undergo a relative change in lengthL/L
relatively smallW, as opposed to the increasingly lafg¢ = y,,sinfcosé, and therefore an energy cost
required for convergence close to the transition.
The dependence d& on the system parameters in this
regime can be semiquantitatively understood as follows.

B. Affine, stretching dominated

1 .
SHsrercti= 5 ML Yy Sir?0 cos' 6. 7
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The sirfécos’ e factor reduces to 1/8 after uniformly averag- this segment which is located near the ends of the rod is of
ing over all# e (0,7). Summing over the network as in the orderd~ vyl . This deformation, however, clearly comes at

nonaffine case gives the price of deformations of surrounding filaments, which we
assume to be primarily bending in natutee dominant con-
2N{ SHtretch 0 straints on this rod will be due to filaments crossing at a large
affine= 5 angle. The typical amplitude of the induced curvature is of

2

Vxy orderd/lf , Wherel | characterizes the range over which the

ool I curved region of the crossing filaments extends. This repre-

~ 1_6f<l_+zf —3) : (8)  sents what can be thought of as a bending correlation length,
¢ and it will be, in general, different frorh. The latter can

where we have also corrected for dangling ends by renormaflso be thought of as a correlation length, specifically for the
izing the rod length& —L —2I. In the high—density limit strain variations near free ends. We determine these lengths

L/l—o, Eq.(8) asymptotically approaches self-consistently, as follows. L
The corresponding total elastic energy contribution due to
these coupled deformations is of order

T
Gaffine™ 161." ©)

o=

2
Yol |
AE1=—,u,yg|H+K |_2) Illl’ (11
L Cc

Since the number of rods per unit areaNs-1/(LI.), the
concentration of protein monomers of characteristic aiie
c~NL/a~(aly) ! and thusG~ (ac)® with «=1. For com-  where the final ratio of) to | gives the typical number of
parison, theories of thermal 3D systems predict { for constraining rods crossing this region of the filament in ques-
calculations based on a tube pict@4,30,33, a=% for tion. In simple physical terms, the rod can reduce its total
affine scaling relation$36], and a=2 for the T=0 three-  elastic energy by having the strain near the free ends deviate
dimensional cellular foam34]. from the otherwise affine, imposed strain field. In doing so, it

The above calculation can be repeated for an affingesults in a bending of other filaments to which it is coupled.
uniaxial strain y,, to give similar expressions for the From this, we expect that the range of the typical longitudi-
Young’s modulusY, with the sirfgcos’d term in Eq.(7) re-  nal displacement; and transverse displacement are re-
placed with sifig. Since this averages to 3/8 i differs by lated by
a factor of 3, 3 o0

17 ~1gli/le. (12
Y atfine= 3Gaffine- (10 ) ) ]
Of course, the bending of the other filaments will only

Hence the Poisson ratio=Y/2G—1 for affinely sheared occur because of constraints on them. Otherwise, they would
networks isv,mne= 3, Which should be compared to the 3D simply translate in space. We assume the transverse con-
lattice predictionv=31 [34] and the 3D Cayley tree value  Straints on these bent filaments to be primarily due to
=7 [35]. compression/stretch of the rods which are linked to them.
These distortions will be governed by the same physics as
described above. In particular, the length scale of the corre-
sponding deformations is of ordgr, and they have a typical

We now attempt to identify the dominant mode governingamplitude ofd. Thus, the combined curvature and stretch
the deviation from the affine solution. The relevant lengthenergy is of order

scales for this mode are derived, which, by comparing to

C. Scaling argument and crossover between elastic regimes

other lengths in the problem, allow us to estimate when the I Yol 2
crossover between stretching-dominated and bending- AE,= vyl Inaiye [, (13
dominated regimes should occur. This prediction correctly ¢ 17

predicts the qualitative trends of the deviation from affinity ) o )

with the lengthd., I, andl,. However, it is not as success- Where, in a similar way to the case aboVg/l; determines

ful quantitatively as an empirical scaling law described inthe typical number of filaments constraining the bent one we

Sec. IV D. Nonetheless we believe it contains the essentidPcus on here. This determines another relationship between

physics and therefore warrants a full description. the optimgl bending and stretch correlation lengths, which
To proceed, we note that the stretching-only solution precan be written as

sented above assumes that the stress is uniform along a fila- PR

ment until reaching the dangling end. It is more realistic to I ~Tglyle. (14

suppose that it vanishes smoothly. If the rod is very long, far o ) _

from the ends and near the center of the rod it is stretched/hus, the longitudinal strains of the filaments decay to zero

compressed according to the macroscopic stiginWe as-  ©Ver a length of order

sume that this decreases toward zero near the end, over a |\ 205

lengthl, so that the reduction in stretch/compression energy Lo~ |- 15

: 2 - : 1~ e , (15

is of orderuygl. The amplitude of the displacement along
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while the resulting bending of filaments extends over a dis- 20

T /L=0.02 <ol
tance of order b

lp/L =0.006 ---e-
215 lp/ L =0.002 ~wa
) (16 B Affine limit

lp
IJ.NIC T

le

The physical implication of Eqs(15) and (16) is that a
length of each filament of ordef experiences nonaffine de-
formation and this nonaffine deformation causes changes it
the local strain field over a zone extending a perpendicular
distancel, from the ends of that filament. Thus whén
becomes comparable to the length of the filaméntthe
network should deform in a nonaffine manner. We will refer
to this length along the filament contour over which one ©
\ , . 0
expects to find nonaffine deformation as L/,
These results make sense, as increased bending rigidity
can be expected to increase the bending correlation length FIG. 5. The normalized shear modulGd./u vs the cross-link
|, , while decreasing the longitudinal correlation length  densityL/l. for three different bending lengthg/L. The solid line
because of the stiff constraints provided by the cross linksgives the affine solutiof8) and the dashed lines adjoining the data
Both lengths, of course, tend to increase with decreasingoints are to guide the eye. Here and throughout, errors are no
concentration of cross links, i.e., with increasihg This  larger than the symbols.

scaling analysis assumes, however, thatl; , . Further- _ . , -
more, we expect thdi,<I in general. This is because the Indeed, for high densitie& approaches the affine prediction

bending stiffness of a roé~Y,r* increases with the fourth Catfine Which, due to the absence of bending modes under
power of its radiusr, while w~Y,r? increases with the affine strain as discussed at the beginning of Sec. IV, is in-

square of the radius, whel§ is the Young’s modulus of the dependent ofy,. The filament rigiditylb do<_as, howeyer, in—.
filament. Thus), is expected to be of the order of the rod fluence the crossover to the affine solution as will be dis-

diameter, which must be smaller than the distance betwee%“ssed below. The Young’s modulfsand the Poisson ratio

cross links, especially considering the the small volume frac:”:Y/ZG_ 1 for a range of densities are shown in Fig. 6. It

tions ¢ of less than 1% in many cases. For rods of radiis 'S @Pparent that remains close to the affine prediction
. . ine= 2 t possibly near the transition where it takes
three dimensions, we expect that-a//¢. Thus,l,/l; may Vaffine™ 2, EXCEP
be in the range of 0.01-0.1. This means that we expect thé?e v_alue 0.3%0.1 [50]_(h_ere as elsew_here, qgoted errors
I,>1, , although both of these lengths are of ortierThus are single standard deviationslote that, in two dimensions,
1 3

the natural dimensionless variable determining the degree &re?—preservmg d.(ta)f_?trm'zitmns hawe 1, Sot’;]: ?hS doe; not
affinity of the strain is the ratio of the filament lengthltq 'Mply Ihcompressibility. For comparison, the thermodynami-

the larger of the two lengths that characterize the range Oqally stable range is-1<v=1 [42]. The robustness of the

nonaffine deformation; i.e. when the filaments are very Ioniﬁcme prediction of the Poisson ratio even deep in the NA

compared with the effectively stress-free ends, then most F9Ime 1s somewhat surprising and is not accounted for in

the rod segments experience a stretch/compression deform@dr arguments.

tion determined by their orientation and the macroscopic ¢
strain. 1

It is possible, however, th&t above may become smaller 8r >
thanl., especially for either very flexible rods or for low 7} 05334
concentrations. This is unphysical, and we expect the bend, |
ing of constraining filaments above to extend only over a> 5 15 25

=%
J 10}
o

5 -

length of orderl whenl,/I, becomes very small. This re- > & L/1,
H H H H [<]
sults in a different scaling dfj, given by .4
- -
L~12/1,,. 17 os e
Although we see no evidence for this scaling, it may become 2 [ e ol
valid for small enoughy/I. 1t e~ YoungsY —e— |
e - Shear G ——o-—
0 L peat . .
D. Numerical results for elastic moduli 0 5 10 15 20 25

We now summarize our numerical results starting first at
lowest filament densities. Away from the rigidity transition,  FiG. 6. The shear and Young’s modu and Y for 1,/L
the shear modulu& continues to increase monotonically =0.006 against/I.. The interconnecting lines are to guide the
with the cross-link density_/l. at a rate that only weakly eye. (Inse) The Poisson ratiov=Y/2G—1 againstL/I for the
depends on the filament rigiditl, /L, as shown in Fig. 5. samel,/L.
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FIG. 8. G/G ine VS L/N with X = \[31%/1,, for different densities

FIG. 7. Shear modulug vs filament rig!ditylb/L_ f(_)r L/ . L/, showing good collapse except for the highest density consid-
~29.09, whereG has been scaled to the affine prediction for this ered. The enlarged points fw/l ~29.09 correspond to the same
density. The straight line corresponds to the bending-dominated rSarameters as in Fig. 12 ¢

gime with Gock, which gives a line of slope 2 when plotted on
these axes(Inset) The proportion of stretching energy to the total )
energy for the same networks, plotted against the same horizontifle correct asymptotic length, but does not apply for net-
axis |, /L. works of intermediate density, where the empirical farm
is much more successful, perhaps due to corrections to scal-
Varying the ratiol,/L over many orders of magnitude at ing from the transition point as discussed in Sec.(IThis is
fixed L/l reveals a new regime in whioB «, rather than ~ also the relevant range for biological applicatipridowever,
G~G,mnex 1 as in the affine regime described above. AnoOur current computational resources cannot go to higher den-
example is given in Fig. 7, where it can be seen tBatl2 sities, and so we must leave this question to be resolved at a
«x, suggesting that this regime is dominated lnding 'ater date, by either improved theory or increased processor
modes, a claim that is supported by the theoretical considefPeeds. _ _ _
ations presented in Sec. IV A and the work of Fegyal.[38] Although the goal of this paper is to characterize the be-
and Joly-Duhamest al.[54]. We also confirm in the inset to havior of semiflexible polymer networks over the whole of
this figure that the regime for whioB~ G 4, is dominated the parameter space, it is nonetheless instructive to also con-
by stretching modes, and that this new regime v@th « is sider parameters corresponding to physiological actin net-
dominated by bending modes, as expected. works. The length4, |, andl, for F-actin in physiological
The crossover between the two regimes can be quantifiegPnditions can be approximated as follows. The distance be-
by the introduction of a new lengtk, being a combination tWeen cross links has been quoted @s0.1 um[38], which
of |, andl. characterized by an exponent

ICZ 1 T U B.ﬁﬁp—rm—"'ﬁ'"-*—
7\:|c( E) . (18) 107 | ‘h. ]
*

The ratioL/\ can then be used to ascertain which regime the 10% . i
network is in, in the sense that<L corresponds to the , =, L
affine regime, and>L corresponds to the nonaffine regime. § '© [ ° 1
Note that this is only possible outside the neighborhood of2 o4 | a" |
the rigidity transition. For densities in the approximate range(D N
13<L/I.<47, a very good data collapse can be found by . 5| ° j
usingh;=\[3I2/l, or z=1%, as demonstrated in Fig. 8. This a  L/l=1391
empirical relation has already been publishgdl]. However, w0l . 29.01 |
as clearly evident from the figure, it appears to fail for the ] ‘ ‘;S'Z
small number of very high-density points that we have now 107 L—— 1o e o

been able to attain. Conversely, the scaling argument of Sec 1 10° 10°

IV C generates the relevant length scale=1,=\[512/I{ or Lk

z=2. Although the data do not collapse for this second form, F|G. 9. The same data as Fig. 8 plotted agalridt, with \,

as evident from Fig. 9, it appears to improve the overall=[517/12, as predicted by the scaling argument in the text, show-

collapse for larger densitie§.e., further from the rigidity ing slight but consistent deviations from collapse for this range of
transition point. A possible explanation for this is that is  L/I,.
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FIG. 10. The correlation functiol,,(r) between local mass FIG. 11. Autocorrelation of the combinéstretching plus bend-

densityp and energy density, wheree is. restricted to eit.her ing) energy densit for I, /L =0.006 and thé./I given in the key.
stretching or bending energy as shown ant the length of fila- The system sizes wera/=15L (L/I.=13.92), 10 (18.95 and
ments within a radiud./4 of the network point. The cross-link 1

21.48, 65L (31.63, and ZL (77.42.

density L/l ,~21.48,1,/L=0.006, and both lines have been nor-
malized so thatC,,(r=0)|=1.
low mass density regions, thus reducing the macroscopic en-
for filament lengthsL~2um gives a cross-link density ©rgy cost. This affects both bending and stretching modes
L/1.~20. As already argued in Sec. IV C, we can estinigte equally: there is no mcrgaased Ilkghhood of one mode over
by regarding the filament as a solid elastic cylinder withthe other for regions of given density, as demonstrat.ed py the
radiusr, in which casel,~r~10 nm. Thus we find that collapse ofC,, for both energy types after normalization,
|,/L~r/L~10"3, which givesL/\~5. Looking at Fig. 8, &IS0 given in this figure. _ _
this suggests that cytoskeletal networks are in the crossover The sizes of locally correlated regions can be inferred
region. Similarly,L/\,~4 leading to the same basic conclu- rom the d_ecay of a suitable aut_ocorrelanon fqnctlon, suph as
sion. the combined energ¥ (stretching plus bendingper unit
length.Cgg(r) is plotted in Fig. 11 for different density net-
works. The trend is foCgg(r) to decay more slowly with
for lower L/I at fixedl,/L, suggesting larger “pockets” of
A further way of probing the degree of affinity of a net- nonuniform deformation for lower network densities, pre-
work is to consider a suitable spatial correlation function.sumably becoming infinitely large at the transition, where the
Whatever quantity is chosen, it is clear that there can be neorrelation length diverges algebraically with the known ex-
fluctuations if the strain is purely affine. This is not the caseponentr~1.17+0.02[46]. We have been unable to extract a
with nonaffine strains, which will induce localized bending meaningful length scale from o@gg(r) data and hence are
modes that couple to the local geometry of the network andinable to confirm the value of this exponent.
thus may fluctuate from one part of the network to the next.
Thus correlations between fluctuations should have a longer
range when the deformation is more nonaffine, qualitatively
speaking. The two-point correlation function between spa- Intuitively, the degree to which the network deformation
tially varying quantitiesA(x) andB(x) can be generally de- is or is not affine depends on the length scale on which we
fined as look. For length scales comparable to the system size, the
R deformation must appear affine since we are imposing an
Cas(r)=(A(X)B(x+rn))—(A(X))(B(x)), (19 affine strain at the periodic boundaries. Only on some
smaller length scale might deviations from affinity be ob-
where the angled brackets denote averaging over all netwoierved. If the deformation field is nonaffine on length scales
nodesx and direction unit vectors. Figure 10 shows an corresponding to the microscopic lengthsl., or I, then
example ofC,,, wherep is the local mass density of fila- the filaments will “feel” a locally nonuniform strain field
ments and: is the energy per unit filament length, restricted and the assumptions leading to the predictiorGgfine will
to either stretching or bending energy as shown in the keybreak down.
There is a clear anticorrelation between density and both To quantify the degree of affinity at a given length scale,
forms of energy at short separations, showing that the magzonsider the infinitesimal change in angle under an imposed
nitude of deformation is heterogeneously distributedshear strain between two network nodes separated by a dis-
throughout the network, being greater in regions of low massancer. Denote this angled, and its corresponding affine
density and smaller in regions of high mass density. Qualitaprediction ... Then a suitable measure of deviation from
tively, the network concentrates the largest deformations intaffinity on length scales is

E. Spatial correlations

F. Measures of affinity
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FIG. 13. The root mean square deviation of node displacements
from their affine predictionmn/L, plotted against the samé\ ; as
in Fig. 8. Symbol sizes are larger than errors, so the apparent scatter
is real.

FIG. 12. Plot of the affinity measug %(r)) normalized to the
magnitude of the imposed strajnagainst distance/L, for differ-
entl,/L. The value ofr corresponding to the mean distance be-
tween cross links, is also indicated, as is the solid line (1/
y?)(A?(r))=1, which separates affine from nonaffine networks
to with an order of magnitudgéhe actual crossover regime is some- Where the angled brackets denote averaging over all nodes
what broad. In all casesL/lI;~29.1 and the system size wd¢  In Fig. 13 we plotm/L againstL/\, and observe the ex-
=2L. pected monotonic increase of the deviation from affinity with
decreasind-/A. However, the data for differerit/I . do not
collapse. The problem is that, unlike in Figs. 8 and 9, it is not
obvious howm should be normalized to give a dimensionless

where the angled brackets denote averaging over both nejuantity; we have tried using the length scales,, I, and
work points and different network realizations. An exampleX, but none of these generate good collapse. It is likely that
of (A6?(r)) is given in Fig. 12, and clearly shows that it some combination of these lengthdl collapse the data, but
monotonically decays with distance, as intuitively expectedwe have been unable to find it empirically, and we have no
Also, the deviation from affinity is uniformly higher for theoretical prediction for this affinity measure.

lower |,/L at the samé_/I., in accord with the greater de-
viation of G from G e Observed above.

Although (A 6%(r)) decreases monotonically with the
decay is slow, almost power-law-like over the ranges given. . .
This suggests that there is no single “affinity length scale” !N the above, we have considered a mechanical, purely
above which the deformation looks affine, and below whichdthermal model of networks governed by two microscopic

it does not. However, we can read off the degree of affinity aEN€rgies:(i) the bending of semiflexible filaments, afie)
the cross-link length scate=1 ., which (after normalizing to the longitudinal compliance of these filaments that describes

the strainy) should be<1 for an affine deformation, and their response to compression and stretching forces. We have

>1 for a nonaffine one. This is evident when comparing Fig_already discussed the role of temperature in terms of the

- . formation of a solid via the rigidity percolation transition.
12 to the G/G e for the same systems in Fig. 8; ¢£) _ -
X(A62(1))<1 does indeed correspond @~ G e, and Now, we examine the transition between the AM and AE

G~ Gpeng for (L/y2)(A6%(19))>1. regimes. _ ,

The monotonically increasing deviation from affinity with Fora ho_mogepeoug filament of Young's modu‘ﬂg thg
decreasind./\ can also be seen using an independent afﬁnppr_respondlng smgle—fllam(_ant pa_rameter$the ben_dlng -
ity measure, as used by Langer and [§5]. Consider the gidity) and w (the pne-dlmen5|onal compressmn/stretch
displacements$éx;} of each nodé after the strain has been Modulus are determined by'y and geometric factorsk

_V.a4 \.a2 ; : ;
applied, relative to their unstrained positions. Each of these Yia® and u~Ya“, where 2 is the filament diameter.

has a corresponding affine predictimafﬁne that can be sim- e/Iirom here on, we refer to the latémechanical modulus as
ply computed given the node’s original position and the type™M- .
of strain applied. Then a scalar measure of the global deviaﬂ At‘t f'tmte te;ntp;]era]\};vlre, hfwte;]vet:r, _there_: W'!{' be tra(\jnds_}[/_ersel
tion from affinity is the root mean square of the difference uctuations of the miaments that give rise to an additiona
between the measured displacements and their affine valux%gng'tUd'nal .c.omphance. Physically, this comphgnce comes
e rbm the ability to pull out the the_rmal fluctuatlons of the

' filament, even without any stretching of the filament back-
bone. The corresponding linear modulus for a filament seg-
ment of lengthl is [36]

<A92(r)>:<(0_ eaffine)2>v (20)

V. THERMAL EFFECTS

m?=((o%— ox""%)?), (21)
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bl a2e nonlinear modulus in the mechanical affine regime that will
,uT=|—3p~ |_3p'“'V' , (22 be much more dependent in the type of filamg¥.

where £ = «/(KT) is the persistence length. The full com- VI- IMPLICATIONS AND DISCUSSION

pliance of such a segment is thBw=1/uy+1/ur, corre- Starting with solutions having n@ero-frequencyelastic
sponding to an effective linear modulus of behavior, as the filament concentration molecular weight
(filament length L, or density of cross links is increased,
= MmMT 29 there is a point where macroscopic elastic behavior is first

observed. This is the rigidity percolation transition, and it
occurs for a fixed value df/l., where 1V, is a particularly
Thus, the thermal compliance dominates for lengths largegonvenient measure of filament concentration, as it repre-
than \[3a?¢,, while the segment behaves for all practical Sents the line densittength per volumgin our 2D system,
purposes as a rigid rod with linear modulus, for lengths ~ apart from a factor of order unity. o .
smaller than\/f3a2€p. We have shown that there are three distinct elastic behav-
Thus, there appear to be two distinct regimes within thdors of sgmiflexible networks apovg the rigidity transitidi):
affine regime: for higher concentrations, specifically for When either the molecular weiglilament length or con-
<\[3a%¢,, the longitudinal compliance of the filaments is centration is low, a nonaffine regime is expected in which the
governed by the mechanical compression/stretching of filaodulus is determined at a microscopic level by filament
ment segments and the modulus is given by @, this is bending (transverse compliangd34,38; (ii) as either the
the AM regime. At lower concentrations, specifically for molecular weight or concentration increases, a crossover is

= 38t he singe-lament compliance is dominated by PS4 10 &1 Sastc regme s urich te deformatons re
thermal fluctuations and P

the large scale is governed by the thermal/entropic longitu-
dinal compliance of filament segment§ij) at still higher
_ mrlp (24) concentrations or cross-link densities, this single-filament
16|‘c‘ ' compliance becomes dominated by the mechanical compli-
ance of bare filament stretching and compression.
This is the AE regime. For the networks under discussion, The crossover betweefi) and (i) is given by a fixed
which are described by a single variatethat both repre- Value ofL/A of order 10, wherex is a microscopic length
sents the spacing of filaments and distance between cofharacterizing the range of nonaffine deformation along a
straints or cross links, the boundary between these two affin@lament backbone. We expect this length to be of oider
regimes is S|mp|y determined by concentration, which isthe distance between cross links. But, it should also depend
naturally measured as|1/ For actin, we estimate the char- on the filament stifiness through the lendif= /. In
acteristic length\[3a%¢, to be of order 100 nm. Thus, only fact, it can only depend on the two lengthsand| in our
when the distance between cross links is less than a distanf@tworks. Thus, we expect that=1(I./l,)*. We have pre-
of order 100 nm will the bulk response of the network de-sented a scaling argument that shows thiszfer2/5, while
pend on the purely mechanical extension of actin filamentswe find empirically thaz=1/3 for biologically relevant den-
Experimentally, these two affine regimes should be distin-sities. The boundary between nonaffine and affine regimes is
guished by their scaling dependencies of the linear shedhus given byl ~\. In the mechanically dominated regime,
moduli G on various parameters. A clearer, qualitative dis-1,=\«/ury, while in the thermal regime,
tinction, however, should be seen in their nonlinear behavior.

mmt T

Specifically, in the thermal regime, the maximum stré@it |2K
ther at which the network yields or first exhibits nonlinear b= V&lpr~\ 75— (25
behavioj is expected to decrease with increasing concentra- a“lpmm

tion of polymer or cross link$36]. This is because of the
limited extent of thermal compliance, which decreases forThus, in the mechanical regime, the boundary is given by
shorter filament segments that appear more straight. This ls~I5 "%, while in the thermal regime, the boundary is given
in contrast with mechanical networks where the nonlineariby L~I1"%2. In either case, we see that this crossover has a
ties are governed by geometf.g., connectivity and orien- different functional dependence on concentration, demon-
tation of filaments This would suggest a concentration- strating once again that the physics of this crossover is dis-
independent maximum or characteristic strain, as is seen itinct from the rigidity percolation transition. We show a
some colloidal gel$56]. sketch of the expected diagram of the various regimes de-
Moreover, the actual form of the force-extension relationpending onL andc; in Fig. 1. The boundary between me-
for a semiflexible polymer in the limit of segment lengths chanically dominated and thermal regimes is simply given
<{, takes on a universal form, depending only on a characby | .~ \/f3a2€p, as we have noted above.
teristic extensioriz/{fp and characteristic force?«/12. This We can make several additional observations concerning
force-extension relation predicts a universal strain stiffeninghe behavior of real networks, based on our simple model.
of semiflexible gels in the affine regime, in contrast with aFirst, we note the strong dependence of the shear modulus on
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the cross-link density, as illustrated in E@4) and already segment of length. (say, of order 1um) between cross
noted for 3D affine networks in Reff36]. In fact, in the 2D links has over a small actin binding protein of size a few
networks presented here, we have made no distinction be&xanometers. More precisely, this can be seen by noting that
tween the mesh sizéor typical separation of neighboring in shearing two filaments that cross at a finite angle in the
filamentg ¢ and the cross-link separatida. We observe shear plane, a fixed bond angle between the filaments will
from this strong dependence of the modulusl gnwhich is  give rise to a distortiorfi.e., nonaffing of the resulting fila-
independent of filament concentration in 3D, that the modument conformations within a regiol, near the cross link.
lus of semiflexible gels can be varied significaniy fact, (This length corresponds to the range over which finite bend-
by orders of magnitudewith changes only in cross-link den- ing occurs, e.g., when a finite bending moment is imposed at
sity at the same filament concentration. This is very differen@ filament end.The angle of this bend will be at most of the
from the situation for flexible polymer gels, and may well be order of the macroscopic strainin the affine regime. This
important for cells, in that the mechanical properties can bgesults in a bending elastic energy of ordes/I,, per cross
tuned by local variations in the densities or binding constant§nk, compared with the longitudinal elastic energy of order
of various actin binding proteins. we?l, per segment between cross links. Noting trhét
Furthermore, as we have shoy,51, the modulus be- = «/u, we find that the latter terrfwhich corresponds to the
comes a very strong function of concentrati@rhich, again, freely rotating cross-link cagés larger than the former by a
will translate to cross-link density on 3D netwoykis the  factor of orderly/I ..
nonaffine regime. In the nonaffine regime, the modulus can For simple mechanical networks &&= 0, as we consider
vary by several orders of magnitude with respect to than most of this paper|, is of the order of the molecular
stiffer affine gels. As this nonaffine regime is expected fordiameter, which is much smaller than the distance between
just a few (specifically, of order 10 or fewgrcross links  overlapping filaments, let alone cross links in any real actin
along a single filament, it may also be possible that the celhetwork. In thein vitro networks that have been studied, we
can reduce its stiffness significantly, and even fluidize, byexpect this ratio to be no larger than at most a few percent. In
decreasing the number of cross links per filament or the filathe case of networks at finite temperature, as we discuss in
ment length. In addition, by using its proximity to the NA Sec. V,1,~/13/¢,, for which the ratio above is of order
— AE crossover, the cell can tune its nonlinear mechanicam. By definition, this is smaller than 1 for semiflexible
properties. In the AE regime the cytoskeletal network shoulthetworks. Thus, in any case, the corrections to the affine
be strongly strain stiffening due to the nonlinear extensionak|astic moduli due to possible fixed-angle cross lifiksiso-
properties of individual f|lament536] In the NA regime, tropic network$ are expected to be small.
there should be a much larger linear regime since the bend- | the related studies by Wilhelm and Frigy4], who also
ing modes of the filaments, which dominate the deformationgonsider ther =0 mechanical properties of networks such as
in the NAregime, have a much larger linear response regimgyyrs, the authors looked at both fixed-angle and freely rotat-
Finally, we speculate that in the affine regime, the mechanimng cross links. They found that the rigidity percolation tran-
cal properties of the cell should be insensitive to the detailsitions occurred at somewhat different values of concentra-
of the _cytoskeletal microstructure; in the AE regime thetion for fixed-angle and freely rotating bonds. But, they
mean-field character of the network enforced by the larggeport that very similar behavior was observed for the two
ratio of L to A suggests that local effects of cross-linker typecases above the critical points. Specifically, they found no
or network topology self-average. On the other hand, withinstatistically significant difference in the dependence of the
the NA regime, the cellular mechanical properties may b&hear moduli with concentration in the nonaffine elastic re-
quite sensitive to such local network modifications. gime. Thus, it would appear that no substantial differences
In this model, we have assumed freely rotating crosgjye to the mechanics of cross links can be expected in either

links. In the case of actin networks, however, it is well affine or nonaffine regimes, at least for the relatively sparse
known that many associated proteins can bind actin filamentgotropic networks that actin forms.

at either preferred or fixed angl¢&]. This can have two
distinct effects: one geometric, and the other mechanical.
One the one hand, the model we have described is only for
isotropic networks. Thus, if actin cross linking results in an  A.J.L. and F.C.M. would like to thank D.A. Weitz for
anisotropic networke.g., with oriented bundlésthen one  helpful conversations. A.J.L. would like to acknowledge the
cannot describe such a system with the model presentétbspitality of the Vrije Universiteit. D.A.H. was funded by
here. the European Union Marie Curie program. This work was
If, on the other hand, the networks remain isotropic, butsupported in part by the National Science Foundation under
with rigid bond angles between filaments, then we expect t@Grant Nos. DMR98-70785 and PHY99-07949.
see additional rigidity of the networks as a result. The size of
this effect can be estimated for the affine regitd& and
AM, in fact). We find that the relative contribution to the
network elastic modulus due to such cross links is only of The filaments are deposited into the shear cell as already
orderl,/l., which is expected to be small for realistic net- described in Sec. Il. This is internally represented by the set
works of actin, bothin vitro andin vivo. In simple terms, this  of points {x;} consisting of all cross links and midpoints
is simply due to the very large lever arm that a filamentbetween cross linkéthe midpoints are included so that the
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first bending mode between any two cross links is repretinked filaments are coupled by imposing the saxnat in-
sented. Relative motion between thi contributes to the tersections, but there is no energy cost for relative angles
system Hamiltonian according to discrete versions of Eqspetween filaments: cross links can freely rotate.

(1) and(2). A change in separation frotg to I+ 6l between Each contributior(A1), (A2) is linearized with respect to
any two adjacently connected points incurs an energy CoStchanges in theg and summed to create the system Hamil-
w2 tonian H({x;}). Either a uniaxial or a shear strainis ap-
5Hstretch=§(|—> lo. (A1) plied to the system through the periodic boundaries in a
0

Lees-Edwards manngs8]. The Hamiltoniar{({x;}) is then

In addition to this, a nonzero angl# between the vectors Minimized with respect to thix;} by the conjugate gradient
X—Xi_1 andx;,,—x;, wherex;_,, x;, andx, are con- Method[59]. Two optimizations are included. The Hessian

secutive adjacent points on the same filament, contributes MatrixAj; = d°H/dx;x; is preconditioned by ~*, whereM
has the same diagonalX2 matrices ofA but is zero else-
« [ 56\° where. Furthermore, cross links that lie within a given small
( ) I, (A2) distance, typically=10 3L, are coalesced. This improves
the conditioning ofA and hence the speed of convergence

where |’ is the mean of the lengths to either side of theconsiderably, while producing only minimal change in the
central point, i.e.l’=3(|x;—x_1|+|X+1—Xj). Cross- measured quantities, except precisely at the transition.
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