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Dynamic shear modulus of a semiflexible polymer network
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We construct a model for the dynamic shear moduB(s») of entangled or crosslinked networks of
semiflexible polymer that can account for the high-frequency scaling beh&far) ~ w4, that has recently
been observed in solutions of the biopolynteactin. As we argue, this behavior should not be unique to
F-actin, but rather should be a clear characteristic of semiflexible polymers in general. We also report molecu-
lar dynamics simulations that support the single filament response that is the basis of our model for the network
shear modulud.S1063-651X98)51908-3

PACS numbsg(s): 83.10.Nn, 83.50.Fc, 87.15.Da, 87.4%

Semiflexible polymers fit in a continuum of behavior that show below. A shear strain implies extension or compression
runs from flexible-chain system@uch as polystyreneto  in the fluctuating segments, depending on their orientation
rodlike solutions. Nevertheless, accepted models of flexiblavith respect to the shear direction. The longitudinal relax-
and rodlike polymerg1,2] do not seem to be adequate to ation of the chain conformation through the surrounding vis-
describe the behavior of semiflexible systems, and as yet neous solvent results in a specific time-dependence of the re-
well-established models for viscoelasticity in semiflexiblesponse (microscopically, tension in the filament;
networks exist. Perhaps one reason for this is that few syrmacroscopically, stress in the solutjaihat is governed by
thetic polymers display a sufficiently large aspect ratio ofthe incompressibility of the filament along its contour length.
persistence length , (the e~ ! decay length of angular cor- Itis this time-dependent, single filament response that results
relation along the filamentto molecular diameter for the in a simple frequency dependence of the macroscopic stress
distinctive features of a semiflexible network to become apfesponse of the polymer network, in much the same way that
parent. Biopolymers, however, have proven to be excellenthe (single-filament Rouse model describes the stress of
model systems in which to study semiflexible behavior beboth dilute and entangled flexible polymer solutions, and
cause of their rather large molecular cross section: the pregven of gels at high frequency. As such, this high-frequency
tein F-actin(filamentous actiy) with a diameter of about 5—-7 response provides for a more quantitative comparison of ex-
nm, has a persistence length of 15— [3,4], while mi-  periment with theory than may be possible for the plateau
crotubules have diameters of 28 nm and persistence lengttgodulus, which is highly sensitive to entanglement and
of several millimeterg4]. Networks of F-actin can provide crosslinking[7—10], and for which experimental values have
cells with mechanical stability while occupying a signifi- varied widely[11].
cantly smaller volume fraction of the cytosol than would be  For a strainu;; = %(Viuj+Vjui), a segment of orientation
required for a flexible network. This is in part why semiflex- n and length/ undergoes a relative change in end-to-end
ible polymers have lately become the subject of much intertength of 8/1/=nin;u;, and there will be an induced ten-
est and debate. Recent theoretical and experimental studiggn r,,, given by s/, = a, 7, , wherea,=a/,+ia’ is the
of F-actin, in particular, have begun to resolve the unusuapngitudinal response function of the segment of filament.

static and dynamic properties of semiflexible systems. Herezor a spatial density of filaments, the stress due to filament
we describe a model that can account for the anomalougnsion is

power-law increase of the shear modul@& as G(w)

xw3 that has been observed recently in experiments on - p’ e

F-actin above a frequency of about 1 H6]. We also show o’ =p(min;)= a_<ninjnknl>ukl . (1)
that this is a general signature of semiflexible polymer sys- ¢

tems. There is an additional stress2iwnu;; due to the solvent

Our physical picture is as follows. A semiflexible polymer (with  the viscosity. For an isotropic distribution of fila-
network is an isotropic, random array of long stiff chains thatments, (ninjniny) = (L/A5) 8 S+ 8 8j1 + 81 Sy} Assum-
are subject to constraintéeither steric entanglements or jng incompressibility (;=0) and identifying o)
crosslinkg on a length scale’, shorter than the persistence =2G(w)u;;, one finds
length /, of the filaments. For our purposes, the defining
characteristic of a semiflexible network is that the filaments Glw)=%plla,—ion. 2
are much longer than either the persistence length or the
entanglement length.>/",=/>a, wherelL is the fila- In this way, at least for high frequencies, the macroscopic
ment length andx is a molecular dimension. Under an ap- shear modulus of a network can be obtained from the single
plied macroscopic shear strain of frequengyfilaments un- filament response.
dergo a distortion that we assume to be affine above a length We calculate the response functiar) of a filament seg-
scale of order’s; however, the precise value of this length ment with length/” and bending modulus =/ kT. The
will not be important for the high-frequencg(w) as we bending energy in the absence of tension is
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U=L dsz(azrl/asz)z. ®)

Writing the lateral deviation as, (s)=[u(s),v(s)], the
tension-free equation far(s,t) is {u= — kdu/ds*, wherel

is the transverse drag coefficient. If the segment ends are

laterally constrained, the motion is a sum of modes

2 . :
u(s)=72q ugsings (gq=nw//,n=1), (4)

and similarly forv(s). Modes of differingq are uncorre-
lated. Denoting quantities at time>0 and at time O as
primed and unprimed respectively, one finds

(71297 ) e, (5)

(Ugug) =(vqvq) =

where the relaxation rate is,= (xl2)q*.

We definedx,, as the response of a fluctuating segment of

inextensible f|Iament to a tensior{t) [12]. A real filament,

however, must possess some longitudinal compliance whic

will contribute to the response at very short times. We will
discuss this restriction further below.
The total projected length change is given by

/ 1
—%J; ds(arilas)2=—7 % qA(uz+vd). (6)

Correlations of 5/ evidently involve fourth-order correla-
tions ofuq andv,. However, since the enerd¥q. (3)] is
guadratic inu andv, we can factor the fourth-order correla-
tions using Wick's theoremiug’uj)=(ug)?+2(ugug)®.
The end-to-end correlation functiong(t)=(8/"5/)
—(8/)? is then easily found to be

4 1
)= — 4 ulu 2 74672wqt_ (7)
(1) /‘chﬂqq) /Squq

Transforming this correlation function and puttiggnw//,
we find the spectral densifiL3]

2”: 1

n=1 n®+ (w/2wl)

(6/%),= 8

w31q 1//2

wherew,=(x/{) (w7l /)* is the relaxation rate of the slowest
mode,q=q,=m//. The imaginary part!, of the response
function is given by the fluctuation-dissipation theores,
=(wl/2T)(6/?),,, from which (choosing the poles to lie in
the lower w-plane for causality we obtain the end-to-end
response function of a segment of inextensible filament,

22

pnl

©)

(U

n —Iw/Zwl

At low frequencies @p<w;) Eq. (9) becomes apjaeau
—(1/90)(/4/T/2) Using Eq.(2), and putting/'=/,, we
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FIG. 1. Real parG’ (solid line) and the absolute value G” of
the imaginary partdotted ling of the frequency-dependent shear
modulus computed from Ed2), neglecting the term-iw%n. G’
and G” are given relative to the plateau modulus®
6pT/2//§, and the frequency is given in units o2, where
ool—(K/{)(w//e)4 The plateauG’ =G(® extends to indefinitely
h)w frequenciegas shown only if the network is crosslinked.

clear from the present discussion; for example, if the network
is not crosslinked, the filaments will slide past their entangle-
ment points at low enough frequencies, and allow flow. The
low-frequency regime is discussed in Ref$4,9] and by
Morse[10].
At high frequencies, we replace the sum in E®). by an
1 7

integral to find
a,~ ,,/2(
23217,

Again using Eq.(2), we find the shear modulus at high fre-
quencies > wq),

3/4
(w>wq).

2k
—il{w

(10

G(w)@l—lspk/p(—Zi{/K)3/4w3/4—iw77. (11
We see that” does not appear. Equati@¢®) displays a scal-
ing regime ofG(w)xw®* up to an upper frequency, s
that is very sensitive to network density5,16, wsp*.
Above wis., EQ. (9) crosses over to simple viscous scaling,

G(w)>*w. The »®* scaling response depends solely on the
density of filaments, their bending stiffness and their lateral
drag coefficientl. It does not depend, for example, on net-
work parameters such as the entanglement lergthFila-
ments contribute independently to the shear modulus at high
frequency, and there is no distinction between crosslinked
networks and entangled solutions, as is also the case for flex-
ible systems. For intermediate frequencies, @®j.is in fact
summable analytically; rather than evaluate that closed form,
however, we perform the sum numerically: Fig. 1 shows the
resulting real and imaginary parts 6f ) that result via Eq.
(2).

To test the predicted spectrum of end-to-end distance in
Eq. (8), we performed a molecular dynamics simulation of
an overdamped, semiflexible chain of twenty rigid segments

find the plateau modulus of an entangled solution or thevhich we defined to be of unit length. The drag coefficient of

static modulus of a crosslinked g&{®=6pT/2//3. This

each vertexequal to the drag per unit lengtivas taken to

form of the plateau modulus agrees with a previous scalingpe /=2T. This choice determines the time st&p=e?

result[7]. However, the physical validity of thi§(® is not

wheree? is the random variance of displacement for an un-
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straightforward modeling of the actin filaments as homoge-

10— neous cylinderg4], one estimate€A~5x10 ¢ N, and a
: PSD of frequency off =150 kHz is needed to maké, as small as
10° projected length 10 um. Thus we can assume instantaneous tension propaga-
tion in F-actin up to very high frequencies. On length scales
107 shorter than/;, we can put the static extensional response
a®=//EA in parallel with the response function, E(Q).
107 The latter is completely dominant out to frequencies of sev-

eral MHz, so that extensional compliance is not relevant to
experiments in F-actin.

Many of the parameters of our model have been measured
" for F-actin, which allows for quantitative comparison with

Length™/frequency (natural units)

3 10 experiment. Fluorescent, phalloidin-stabilized actin filaments
0.005 have been estimated by observation of their thermal fluctua-
0.004 | tions [4] to have a persistence length of,=«/T=17.7
0.003 +1.1 um; other measurements have given similar results
0.002 t [3]. It is not known to what degree rigidity changes in the

absence of phalloidin. The effective lateral drag coefficient
0.001 | of a filament includes a weak logarithmic dependence on the
‘ wavelength of motion), or on some other large-scale cutoff
107 : 102 100 100 100 18 10 to the hydrodynamics, such as mesh size. We arbitrarily fix
Frequency f (natural units) this length scale at~1 um. Using the diameter of the fila-

ment d~5nm for actin, we have {=~4m»/In(0.6\/d)
FIG. 2. Top: Power spectral densitgolid line) of the projected  ~0.0023 Ns/A [18]. Using this drag coefficient,w
end-to-end length of a fluctuating filament, with its ends constrained= («x/£)q* implies a decay rate of 5 set for a mode of
to lie on a fixed line. The persistence length is four times the f"a‘wavelength)\z 10 um, and of 5x 10* sec’?! for a mode
ment length. Twenty inextensible segments of unit length were usegith \ =1 um.
to represent the filament82%° time steps were taken, with astep | the case ofF-actin, the predicted amplitude of the
frequency off =1.1x 10°. Equation(8) is shown for comparison high-frequency modulus in E411) is somewhat higher than

(dotted ling. There are no adjustable parameters. The final upturn i%xperiment. Each actin filament contains fourteen 43-kD
aliased diffusive power inherent in the discrete time steps. Bottom;

. " monomers per 38-nm half-pitch; it follows that the density of
The same curves multiplied bi/’% note the expanded scale. The filament lenath in 1 ma/mL polvmerized E-actin is=3.8
limiting high-frequency power-law implicit in Eq8) would predict %1013 m-2 gUsin E (?Ll) poly #5=3.
a horizontal line with value 0.0044. ) 9 EG. !
3/4

f
i~ (19

1 mg/mL) ( 1 Hz

constrained vertex. Finally, the elastic bending force on a G(f)~(1.6 pa(
vertex is— oU/ ér = —/,Td*r/an*, whereU is given in Eq.

(3). Here, because we are interested in the end-to-end dis- . ) .
tance fluctuations of a stiff filament, it was crucial to perform At & concentration o =2 mg/mL, the imaginary part of Eq.
this simulation with strictly imposed arc length constraint. (13) is about seven times larger thﬁ” an observed power-law
This required, at each time step, a random collective motiofodulus ofG"(f) ~0.44 Paf/1 Hz)*", between 10 and 100

of the entire set of chain vertices within the constraint subHZ, in Fig. 1B of[5]. We consider this acceptable agreement.
space[16]. The results of the dynamical calculation are The experimental value might be depressed by incomplete
shown in Fig. 2. We find good agreement, with no adjustamé)olymerlzatmn or by a high fraction of_short fllame_mnsuch
parameters, between the dynamics calculation and predié_horter than the entanglement lengtlhis also possible that

tions of the model in Eq(8). the persistence length may be shorter without phalloidin
We now ask how a small degree of longitudinal extensi-Present. " o
bility will change the foregoing results. Fef</,, exten- The power-law dependen@(w) > w™" in Eq. (11), is in

sional dynamics and bending dynamics should occur indecontrast with well-understood flexible polymer systems that
pendently. For a homogeneous elastic rod, extension@Xhibit shear moduli obeying power-laws in the rangedf
modes are described bgyk:EA(?zX/asz wherex(s) is the to w?3[2]. Identical conclusions to ours have been obtained
deformed longitudinal coordinatég, is the longitudinal drag independently by Mors¢10]. This scaling ofG() is in

.- . , ood agreement with prior results Bfactin by microrheol-

coefficient ¢~ ¢/2 [17,18)), E is Young’s modulus, ané 9 . . . )

is the cross-sectional area. Longitudinal deformation propa(-)gy [5] and multiple light scatterinf6] experiments, both .Of -
which were able to measure the shear modulus at signifi-

gates as . . ; ) :
cantly higher frequencies than previously possible for F-actin

ox(s)oce "V /= (2EA { )2 (12) by conventional rheology. Macroscopic rheology experi-

ments have reported Rouse-like scalii&p], although the
The length/; characterizes the decay of compressional efrange of frequencietbelow 3 H2 may not have been ad-
fects at a frequency. equate to show the scaling regime above the plateau. More-
In actin filaments the compressional decay lengthis  over, the experiments of R4R0] consistently showe@” in

much larger than/, up to very high frequencies. With excess ofG’ at the highest frequencies, indicating a power-
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law greater than 1/22]. Other microrheology experiments = We thank D. C. Morse for generous discussions of his
on F-actin[19] have also reported dynamics consistent withrelated work. We also thank A. C. Maggs, T. Mason, P. D.
G(w)*w®4 although the actin concentrations were lower,Olmsted, C. F. Schmidt, B. Schnurr, and D. A. Weitz for
and the authors suggested an alternative explanation. As waany discussions. This work was supported in part by the
have noted above, this high-frequency modulus may permivhitaker Foundation, the National Science Foundation
the most direct comparison of experiment with theory in F-(Grant Nos. BIR 95-12699 and DMR 92-57544nd by the
actin systems, given the large variation in measured plateagonors of the Petroleum Research Fund, administered by the

moduli, which may result from the sensitivity to entangle- Acs. F.C.M. wishes to thank the Aspen Center for Physics.
ments and crosslinking in semiflexible systems.
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